123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950 |
- #include <math.h>
- #include "ggml.h"
- #include "fairseq2.h"
- #include <unordered_map>
- #include <algorithm>
- /// allocate the fairseq2 model and hyperparameters
- extern "C" fairseq2_model* fairseq2_model_alloc() {
- // pre-allocate some memory to write hyperparameters and tensors pointers
- auto* model = new fairseq2_model;
- model->hparams = new std::uint8_t[8 * 1024];
- model->arch = new std::uint64_t[16 * 1024]; // max tensors allowed
- model->tensors_ctx = nullptr;
- return model;
- };
- extern "C" void fairseq2_model_free(fairseq2_model* model) {
- if (model->tensors_ctx) ggml_free(model->tensors_ctx);
- delete (std::uint64_t*)(model->arch);
- delete (std::uint8_t*)model->hparams;
- delete model;
- };
- extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
- model->ctx = ctx;
- }
- extern "C" std::string* std_string_alloc(char* c_str) {
- return new std::string(c_str);
- }
- extern "C" void std_string_free(std::string* str) {
- delete str;
- }
- bool has_layer(fairseq2_model& model, const std::string& name) {
- return model.tensors.find(name) != model.tensors.end();
- }
- extern "C" ggml_tensor* Linear_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* input // (d_in)
- ) {
- // Note: for now we assumed un-batched input
- ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
- GGML_ASSERT(weight != nullptr);
- ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
- ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
- if (bias == nullptr) return out;
- return ggml_add_inplace(model.ctx, out, bias);
- }
- extern "C" ggml_tensor* LayerNorm_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* input
- ) {
- ggml_tensor* weight = model.tensors[prefix + ".weight"];
- GGML_ASSERT(weight != nullptr);
- ggml_tensor* bias = model.tensors[prefix + ".bias"];
- GGML_ASSERT(bias != nullptr);
- auto ctx = model.ctx;
- // TODO: should `eps` be part of unity hparams ?
- input = ggml_norm(ctx, input, /*eps*/1e-5);
- return ggml_add_inplace(
- ctx,
- ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
- ggml_repeat(ctx, bias, input)
- );
- }
- extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs
- ) {
- seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
- // inner_activation = ReLu // TODO: allow other activation
- seqs = ggml_relu_inplace(model.ctx, seqs);
- if (has_layer(model, prefix + ".inner_layer_norm")) {
- seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
- }
- seqs = Linear_forward(model, prefix + ".output_proj", seqs);
- return seqs;
- }
- ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
- int n_dims = x->n_dims;
- GGML_ASSERT(dim >= 0);
- GGML_ASSERT(dim < n_dims);
- GGML_ASSERT(ggml_is_contiguous(x));
- // Nothing to do
- if (dim == n_dims - 1) return x;
- if (n_dims == 2) {
- return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
- } else if (n_dims == 3) {
- if (dim == 0) {
- return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
- } else { // dim == 1
- return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
- }
- } else { // n_dims == 4
- if (dim == 0) {
- return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
- } else if (dim == 1) {
- return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
- } else { // dim == 2
- return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
- }
- }
- }
- ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
- int n_dims = x->n_dims;
- GGML_ASSERT(dim >= 0);
- GGML_ASSERT(dim < n_dims);
- GGML_ASSERT(n_dims < 4);
- if (n_dims == 1) {
- return ggml_reshape_2d(ctx, x, num_el, x->ne[0] / num_el);
- } else if (n_dims == 2) {
- if (dim == 0) {
- return ggml_reshape_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1]);
- } else { // dim == 1
- return ggml_reshape_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el);
- }
- } else { // (n_dims == 3)
- if (dim == 0) {
- return ggml_reshape_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2]);
- } else if (dim == 1) {
- return ggml_reshape_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2]);
- } else { // dim == 2
- return ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el);
- }
- }
- }
- ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
- // (B, S, dim) -> (B, S, H, H_dim)
- x = ggml_unflatten_1d(ctx, x, 0, head_dim);
- x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
- x = ggml_cont(ctx, x);
- x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
- return x;
- }
- /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
- ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
- // (B, Sk, dim) -> (B, Sk, H, H_dim)
- v = ggml_unflatten_1d(ctx, v, 0, head_dim);
- v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
- v = ggml_cont(ctx, v);
- v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
- return v;
- }
- // flash_attn doesn't work for cross attention because it assumes Q <= K
- // TODO: enable flash_attn only for the encoder
- # define UNITY_FLASH_ATTN 0
- extern "C" ggml_tensor* MultiheadAttention_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* queries, // (slen, d_in)
- ggml_tensor* keys, // (klen, d_in)
- ggml_tensor* values, // (klen, d_out)
- ggml_tensor* mask // (klen, slen)
- ) {
- int model_dim = queries->ne[0];
- int num_heads = 16; // TODO: read from hparams
- int head_dim = model_dim / num_heads;
- GGML_ASSERT(model_dim % num_heads == 0);
- ggml_context* ctx = model.ctx;
- ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
- ggml_set_name(q, "q");
- q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
- ggml_tensor* k = Linear_forward(model, prefix + ".k_proj", keys);
- ggml_set_name(k, "k");
- k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
- ggml_tensor* v = Linear_forward(model, prefix + ".v_proj", values);
- ggml_set_name(v, "v");
- v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
- v = ggml_cont(ctx, v);
- #if UNITY_FLASH_ATTN
- // For flash_attn, we assume either no masks, or triangular masks.
- ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/mask != nullptr); // (B * H, S, H_dim)
- ggml_set_name(attn, "attn");
- // TODO test !
- attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
- attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
- #else
- // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
- ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
- ggml_set_name(qk, "qk");
- ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
- ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
- qk = ggml_scale(ctx, qk, qk_scale);
- ggml_set_name(qk, "qk_scaled");
- // TODO: Should we replace this by ggml_diag_mask_inf ?
- // TODO: masks have the wrong shape to be added here
- if (mask) qk = ggml_add(ctx, qk, mask);
- // TODO: upgrade qk to float32 if needed
- ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
- ggml_set_name(attn_weights, "attn_weights");
- // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
- ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
- ggml_set_name(attn, "attn");
- attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
- attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
- #endif // UNITY_FLASH_ATTN
- attn = ggml_cont(ctx, attn);
- attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
- // out -> (B, S, d_out)
- ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
- ggml_set_name(out, "out");
- return out;
- }
- extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- // TODO: read norm_order from model
- auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
- // _forward_self_attn(seqs, padding_mask)
- auto residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // TODO: add padding_mask to MultiheadAttention_forward
- GGML_ASSERT(padding_mask == nullptr);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".self_attn",
- seqs,
- seqs,
- seqs,
- /*attention masks=*/nullptr
- );
- if (has_layer(model, prefix + ".self_attn_norm"))
- seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // _forward_ffn(seqs)
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
- // TODO: if self.residual_scale is not None:
- // residual = self.residual_scale * residual
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- return seqs;
- }
- /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
- /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
- struct ggml_tensor * ggml_slice(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis,
- int64_t start,
- int64_t end
- ) {
- int64_t ne[4];
- std::copy(a->ne, a->ne + 4, ne);
- if (axis < 0) axis = a->n_dims + axis;
- if (start < 0) start = ne[axis] + start;
- if (end < 0) end = ne[axis] + end;
- GGML_ASSERT(0 <= start);
- GGML_ASSERT(start <= end);
- GGML_ASSERT(end <= ne[axis]);
- ne[axis] = end - start;
- size_t offset = a->nb[axis] * start;
- size_t* nb = a->nb;
- ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
- result->n_dims = a->n_dims;
- return result;
- }
- extern "C" ggml_tensor* PositionalEmbedding_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* embeds
- ) {
- // This only work with the simple pos encoders
- int seq_len = embeds->ne[1];
- ggml_tensor* full_pos_embeds = model.tensors[prefix];
- ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
- return ggml_add(model.ctx, embeds, pos_embeds);
- }
- extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs
- // TODO: state_bag
- ) {
- GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
- ggml_context* ctx = model.ctx;
- ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
- GGML_ASSERT(embed_weights != nullptr);
- ggml_tensor* embeds;
- if (seqs->n_dims == 1) {
- embeds = ggml_get_rows(ctx, embed_weights, seqs);
- } else {
- // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
- ggml_tensor* flat_seqs = seqs;
- if (!ggml_is_contiguous(seqs)) {
- flat_seqs->type = GGML_TYPE_F32;
- flat_seqs = ggml_cont(ctx, flat_seqs);
- }
- flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
- flat_seqs->type = GGML_TYPE_I32;
- embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
- embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
- embeds->n_dims = seqs->n_dims + 1;
- }
- // padding mask ?
- // padding_mask = to_padding_mask(embeds, seq_lens)
- if (has_layer(model, prefix + ".pos_encoder")) {
- embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
- }
- if (has_layer(model, prefix + ".layer_norm")) {
- embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
- }
- return embeds;
- }
- extern "C" ggml_tensor* StandardTransformerEncoder_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- int layer_idx = 0;
- std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
- while (has_layer(model, layer_name)) {
- seqs = StandardTransformerEncoderLayer_forward(
- model, layer_name, seqs, padding_mask
- );
- ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
- layer_idx += 1;
- layer_name = prefix + ".layers." + std::to_string(layer_idx);
- }
- if (has_layer(model, prefix + ".layer_norm"))
- seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* self_attn_mask,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- // TODO: read norm_order from model
- auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
- // _forward_self_attn(seqs, padding_mask)
- auto residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".self_attn",
- seqs,
- seqs,
- seqs,
- /*attention masks=*/self_attn_mask
- );
- if (has_layer(model, prefix + ".self_attn_norm"))
- seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // _forward_encoder_decoder_attn
- if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
- // `encoder_output` must be `None` for decoder-only attention.
- GGML_ASSERT(encoder_output == nullptr);
- return seqs;
- }
- // `encoder_output` must not be `None` for encoder-decoder attention.
- GGML_ASSERT(encoder_output != nullptr);
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".encoder_decoder_attn",
- seqs,
- encoder_output,
- encoder_output,
- /*attention masks=*/encoder_padding_mask
- );
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
- // _forward_ffn(seqs)
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
- // TODO:
- // if self.residual_scale is not None:
- // residual = self.residual_scale * residual
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
- auto seq_len = seqs->ne[1];
- // TODO: allow other ggml_type
- ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
- return ggml_diag_mask_inf(ctx, mask, 0);
- }
- extern "C" ggml_tensor* StandardTransformerDecoder_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask
- ) {
- int layer_idx = 0;
- std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
- ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
- while (has_layer(model, layer_name)) {
- seqs = StandardTransformerDecoderLayer_forward(
- model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
- );
- ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
- layer_idx += 1;
- layer_name = prefix + ".layers." + std::to_string(layer_idx);
- }
- if (has_layer(model, prefix + ".layer_norm"))
- seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
- return seqs;
- }
- using IncrementalStateBag = std::unordered_map<ggml_tensor*, ggml_tensor*>*;
- int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
- auto opts = job.opts;
- int max_seq_len = -1;
- if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
- max_seq_len = opts.hard_max_seq_len;
- } else {
- max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
- }
- if (opts.min_seq_len > max_seq_len) {
- printf(
- "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
- opts.min_seq_len,
- max_seq_len
- );
- GGML_ASSERT(opts.min_seq_len <= max_seq_len);
- }
- int prefix_seq_len = job.prefix_seq->ne[0];
- if (prefix_seq_len >= max_seq_len) {
- printf(
- "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
- prefix_seq_len,
- max_seq_len
- );
- GGML_ASSERT(prefix_seq_len < max_seq_len);
- }
- return max_seq_len;
- }
- void _fan_out_encoder_output(
- ggml_context* ctx,
- ggml_tensor** encoder_output_out,
- ggml_tensor** encoder_padding_mask_out,
- int beam_size
- ) {
- // (S_enc, M)
- ggml_tensor* encoder_output = *encoder_output_out;
- ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
- // (B, S_enc, M)
- ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
- // (S_enc, M) -> (B, S_enc, M)
- *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
- // (S_enc) -> (B, S_enc)
- if (encoder_padding_mask != nullptr) {
- ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
- *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
- }
- }
- ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
- // TODO: this isn't the most precise way of doing this
- return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
- }
- ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
- ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
- ggml_type true_type = x->type;
- x->type = GGML_TYPE_F32;
- ggml_tensor* y = ggml_repeat(ctx, x, shape);
- y->type = true_type;
- return y;
- }
- void _bootstrap_seqs_and_scores(
- fairseq2_model& model,
- const SequenceGeneratorJob& job,
- ggml_tensor* full_seqs,
- ggml_tensor* scores,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask,
- IncrementalStateBag state_bag
- ) {
- int prefix_seq_len = job.prefix_seq->ne[0];
- int max_seq_len = scores->ne[0];
- int beam_size = scores->ne[1];
- GGML_ASSERT(prefix_seq_len > 0);
- if (prefix_seq_len == 1)
- return;
- ggml_context* ctx = model.ctx;
- // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
- full_seqs->type = GGML_TYPE_F32;
- job.prefix_seq->type = GGML_TYPE_F32;
- ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
- seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
- // We have to bootstrap the model with the already fanned-out encoder
- // output to correctly initialize its incremental state.
- // Note: we don't start decoding the last prefix token just yet.
- seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
- seqs->type = GGML_TYPE_I32;
- // Bootstrap the model state with prefix sequence.
- seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
- ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
- model,
- "text_decoder",
- seqs,
- /*padding_mask*/ nullptr,
- encoder_output,
- // we assume there is only one input, and therefore we don't need padding.
- /*encoder_padding_mask*/ nullptr
- // TODO: state_bag
- );
- // TODO state_bag.increment_step(prefix_seq_len - 1)
- // logits, lprobs: (N, S_pfx - 1, V)
- ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
- int vocab_size = logits->ne[0];
- ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
- ggml_cgraph gf = ggml_build_forward(lprobs);
- ggml_graph_compute_with_ctx(ctx, &gf, 1);
- full_seqs->type = GGML_TYPE_I32;
- job.prefix_seq->type = GGML_TYPE_I32;
- // Fetch scores of next steps from "lprobs"
- float p_score = 0;
- for (int i = 1; i < prefix_seq_len; ++i) {
- int p = ggml_get_i32_1d(job.prefix_seq, i);
- p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
- for (int b = 0; b < beam_size; ++b) {
- // scores: (N, S)
- // Note: First step (e.g. BOS)'s score is always 0.
- ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
- }
- }
- }
- /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
- int topk(
- ggml_tensor* lprobs, // (B, V)
- std::int64_t k,
- ggml_tensor* candidate_indices
- ) {
- // Take the best 2 x `beam_size` predictions. We'll choose the first
- // `beam_size` of these which don't predict EOS to continue with.
- // (N, 2 x B)
- // `vocab_size` - 1 to never select PAD.
- std::int64_t K = std::min(k, ggml_nelements(lprobs));
- auto comp = [lprobs](std::int32_t a, std::int32_t b) {
- return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
- };
- GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
- auto cand = (std::int32_t*)candidate_indices->data;
- std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
- return K;
- }
- void ggml_detach(ggml_tensor* a) {
- a->op = GGML_OP_NONE;
- a->src[0] = nullptr;
- }
- /// Copies the sequence and scores of a given candidate beam.
- void _finalize_hypothesis(
- const SequenceGeneratorJob& job,
- ggml_context* ctx,
- int step_nr,
- std::int32_t beam,
- std::int32_t token,
- float eos_score,
- ggml_tensor* seqs, // (beam_size, seq_len)
- ggml_tensor* scores, // (beam_size, seq_len)
- std::vector<Hypothesis>& hypotheses
- ) {
- ggml_tensor* tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
- ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
- auto tok = (std::int32_t*)tokens->data;
- for (int i = 0; i < step_nr + 1; ++i) {
- tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
- }
- tok[step_nr + 1] = token;
- // Convert from cumulative to per-step scores.
- auto sc = (float*)step_scores->data;
- float last_score = eos_score;
- for (int i = step_nr; i >= 0; --i) {
- float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
- sc[i + 1] = last_score - sc0;
- last_score = sc0;
- }
- sc[0] = 0;
- if (job.opts.normalize_scores)
- // Skip first EOS since it is always 0 and skews normalization.
- eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
- hypotheses.emplace_back(Hypothesis{tokens, eos_score, step_scores});
- }
- // Uses ggml_context to store any object.
- #define GGML_CTX_ALLOC(ctx, Type, n) \
- (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
- /// Generates a translation for a single sequence
- // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
- // TODO: clean ups
- // * replace manual tensor tweaking with ggml_set_*d (a ggml_set_slice could be useful)
- extern "C" Hypothesis* generate_sequence(
- fairseq2_model& model,
- const SequenceGeneratorJob& job,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask,
- ggml_context* result_ctx
- ) {
- ggml_context* ctx = model.ctx;
- size_t eos_idx = job.eos_idx;
- auto pad_idx = job.pad_idx;
- ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
- size_t vocab_size = embed->ne[1];
- std::size_t beam_size = job.opts.beam_size;
- int source_seq_len = encoder_output->ne[1];
- int max_seq_len = _determine_max_seq_len(job, source_seq_len);
- // (S_enc, M) -> (B, S_enc, M)
- _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
- std::vector<Hypothesis> finished_searches;
- finished_searches.reserve(beam_size);
- // Initialize buffers. (B, S)
- ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
- ggml_set_i32(seqs, 0);
- ggml_set_name(seqs, "seqs_0");
- ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
- ggml_set_name(scores, "scores_0");
- ggml_set_f32(scores, 0.0);
- IncrementalStateBag state_bag = {};
- _bootstrap_seqs_and_scores(
- model, job, seqs, scores, encoder_output, encoder_padding_mask, state_bag
- );
- int prefix_seq_len = job.prefix_seq->ne[0];
- int start_step = prefix_seq_len - 1;
- // Holds the indices of beams (a beam can occur more than once) that we
- // should continue with in the next step.
- ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
- ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
- ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
- // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
- ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
- for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
- ((int32_t *)(candidate_indices->data))[i] = i;
- // TODO: memory management
- // there should be a per-step ggml_context for intermediary results
- // start of beam search:
- for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
- // because of no IncrementalStateBag we pass input from the start
- // decoder_input = seqs[:, 0 : step_nr + 1]
- ggml_tensor* decoder_input = ggml_slice(ctx, seqs, 0, 0, step_nr + 1);
- decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", decoder_input);
- ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
- model,
- "text_decoder",
- decoder_input,
- nullptr, // We never generate PAD.
- encoder_output,
- /*encoder_padding_mask*/ nullptr // TODO: do we need padding for encoder ?
- // state_bag=state_bag,
- ); // (B, S, D)
- // state_bag.increment_step()
- // Because of no IncrementalStateBag decoder_output here is of shape (B, S, D)
- // Just look at the last token.
- decoder_output = ggml_slice(ctx, decoder_output, 1, step_nr, step_nr+1);
- decoder_output = ggml_cont(ctx, decoder_output);
- decoder_output = ggml_flatten_1d(ctx, decoder_output, 0); // (B, model_dim)
- ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
- ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
- // Compute lprobs here so we can modify it in place in the lprob tweaking phase
- // TODO: use ggml properly compute the tweaks
- ggml_cgraph gf = ggml_build_forward(lprobs);
- printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
- ggml_graph_compute_with_ctx(ctx, &gf, 1);
- ggml_detach(lprobs);
- // // Do not allow EOS before reaching the minimum sequence length.
- if (step_nr < job.opts.min_seq_len) {
- // lprobs[:, :, self.eos_idx] = -INFINITY;
- for (size_t i = 0; i < beam_size; ++i)
- ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
- }
- // If we have reached the maximum length, force the last step to be EOS.
- if (step_nr == max_seq_len - 2) {
- // lprobs[:, :, : self.eos_idx] = -torch.inf
- // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
- for (size_t b = 0; b < beam_size; ++b) {
- size_t t = 0;
- for (t = 0; t < eos_idx; ++t)
- ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
- for (t = eos_idx + 1; t < vocab_size; ++t)
- ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
- }
- }
- // Never allow PAD.
- for (size_t i = 0; i < beam_size; ++i)
- ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
- // Apply UNK penalty.
- if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
- // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
- auto lprobs_raw = ggml_get_data_f32(lprobs);
- for (size_t i = 0; i < beam_size; ++i)
- lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
- }
- ggml_tensor* last_scores = ggml_slice(ctx, scores, 0, step_nr, step_nr+1);
- if (step_nr == start_step) {
- // At the initial step, all hypotheses are equally likely, so we use
- // only the first beam.
- lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
- lprobs = ggml_cont(ctx, lprobs);
- // The first step always indicates the beginning of the sequence and has no score.
- if (step_nr > 0) {
- last_scores = ggml_slice(ctx, last_scores, 1, 0, 1);
- lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
- }
- } else {
- // Make probabilities contain cumulative scores for each hypothesis.
- lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
- }
- gf = ggml_build_forward(lprobs);
- ggml_graph_compute_with_ctx(ctx, &gf, 1);
- // Determine (beam, token) candidates for the next step.
- // (N, 2 x B)
- std::int64_t K = topk(
- lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
- );
- std::size_t ongoing_beams = 0;
- for (std::int32_t i = 0; i < K; ++i) {
- int c = ggml_get_f32_1d(candidate_indices, i);
- std::int32_t beam = c / vocab_size;
- std::int32_t token = c % vocab_size;
- float tok_score = ggml_get_f32_1d(lprobs, c);
- // Detect beams that reached the minimum length and that end with an EOS.
- bool eos = token == job.eos_idx;
- eos &= tok_score != -INFINITY;
- if (eos) {
- _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches);
- if (finished_searches.size() >= beam_size)
- goto end_of_beam_search;
- continue;
- }
- ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
- ggml_set_f32_1d(next_tokens, ongoing_beams, token);
- ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
- ongoing_beams += 1;
- if (ongoing_beams >= beam_size) break;
- }
- // Reorder beams in the `seq` and `score` buffers. The same beam can
- // be selected more than once.
- ggml_tensor* new_seqs = seqs;
- ggml_tensor* new_scores = scores;
- if (step_nr > start_step) {
- // (B, S), (B) -> (B, S)
- // ggml_get_rows and ggml_set only work with floats ...
- new_seqs->type = GGML_TYPE_F32;
- new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
- new_scores = ggml_get_rows(ctx, scores, beam_indices);
- gf = ggml_build_forward(new_seqs);
- ggml_graph_compute_with_ctx(ctx, &gf, 1);
- ggml_detach(new_seqs);
- new_seqs->type = GGML_TYPE_I32;
- gf = ggml_build_forward(new_scores);
- ggml_graph_compute_with_ctx(ctx, &gf, 1);
- ggml_detach(new_scores);
- }
- // new_seqs[:, step_nr + 1] = next_tokens
- // new_scores[:, step_nr + 1] = next_scores
- for (std::size_t i = 0; i < beam_size; ++i) {
- ((std::int32_t*)new_seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
- ((float*)new_scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
- }
- // TODO the old seqs and score buffers could be reused for next step
- seqs = new_seqs;
- scores = new_scores;
- }
- end_of_beam_search:
- // Ensure that hypotheses are sorted by decreasing scores before returning.
- std::sort(
- finished_searches.begin(),
- finished_searches.end(),
- [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
- );
- // Copy the scores to an object in the result_ctx.
- GGML_ASSERT(finished_searches.size() <= beam_size);
- Hypothesis* result = GGML_CTX_ALLOC(result_ctx, struct Hypothesis, beam_size);
- std::copy(finished_searches.begin(), finished_searches.end(), result);
- // In case we have less searches than expected, still make sure to initialize the memory.
- for (std::size_t i = finished_searches.size(); i < beam_size; ++i)
- result[i] = Hypothesis{nullptr, -INFINITY, nullptr};
- return result;
- }
- extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
- Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
- result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
- ggml_set_i32_1d(result[0].seq, 0, 314);
- result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
- ggml_set_i32_1d(result[1].seq, 0, 421);
- return result;
- }
|