fairseq2.cpp 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857
  1. #include <algorithm>
  2. #include <fnmatch.h>
  3. #include <iostream>
  4. #include <math.h>
  5. #include <queue>
  6. #include <unordered_map>
  7. #include "kaldi-native-fbank/csrc/feature-fbank.h"
  8. #include "kaldi-native-fbank/csrc/feature-window.h"
  9. #include "fairseq2.h"
  10. #include "ggml.h"
  11. #include "ggml-alloc.h"
  12. #include <numeric>
  13. ggml_tensor* ggml_detach(ggml_tensor* a) {
  14. a->op = GGML_OP_NONE;
  15. std::fill(a->src, a->src + GGML_MAX_SRC, nullptr);
  16. return a;
  17. }
  18. // generate_sequence uses ggml_context and ggml_allocr to reuse memory buffers across steps.
  19. // This can lead to dangling pointers, which don't segfault, but instead read garbage data.
  20. // Enabling this flag allows to explictly reset memory buffers, making it more explicit
  21. // when we read garbage data.
  22. // It also prints memory usage information, which is useful to
  23. #define DEBUG_MEM_USAGE DEBUG
  24. size_t MB = 1024 * 1024;
  25. void printf_mem_usage(ggml_context* ctx, std::string name) {
  26. #if DEBUG_MEM_USAGE
  27. double mb = 1024.0 * 1024.0;
  28. printf(
  29. "%s: memory used = %8.2f MB, memory reserved = %8.2f Mb\n",
  30. name.c_str(),
  31. ggml_used_mem(ctx) / mb,
  32. ggml_get_mem_size(ctx) / mb
  33. );
  34. #endif
  35. }
  36. #define SWAP(x, y) \
  37. auto tmp_ ## x = x; x = y; y = tmp_ ## x;
  38. #define GGML_ASSERT_SHAPE(x, ne0, ne1, ne2, ne3) \
  39. GGML_ASSERT((ne0 == -1 || x->ne[0] == ne0) && (ne1 == -1 || x->ne[1] == ne1) && (ne2 == -1 || x->ne[2] == ne2) && (ne3 == -1 || x->ne[3] == ne3));
  40. /// allocate the fairseq2 model and hyperparameters
  41. extern "C" fairseq2_model* fairseq2_model_alloc() {
  42. // pre-allocate some memory to write hyperparameters and tensors pointers
  43. auto* model = new fairseq2_model;
  44. model->tensors_ctx = nullptr;
  45. return model;
  46. }
  47. extern "C" void fairseq2_kv_cache_alloc(fairseq2_model& model, ggml_context* kv_cache_ctx, int beam_size, int max_seq_len) {
  48. // Note: we only allocate the masks, proper kv cache allocation is delayed.
  49. GGML_ASSERT(kv_cache_ctx);
  50. GGML_ASSERT(!ggml_get_no_alloc(kv_cache_ctx)); // We need to be able to alloc the kv_cache buffers
  51. model.kv_cache_ctx = kv_cache_ctx;
  52. auto attn_glob = "text_decoder.*_attn.k_proj.weight";
  53. FORCE_ALLOC(self_attn_mask, kv_cache_ctx, ggml_new_tensor_2d(kv_cache_ctx, GGML_TYPE_F32, max_seq_len, max_seq_len));
  54. self_attn_mask = ggml_diag_mask_inf_inplace(kv_cache_ctx, self_attn_mask, 0);
  55. ggml_format_name(self_attn_mask, "self_attn_mask[%d]", max_seq_len);
  56. for (auto named_tensor : model.tensors) {
  57. const std::string& name = named_tensor.first;
  58. if (::fnmatch(attn_glob, name.c_str(), 0) == FNM_NOMATCH)
  59. continue;
  60. // create a cache entry without the ".k_proj.weight" suffix
  61. const std::string& shortname = name.substr(0, name.size() - 14);
  62. KeyValueTensor& kv = model.kv_cache[shortname];
  63. kv.step_nr = 0;
  64. kv.full_k = nullptr;
  65. kv.full_v = nullptr;
  66. kv.self_attn_mask = self_attn_mask;
  67. }
  68. }
  69. extern "C" void fairseq2_kv_cache_reset(const fairseq2_model& model) {
  70. // TODO: use a dedicated allocator, so that kv_cache.clear actually frees the memory
  71. model.kv_cache.clear();
  72. }
  73. bool has_kv_cache(const fairseq2_model& model) {
  74. return model.kv_cache.size() > 0;
  75. }
  76. inline ggml_tensor* ggml_squeeze(ggml_context* ctx, ggml_tensor* x, int dim) {
  77. int n_dims = x->n_dims;
  78. GGML_ASSERT(dim >= 0);
  79. GGML_ASSERT(dim < n_dims);
  80. GGML_ASSERT(x->ne[dim] == 1);
  81. return ggml_flatten_1d(ctx, x, dim);
  82. }
  83. inline ggml_tensor* ggml_unsqueeze(ggml_context* ctx, ggml_tensor* x, int dim) {
  84. return ggml_unflatten_1d(ctx, x, dim, 1);
  85. }
  86. // copy k and v to kv cache
  87. // kv.full_k[step_nr] = k;
  88. // kv.full_v[step_nr] = v;
  89. void append_to_prev_kv(const fairseq2_model& model, const std::string& prefix, ggml_tensor** k, ggml_tensor** v, ggml_tensor** self_attn_mask) {
  90. KeyValueTensor& kv = model.kv_cache[prefix];
  91. int step_nr = kv.step_nr;
  92. ggml_context* ctx = model.kv_cache_ctx ? model.kv_cache_ctx : model.ctx;
  93. // We need to force allocation here, otherwise the kv_cache buffers can be reused
  94. bool no_alloc_save = ggml_get_no_alloc(ctx);
  95. ggml_set_no_alloc(ctx, false);
  96. int n_steps = (*k)->ne[1];
  97. int k_proj, batch_size;
  98. if (kv.full_k != nullptr) {
  99. // (N, S_kv, K_proj)
  100. k_proj = kv.full_k->ne[0];
  101. batch_size = kv.full_k->ne[2];
  102. ggml_detach(kv.full_k);
  103. ggml_detach(kv.full_v);
  104. kv.full_k = ggml_squeeze(ctx, ggml_concat(ctx, ggml_unsqueeze(ctx, kv.full_k, 1), ggml_unsqueeze(ctx, *k, 1)), 1);
  105. kv.full_v = ggml_squeeze(ctx, ggml_concat(ctx, ggml_unsqueeze(ctx, kv.full_v, 1), ggml_unsqueeze(ctx, *v, 1)), 1);
  106. } else {
  107. GGML_ASSERT(step_nr == 0);
  108. k_proj = (*k)->ne[0];
  109. batch_size = (*v)->ne[2];
  110. kv.full_k = ggml_dup(ctx, *k);
  111. kv.full_v = ggml_dup(ctx, *v);
  112. }
  113. *k = kv.full_k;
  114. *v = kv.full_v;
  115. ggml_format_name(kv.full_k, "%s.k (step=%d)", prefix.c_str(), step_nr);
  116. ggml_format_name(kv.full_v, "%s.v (step=%d)", prefix.c_str(), step_nr);
  117. step_nr += n_steps;
  118. GGML_ASSERT_SHAPE(kv.full_k, k_proj, step_nr, batch_size, 1);
  119. // qk is (B * H, Sq, Sk) == (B*H, 1, Sk) in incremental mode
  120. // we return the Sq slice of the (Sq, Sk) attention mask
  121. if (self_attn_mask != nullptr) {
  122. *self_attn_mask = ggml_slice(
  123. ctx, ggml_slice(ctx, kv.self_attn_mask, 0, 0, step_nr),
  124. 1, step_nr - 1, step_nr
  125. );
  126. }
  127. kv.step_nr = step_nr;
  128. ggml_set_no_alloc(ctx, no_alloc_save);
  129. }
  130. // variant of ggml_get_rows that allows for a with more than 2 dims.
  131. ggml_tensor* ggml_get_rows2(ggml_context* ctx, ggml_tensor* a, ggml_tensor* b) {
  132. int flattened = 0;
  133. GGML_ASSERT(a->n_dims <= 3);
  134. if (a->n_dims == 3) {
  135. flattened = a->ne[0];
  136. a = ggml_flatten_1d(ctx, a, 0);
  137. }
  138. a = ggml_get_rows(ctx, a, b);
  139. if (flattened) {
  140. a = ggml_unflatten_1d(ctx, a, 0, flattened);
  141. }
  142. return a;
  143. }
  144. void _reorder_kv_cache(ggml_context* ctx, ggml_cgraph* gf, KeyValueTensor& kv, ggml_tensor* new_order) {
  145. // GGML_ASSERT(ctx == kv.full_k->con);
  146. if (kv.full_k != nullptr) {
  147. ggml_detach(kv.full_k);
  148. const char* name = kv.full_k->name;
  149. kv.full_k = ggml_get_rows2(ctx, kv.full_k, new_order);
  150. ggml_build_forward_expand(gf, kv.full_k);
  151. ggml_format_name(kv.full_k, "%s (sorted)", name);
  152. }
  153. if (kv.full_v != nullptr) {
  154. ggml_detach(kv.full_v);
  155. const char* name = kv.full_v->name;
  156. kv.full_v = ggml_get_rows2(ctx, kv.full_v, new_order);
  157. ggml_build_forward_expand(gf, kv.full_v);
  158. ggml_format_name(kv.full_v, "%s (sorted)", name);
  159. }
  160. }
  161. void reorder_kv_cache(const fairseq2_model& model, ggml_context* ctx, ggml_cgraph* gf, ggml_tensor* new_order) {
  162. auto self_attn_glob = "*.self_attn";
  163. for (auto& named_kv : model.kv_cache) {
  164. if (::fnmatch(self_attn_glob, named_kv.first.c_str(), 0) == FNM_NOMATCH)
  165. continue;
  166. _reorder_kv_cache(ctx, gf, named_kv.second, new_order);
  167. }
  168. }
  169. inline double model_layer_config_d(const fairseq2_model& model, std::string name) {
  170. const std::int64_t* data = &model.layer_config.at(name);
  171. double val = *(const double*)data;
  172. return val;
  173. }
  174. extern "C" double fairseq2_model_layer_config_double(const fairseq2_model& model, const char* name) {
  175. return model_layer_config_d(model, std::string(name));
  176. }
  177. extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, const char* name) {
  178. return model.layer_config.at(std::string(name));
  179. }
  180. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  181. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  182. // delete model;
  183. }
  184. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  185. model->ctx = ctx;
  186. }
  187. extern "C" std::string* std_string_alloc(char* c_str) {
  188. return new std::string(c_str);
  189. }
  190. extern "C" void std_string_free(std::string* str) {
  191. delete str;
  192. }
  193. bool has_layer(fairseq2_model& model, const std::string& name) {
  194. return model.tensors.find(name) != model.tensors.end();
  195. }
  196. ggml_tensor* mul_mat(ggml_context* ctx, ggml_tensor* a, ggml_tensor* b) {
  197. if (b->ne[1] == 1 && b->ne[2] > 1 && a->n_dims == 2) {
  198. // `b` has shape (B, 1, D).
  199. // if `a` is (D_out, D), then we do one matmul for the full batch.
  200. b = ggml_flatten_1d(ctx, b, 1);
  201. return ggml_unflatten_1d(ctx, ggml_mul_mat(ctx, a, b), 1, 1);
  202. }
  203. // there is also the k * q matmul -> (D, 1, B) * (D, 1, B) -> (1, 1, B)
  204. // not sure what's the best way to compute this with BLAS
  205. return ggml_mul_mat(ctx, a, b); // (d_out)
  206. }
  207. extern "C" ggml_tensor* Linear_forward(
  208. fairseq2_model& model,
  209. const std::string &prefix,
  210. ggml_tensor* input // (d_in)
  211. ) {
  212. // Note: for now we assumed un-batched input
  213. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  214. GGML_ASSERT(weight != nullptr);
  215. ggml_tensor* out = mul_mat(model.ctx, weight, input); // (d_out)
  216. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  217. if (bias == nullptr) return out;
  218. return ggml_add(model.ctx, out, bias);
  219. }
  220. extern "C" ggml_tensor* LayerNorm_forward(
  221. fairseq2_model& model,
  222. const std::string &prefix,
  223. ggml_tensor* input
  224. ) {
  225. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  226. GGML_ASSERT(weight != nullptr);
  227. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  228. GGML_ASSERT(bias != nullptr);
  229. auto ctx = model.ctx;
  230. double eps = model_layer_config_d(model, prefix + ".eps");
  231. input = ggml_norm(ctx, input, /*eps*/eps);
  232. return ggml_add_inplace(
  233. ctx,
  234. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  235. ggml_repeat(ctx, bias, input)
  236. );
  237. }
  238. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  239. fairseq2_model& model,
  240. const std::string& prefix,
  241. ggml_tensor* seqs
  242. ) {
  243. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  244. // inner_activation = ReLu // TODO: allow other activation
  245. seqs = ggml_relu_inplace(model.ctx, seqs);
  246. if (has_layer(model, prefix + ".inner_layer_norm")) {
  247. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  248. }
  249. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  250. return seqs;
  251. }
  252. extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
  253. fairseq2_model& model,
  254. const std::string& prefix,
  255. ggml_tensor* seqs
  256. ) {
  257. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  258. seqs = ggml_silu(model.ctx, seqs);
  259. if (has_layer(model, prefix + ".inner_layer_norm")) {
  260. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  261. }
  262. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  263. return seqs;
  264. }
  265. ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
  266. int n_dims = x->n_dims;
  267. GGML_ASSERT(dim >= 0);
  268. GGML_ASSERT(dim < n_dims);
  269. GGML_ASSERT(ggml_is_contiguous(x));
  270. // Nothing to do
  271. if (dim == n_dims - 1) return x;
  272. if (n_dims == 2) {
  273. return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
  274. } else if (n_dims == 3) {
  275. if (dim == 0) {
  276. return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
  277. } else { // dim == 1
  278. return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
  279. }
  280. } else { // n_dims == 4
  281. if (dim == 0) {
  282. return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
  283. } else if (dim == 1) {
  284. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
  285. } else { // dim == 2
  286. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
  287. }
  288. }
  289. }
  290. ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
  291. int n_dims = x->n_dims;
  292. GGML_ASSERT(dim >= 0);
  293. GGML_ASSERT(dim < n_dims);
  294. GGML_ASSERT(n_dims < 4);
  295. GGML_ASSERT(x->ne[dim] % num_el == 0);
  296. GGML_ASSERT(x->nb[dim + 1] == x->nb[dim] * x->ne[dim]); // `x` isn't contiguous along `dim`
  297. if (n_dims == 1) {
  298. return ggml_view_2d(ctx, x, num_el, x->ne[0] / num_el, x->nb[0] * num_el, 0);
  299. } else if (n_dims == 2) {
  300. if (dim == 0) {
  301. return ggml_view_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->nb[0] * num_el, x->nb[1], 0);
  302. } else { // dim == 1
  303. return ggml_view_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->nb[1], num_el * x->nb[1], 0);
  304. }
  305. } else { // (n_dims == 3)
  306. if (dim == 0) {
  307. return ggml_view_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2], x->nb[0] * num_el, x->nb[1], x->nb[2], 0);
  308. } else if (dim == 1) {
  309. return ggml_view_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2], x->nb[1], num_el * x->nb[1], x->nb[2], 0);
  310. } else { // dim == 2
  311. return ggml_view_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el, x->nb[1], x->nb[2], num_el * x->nb[2], 0);
  312. }
  313. }
  314. }
  315. ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
  316. // (B, S, dim) -> (B, S, H, H_dim)
  317. x = ggml_unflatten_1d(ctx, x, 0, head_dim);
  318. x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
  319. x = ggml_cont(ctx, x);
  320. x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
  321. return x;
  322. }
  323. /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
  324. ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
  325. // (B, Sk, dim) -> (B, Sk, H, H_dim)
  326. v = ggml_unflatten_1d(ctx, v, 0, head_dim);
  327. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
  328. v = ggml_cont(ctx, v);
  329. v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
  330. return v;
  331. }
  332. // flash_attn doesn't work for cross attention because it assumes Q <= K
  333. // and it seems to yield slightly different scores than expected, and thus a different beam search
  334. # define UNITY_FLASH_ATTN 0
  335. extern "C" ggml_tensor* MultiheadAttention_forward(
  336. fairseq2_model& model,
  337. const std::string &prefix,
  338. ggml_tensor* queries, // (slen, d_in)
  339. ggml_tensor* keys, // (klen, d_in)
  340. ggml_tensor* values, // (klen, d_out)
  341. ggml_tensor* attn_mask // (klen, slen)
  342. ) {
  343. int model_dim = queries->ne[0];
  344. int num_heads = model.layer_config.at(prefix + ".num_heads");
  345. int head_dim = model_dim / num_heads;
  346. GGML_ASSERT(model_dim % num_heads == 0);
  347. ggml_context* ctx = model.ctx;
  348. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
  349. q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
  350. ggml_set_name(q, "q");
  351. ggml_tensor *k, *v;
  352. if (!has_kv_cache(model)) {
  353. k = Linear_forward(model, prefix + ".k_proj", keys);
  354. ggml_set_name(k, "k");
  355. v = Linear_forward(model, prefix + ".v_proj", values);
  356. ggml_set_name(v, "v");
  357. } else {
  358. bool encoder_decoder_attn = keys == values && keys != queries;
  359. if (encoder_decoder_attn) {
  360. // The K and V tensors of an encoder-decoder attention (i.e. the
  361. // projected encoder outputs) remain static during evaluation.
  362. KeyValueTensor& kv_cache = model.kv_cache[prefix];
  363. if (kv_cache.step_nr == 0) {
  364. // If possible we use the ctx dedicated to kv_cache here,
  365. // because the enc dec attention is typically long lived.
  366. if (model.kv_cache_ctx) model.ctx = model.kv_cache_ctx;
  367. k = Linear_forward(model, prefix + ".k_proj", keys);
  368. ggml_set_name(k, "k");
  369. v = Linear_forward(model, prefix + ".v_proj", values);
  370. ggml_set_name(v, "v");
  371. // Note we are only storing a pointer to the buffer, not the full graph
  372. kv_cache.full_k = ggml_detach(ggml_dup_inplace(model.ctx, k));
  373. ggml_format_name(kv_cache.full_k, "%s.k_cache", prefix.c_str());
  374. kv_cache.full_v = ggml_detach(ggml_dup_inplace(model.ctx, v));
  375. ggml_format_name(kv_cache.full_v, "%s.v_cache", prefix.c_str());
  376. kv_cache.step_nr = keys->ne[1];
  377. model.ctx = ctx;
  378. } else {
  379. k = kv_cache.full_k;
  380. v = kv_cache.full_v;
  381. GGML_ASSERT(keys->ne[1] == k->ne[1]); // cache content doesn't match the input sequence
  382. GGML_ASSERT(values->ne[1] == v->ne[1]); // cache content doesn't match the input sequence
  383. }
  384. } else { // self attention
  385. // (1, K) -> (N, 1, K_proj)
  386. k = Linear_forward(model, prefix + ".k_proj", keys);
  387. ggml_set_name(k, "k");
  388. // (1, V) -> (N, 1, V_proj)
  389. v = Linear_forward(model, prefix + ".v_proj", values);
  390. ggml_set_name(v, "v");
  391. append_to_prev_kv(model, prefix, &k, &v, &attn_mask);
  392. }
  393. }
  394. k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
  395. v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
  396. v = ggml_cont(ctx, v);
  397. #if UNITY_FLASH_ATTN
  398. // For flash_attn, we assume either no masks, or triangular masks.
  399. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
  400. ggml_set_name(attn, "attn");
  401. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  402. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
  403. #else
  404. // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
  405. ggml_tensor* qk = mul_mat(ctx, k, q);
  406. ggml_set_name(qk, "qk");
  407. FORCE_ALLOC(qk_scale, ctx, ggml_new_tensor_1d(ctx, qk->type, 1));
  408. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  409. qk = ggml_scale(ctx, qk, qk_scale);
  410. ggml_set_name(qk, "qk_scaled");
  411. if (attn_mask) qk = ggml_add_inplace(ctx, qk, attn_mask);
  412. // TODO: upgrade qk to float32 if needed
  413. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
  414. ggml_set_name(attn_weights, "attn_weights");
  415. // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
  416. ggml_tensor* attn = mul_mat(ctx, attn_weights, v);
  417. ggml_set_name(attn, "attn");
  418. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  419. attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
  420. #endif // UNITY_FLASH_ATTN
  421. attn = ggml_cont(ctx, attn);
  422. attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
  423. // out -> (B, S, d_out)
  424. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  425. ggml_set_name(out, "out");
  426. return out;
  427. }
  428. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  429. fairseq2_model& model,
  430. const std::string& prefix,
  431. ggml_tensor* seqs,
  432. ggml_tensor* padding_mask
  433. ) {
  434. ggml_context* ctx = model.ctx;
  435. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  436. // _forward_self_attn(seqs, padding_mask)
  437. auto residual = seqs;
  438. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  439. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  440. // TODO: add padding_mask to MultiheadAttention_forward
  441. GGML_ASSERT(padding_mask == nullptr);
  442. seqs = MultiheadAttention_forward(
  443. model,
  444. prefix + ".self_attn",
  445. seqs,
  446. seqs,
  447. seqs,
  448. /*attn_mask=*/nullptr
  449. );
  450. if (has_layer(model, prefix + ".self_attn_norm"))
  451. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  452. seqs = ggml_add_inplace(ctx, seqs, residual);
  453. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  454. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  455. // _forward_ffn(seqs)
  456. residual = seqs;
  457. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  458. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  459. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  460. // TODO: if self.residual_scale is not None:
  461. // residual = self.residual_scale * residual
  462. seqs = ggml_add_inplace(ctx, seqs, residual);
  463. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  464. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  465. return seqs;
  466. }
  467. extern "C" ggml_tensor* WaveformToFbank_forward(
  468. fairseq2_model& model,
  469. const std::string &prefix,
  470. ggml_tensor* waveform
  471. ) {
  472. // Hardcoding: num_bins 80, sample rate 16k, always standardize
  473. ggml_context* ctx = model.ctx;
  474. knf::MelBanksOptions mel_opts{};
  475. mel_opts.num_bins = 80;
  476. knf::FrameExtractionOptions frame_opts{};
  477. frame_opts.samp_freq = 16000;
  478. knf::FbankOptions opts{};
  479. opts.frame_opts = frame_opts;
  480. opts.mel_opts = mel_opts;
  481. std::vector<float_t> signal_frame{};
  482. std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
  483. FORCE_ALLOC(output, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames));
  484. knf::FbankComputer native_(opts);
  485. knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
  486. for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
  487. signal_frame.resize(0);
  488. // Extract the frame from the waveform tensor.
  489. knf::ExtractWindow(
  490. /*sample_offset=*/0,
  491. (float *)(waveform->data),
  492. waveform->ne[0],
  493. frame_nr,
  494. frame_opts,
  495. window_fn_,
  496. &signal_frame);
  497. native_.Compute(
  498. /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
  499. }
  500. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  501. output = ggml_norm(ctx, output, 1e-5);
  502. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  503. if (output->ne[1] % 2 == 1) {
  504. output = ggml_dup(ctx, ggml_slice(ctx, output, 1, 0, output->ne[1]-1));
  505. }
  506. output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
  507. return output;
  508. }
  509. // TODO: Check if it's possible to merge with standard MHA
  510. extern "C" ggml_tensor* RelativePositionMHA_forward(
  511. fairseq2_model& model,
  512. const std::string& prefix,
  513. ggml_tensor* seqs
  514. ) {
  515. ggml_context* ctx = model.ctx;
  516. ggml_tensor* residual = seqs;
  517. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  518. // self_attn: qkv
  519. ggml_tensor* Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
  520. ggml_tensor* Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
  521. ggml_tensor* Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
  522. // self_attn: rel_pos SDPA
  523. int32_t S = seqs->ne[1];
  524. int32_t H = 16; // TODO: Make this configurable
  525. int32_t n_ctx = 4096;
  526. int32_t K_h = seqs->ne[0] / H;
  527. int32_t start_index = n_ctx - S;
  528. int32_t end_index = n_ctx + S - 1;
  529. int num_indices = end_index - start_index;
  530. FORCE_ALLOC(rows, ctx, ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices));
  531. for (int i = 0; i < num_indices; i++) {
  532. ((int32_t *)rows->data)[i] = start_index + i;
  533. }
  534. // self_attn: load pos_enc weights & compute_r
  535. // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
  536. // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
  537. ggml_tensor* r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
  538. r = mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
  539. r = ggml_dup(ctx, ggml_permute(ctx, ggml_unflatten_1d(ctx, r, 0, K_h), 0, 2, 1, 3));
  540. ggml_tensor* u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
  541. ggml_tensor* v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
  542. // self_attn: Permute QKV
  543. // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  544. ggml_tensor* Q = ggml_cont(ctx, ggml_permute(ctx, ggml_unflatten_1d(ctx, Qcur, 0, K_h), 0, 2, 1, 3));
  545. // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  546. ggml_tensor* K = ggml_cont(ctx, ggml_permute(ctx, ggml_unflatten_1d(ctx, Kcur, 0, K_h), 0, 2, 1, 3));
  547. // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
  548. ggml_tensor* V = ggml_cont(ctx, ggml_permute(ctx, ggml_unflatten_1d(ctx, Vcur, 0, K_h), 1, 2, 0, 3));
  549. ggml_tensor* q_with_u_bias = ggml_add_inplace(ctx, ggml_dup(ctx, Q), u_bias); // (K_h, S, H)
  550. ggml_tensor* q_with_v_bias = ggml_add_inplace(ctx, Q, v_bias); // (K_h, S, H)
  551. ggml_tensor* ac = mul_mat(ctx, K, q_with_u_bias);
  552. ggml_tensor* bd = mul_mat(ctx, r, q_with_v_bias);
  553. // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
  554. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
  555. FORCE_ALLOC(pad, ctx, ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1));
  556. pad = ggml_set_f32(pad, 0.0);
  557. bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
  558. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
  559. bd = ggml_reshape_3d(ctx, bd, S, 2 * S, H); // (S, 2S, H)
  560. // discard the first set of positive positions
  561. bd = ggml_dup(ctx, ggml_slice(ctx, bd, 1, 1, 2 * S));
  562. // shifts each row by an extra step
  563. bd = ggml_reshape_3d(ctx, bd, 2 * S - 1, S, H);
  564. // Discard positions used for shift.
  565. bd = ggml_slice(ctx, bd, 0, 0, S);
  566. // self_attn: compute attn / weights
  567. ggml_tensor* attn_weights = ggml_add_inplace(ctx, ac, bd);
  568. FORCE_ALLOC(attn_scale, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1));
  569. ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
  570. attn_weights = ggml_mul_inplace(ctx, attn_weights, ggml_repeat(ctx, attn_scale, attn_weights));
  571. attn_weights = ggml_soft_max(ctx, attn_weights);
  572. ggml_tensor* attn = mul_mat(ctx, V, attn_weights); // K_h, S, H
  573. attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
  574. ggml_tensor* attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
  575. ggml_tensor* attn_out = mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
  576. attn_out = ggml_add_inplace(
  577. ctx,
  578. attn_out,
  579. ggml_repeat(ctx, model.tensors[prefix + ".output_proj.bias"], attn_out)
  580. );
  581. attn_out = ggml_add_inplace(ctx, attn_out, residual);
  582. return attn_out;
  583. }
  584. extern "C" ggml_tensor* ConvModule_forward(
  585. fairseq2_model& model,
  586. const std::string& prefix,
  587. ggml_tensor* seqs
  588. ) {
  589. ggml_context* ctx = model.ctx;
  590. ggml_tensor* residual = seqs;
  591. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  592. // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
  593. seqs = mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
  594. // conv: GLU
  595. seqs = ggml_glu(ctx, seqs);
  596. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  597. // S x C -> (S+K-1) x C -> K x S x C -> S x C
  598. int K = model.tensors[prefix + ".depthwise_conv.weight"]->ne[0];
  599. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, K / 2, 1, seqs->ne[1]);
  600. // conv: Custom implementation of batch norm
  601. seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
  602. // conv: SiLU actvation
  603. seqs = ggml_silu_inplace(ctx, seqs);
  604. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  605. // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
  606. seqs = mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
  607. // conv: + residual
  608. seqs = ggml_add_inplace(ctx, seqs, residual);
  609. return seqs;
  610. }
  611. extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
  612. fairseq2_model& model,
  613. const std::string& prefix,
  614. ggml_tensor* seqs,
  615. ggml_tensor* padding_mask
  616. ) {
  617. ggml_context* ctx = model.ctx;
  618. FORCE_ALLOC(ffn_scale, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1));
  619. ggml_set_f32(ffn_scale, 0.5f);
  620. ggml_tensor* residual = seqs;
  621. seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
  622. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
  623. seqs = ggml_mul_inplace(ctx, seqs, ggml_repeat(ctx, ffn_scale, seqs));
  624. seqs = ggml_add_inplace(ctx, seqs, residual);
  625. seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
  626. seqs = ConvModule_forward(model, prefix + ".conv", seqs);
  627. residual = seqs;
  628. seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
  629. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
  630. seqs = ggml_mul_inplace(ctx, seqs, ggml_repeat(ctx, ffn_scale, seqs));
  631. seqs = ggml_add_inplace(ctx, seqs, residual);
  632. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  633. return seqs;
  634. }
  635. extern "C" ggml_tensor* StandardConformerEncoder_forward(
  636. fairseq2_model& model,
  637. const std::string& prefix,
  638. ggml_tensor* seqs,
  639. ggml_tensor* padding_mask
  640. ) {
  641. ggml_context* ctx = model.ctx;
  642. seqs = WaveformToFbank_forward(model, prefix, seqs);
  643. seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
  644. seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
  645. int layer_idx = 0;
  646. std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  647. while (has_layer(model, layer_name)) {
  648. seqs = StandardConformerEncoderLayer_forward(
  649. model, layer_name, seqs, padding_mask
  650. );
  651. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  652. layer_idx += 1;
  653. layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  654. }
  655. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  656. ggml_tensor* residual = seqs;
  657. seqs = Linear_forward(model, prefix + ".proj1", seqs);
  658. seqs = ggml_relu_inplace(ctx, seqs);
  659. seqs = Linear_forward(model, prefix + ".proj2", seqs);
  660. FORCE_ALLOC(ffn_scale, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1));
  661. ggml_set_f32(ffn_scale, 0.5f);
  662. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  663. seqs = ggml_add_inplace(ctx, seqs, residual);
  664. layer_idx = 0;
  665. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  666. while (has_layer(model, layer_name)) {
  667. seqs = StandardConformerEncoderAdaptorLayer_forward(
  668. model, layer_name, seqs, padding_mask
  669. );
  670. ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
  671. layer_idx += 1;
  672. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  673. }
  674. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  675. return seqs;
  676. }
  677. extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
  678. fairseq2_model& model,
  679. const std::string& prefix,
  680. ggml_tensor* seqs,
  681. ggml_tensor* padding_mask
  682. ) {
  683. ggml_context* ctx = model.ctx;
  684. ggml_tensor* residual = seqs;
  685. residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
  686. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  687. residual = ggml_conv_1d(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1, 1);
  688. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  689. residual = ggml_add_inplace(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
  690. residual = ggml_glu(ctx, residual);
  691. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  692. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  693. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1, 1);
  694. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  695. seqs = ggml_add_inplace(ctx, seqs, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs));
  696. seqs = ggml_glu(ctx, seqs);
  697. seqs = MultiheadAttention_forward(
  698. model,
  699. prefix + ".self_attn",
  700. seqs,
  701. seqs,
  702. seqs,
  703. /*attention masks=*/nullptr
  704. );
  705. seqs = ggml_add_inplace(ctx, seqs, residual);
  706. residual = seqs;
  707. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  708. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  709. seqs = ggml_add_inplace(ctx, seqs, residual);
  710. return seqs;
  711. }
  712. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  713. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  714. ggml_tensor* ggml_slice(
  715. struct ggml_context * ctx,
  716. struct ggml_tensor * a,
  717. int axis,
  718. int64_t start,
  719. int64_t end
  720. ) {
  721. int64_t ne[4];
  722. std::copy(a->ne, a->ne + 4, ne);
  723. if (axis < 0) axis = a->n_dims + axis;
  724. if (start < 0) start = ne[axis] + start;
  725. if (end <= 0) end = ne[axis] + end;
  726. GGML_ASSERT(0 <= start);
  727. GGML_ASSERT(start < end);
  728. GGML_ASSERT(end <= ne[axis]);
  729. ne[axis] = end - start;
  730. size_t offset = a->nb[axis] * start;
  731. size_t* nb = a->nb;
  732. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  733. ggml_format_name(result, "%s [(%d)%ld:%ld]", a->name, axis, start, end);
  734. result->n_dims = a->n_dims;
  735. return result;
  736. }
  737. ggml_tensor* ggml_select(
  738. struct ggml_context * ctx,
  739. struct ggml_tensor * a,
  740. int axis,
  741. int64_t index
  742. ) {
  743. int64_t ne[GGML_MAX_DIMS];
  744. std::copy(a->ne, a->ne + GGML_MAX_DIMS, ne);
  745. if (axis < 0) axis = a->n_dims + axis;
  746. if (index < 0) index = ne[axis] + index;
  747. GGML_ASSERT(0 <= index);
  748. GGML_ASSERT(index < ne[axis]);
  749. std::copy(a->ne + axis + 1, a->ne + GGML_MAX_DIMS, ne + axis);
  750. size_t offset = a->nb[axis] * index;
  751. size_t* nb = a->nb;
  752. GGML_ASSERT(GGML_MAX_DIMS == 4);
  753. ggml_tensor* result = ggml_view_3d(ctx, a, ne[0], ne[1], ne[2], nb[1], nb[2], offset);
  754. ggml_format_name(result, "%s [(%d)%ld]", a->name, axis, index);
  755. result->n_dims = a->n_dims - 1;
  756. return result;
  757. }
  758. // Inplace computation of PositionalEmbedding
  759. extern "C" ggml_tensor* PositionalEmbedding_forward(
  760. fairseq2_model& model,
  761. const std::string& prefix,
  762. ggml_tensor* embeds
  763. ) {
  764. // This only work with the simple pos encoders
  765. int seq_len = embeds->ne[1];
  766. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  767. int start_step = 0;
  768. if (has_kv_cache(model)) {
  769. start_step = model.kv_cache[prefix].step_nr++;
  770. }
  771. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, start_step, seq_len + start_step);
  772. return ggml_add(model.ctx, embeds, pos_embeds);
  773. }
  774. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  775. fairseq2_model& model,
  776. const std::string& prefix,
  777. ggml_tensor* seqs
  778. ) {
  779. GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
  780. ggml_context* ctx = model.ctx;
  781. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  782. GGML_ASSERT(embed_weights != nullptr);
  783. ggml_tensor* embeds;
  784. if (seqs->n_dims == 1) {
  785. embeds = ggml_get_rows(ctx, embed_weights, seqs);
  786. } else {
  787. // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
  788. ggml_tensor* flat_seqs = seqs;
  789. if (!ggml_is_contiguous(seqs)) {
  790. flat_seqs = ggml_cont(ctx, flat_seqs);
  791. }
  792. flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
  793. embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
  794. embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
  795. embeds->n_dims = seqs->n_dims + 1;
  796. }
  797. // padding mask ?
  798. // padding_mask = to_padding_mask(embeds, seq_lens)
  799. if (has_layer(model, prefix + ".pos_encoder")) {
  800. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  801. }
  802. if (has_layer(model, prefix + ".layer_norm")) {
  803. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  804. }
  805. return embeds;
  806. }
  807. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  808. fairseq2_model& model,
  809. const std::string& prefix,
  810. ggml_tensor* seqs,
  811. ggml_tensor* padding_mask
  812. ) {
  813. int layer_idx = 0;
  814. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  815. while (has_layer(model, layer_name)) {
  816. seqs = StandardTransformerEncoderLayer_forward(
  817. model, layer_name, seqs, padding_mask
  818. );
  819. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  820. layer_idx += 1;
  821. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  822. }
  823. if (has_layer(model, prefix + ".layer_norm"))
  824. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  825. return seqs;
  826. }
  827. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  828. fairseq2_model& model,
  829. const std::string& prefix,
  830. ggml_tensor* seqs,
  831. ggml_tensor* self_attn_mask,
  832. ggml_tensor* encoder_output,
  833. ggml_tensor* encoder_padding_mask
  834. ) {
  835. ggml_context* ctx = model.ctx;
  836. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  837. // _forward_self_attn(seqs, padding_mask)
  838. auto residual = seqs;
  839. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  840. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  841. seqs = MultiheadAttention_forward(
  842. model,
  843. prefix + ".self_attn",
  844. seqs,
  845. seqs,
  846. seqs,
  847. /*attn_mask=*/self_attn_mask
  848. );
  849. if (has_layer(model, prefix + ".self_attn_norm"))
  850. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  851. seqs = ggml_add_inplace(ctx, seqs, residual);
  852. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  853. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  854. // _forward_encoder_decoder_attn
  855. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  856. // `encoder_output` must be `None` for decoder-only attention.
  857. GGML_ASSERT(encoder_output == nullptr);
  858. return seqs;
  859. }
  860. // `encoder_output` must not be `None` for encoder-decoder attention.
  861. GGML_ASSERT(encoder_output != nullptr);
  862. residual = seqs;
  863. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  864. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  865. seqs = MultiheadAttention_forward(
  866. model,
  867. prefix + ".encoder_decoder_attn",
  868. seqs,
  869. encoder_output,
  870. encoder_output,
  871. /*attention masks=*/encoder_padding_mask
  872. );
  873. seqs = ggml_add_inplace(ctx, seqs, residual);
  874. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  875. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  876. // _forward_ffn(seqs)
  877. residual = seqs;
  878. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  879. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  880. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  881. // TODO:
  882. // if self.residual_scale is not None:
  883. // residual = self.residual_scale * residual
  884. seqs = ggml_add_inplace(ctx, seqs, residual);
  885. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  886. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  887. return seqs;
  888. }
  889. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  890. auto seq_len = seqs->ne[1];
  891. // TODO: allow other ggml_type
  892. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  893. return ggml_diag_mask_inf(ctx, mask, 0);
  894. }
  895. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  896. fairseq2_model& model,
  897. const std::string& prefix,
  898. ggml_tensor* seqs,
  899. ggml_tensor* padding_mask,
  900. ggml_tensor* encoder_output,
  901. ggml_tensor* encoder_padding_mask
  902. ) {
  903. int layer_idx = 0;
  904. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  905. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  906. while (has_layer(model, layer_name)) {
  907. seqs = StandardTransformerDecoderLayer_forward(
  908. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  909. );
  910. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  911. layer_idx += 1;
  912. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  913. }
  914. if (has_layer(model, prefix + ".layer_norm"))
  915. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  916. return seqs;
  917. }
  918. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  919. auto opts = job.opts;
  920. int max_seq_len = -1;
  921. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  922. max_seq_len = opts.hard_max_seq_len;
  923. } else {
  924. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
  925. }
  926. if (opts.min_seq_len > max_seq_len) {
  927. printf(
  928. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  929. opts.min_seq_len,
  930. max_seq_len
  931. );
  932. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  933. }
  934. int prefix_seq_len = job.prefix_seq->ne[0];
  935. if (prefix_seq_len >= max_seq_len) {
  936. printf(
  937. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  938. prefix_seq_len,
  939. max_seq_len
  940. );
  941. GGML_ASSERT(prefix_seq_len < max_seq_len);
  942. }
  943. return max_seq_len;
  944. }
  945. void _fan_out_encoder_output(
  946. ggml_context* ctx,
  947. ggml_tensor** encoder_output_out,
  948. ggml_tensor** encoder_padding_mask_out,
  949. int beam_size
  950. ) {
  951. // (S_enc, M)
  952. ggml_tensor* encoder_output = *encoder_output_out;
  953. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  954. // (B, S_enc, M)
  955. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  956. // (S_enc, M) -> (B, S_enc, M)
  957. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  958. // (S_enc) -> (B, S_enc)
  959. if (encoder_padding_mask != nullptr) {
  960. ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
  961. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  962. }
  963. }
  964. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  965. // TODO: this isn't the most precise way of doing this
  966. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  967. }
  968. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  969. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  970. ggml_type true_type = x->type;
  971. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  972. y->type = true_type;
  973. return y;
  974. }
  975. void _bootstrap_seqs_and_scores(
  976. fairseq2_model& model,
  977. const SequenceGeneratorJob& job,
  978. ggml_tensor* full_seqs,
  979. ggml_tensor* scores,
  980. ggml_tensor* encoder_output,
  981. ggml_tensor* encoder_padding_mask,
  982. ggml_tensor* lid_scores,
  983. int n_threads,
  984. const std::vector<int>& lang_ids
  985. ) {
  986. // Returns LID score map
  987. int prefix_seq_len = job.prefix_seq->ne[0];
  988. int max_seq_len = scores->ne[0];
  989. int beam_size = scores->ne[1];
  990. GGML_ASSERT(prefix_seq_len > 0);
  991. if (prefix_seq_len == 1)
  992. return;
  993. ggml_context* ctx = model.ctx;
  994. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  995. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  996. seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
  997. // We have to bootstrap the model with the already fanned-out encoder
  998. // output to correctly initialize its incremental state.
  999. // Note: we don't start decoding the last prefix token just yet.
  1000. seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
  1001. // Bootstrap the model state with prefix sequence.
  1002. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  1003. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  1004. model,
  1005. "text_decoder",
  1006. seqs,
  1007. /*padding_mask*/ nullptr,
  1008. encoder_output,
  1009. encoder_padding_mask
  1010. );
  1011. // logits, lprobs: (N, S_pfx - 1, V)
  1012. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  1013. int vocab_size = logits->ne[0];
  1014. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  1015. struct ggml_cgraph * gf = ggml_new_graph(ctx);
  1016. ggml_build_forward_expand(gf, lprobs);
  1017. ggml_graph_compute_with_ctx(ctx, gf, n_threads);
  1018. full_seqs->type = GGML_TYPE_I32;
  1019. job.prefix_seq->type = GGML_TYPE_I32;
  1020. // For LID
  1021. for (size_t i = 0; i < lang_ids.size(); ++i) {
  1022. ggml_set_f32_1d(lid_scores, i, std::exp(ggml_get_f32_1d(lprobs, lang_ids[i])));
  1023. }
  1024. // Fetch scores of next steps from "lprobs"
  1025. float p_score = 0;
  1026. for (int i = 1; i < prefix_seq_len; ++i) {
  1027. int p;
  1028. if (ggml_get_i32_1d(job.prefix_seq, i) == model.vocab.token_to_id["<unk>"]) {
  1029. // If tgt_lang is unk, use the most probable lang tag predicted by model
  1030. int max_value = std::numeric_limits<float>::min();
  1031. for (int j = 0; j < lang_ids.size(); j++) {
  1032. if(ggml_get_f32_1d(lprobs, lang_ids[j]) > max_value) {
  1033. max_value = ggml_get_f32_1d(lprobs, lang_ids[j]);
  1034. p = lang_ids[j];
  1035. }
  1036. }
  1037. } else {
  1038. p = ggml_get_i32_1d(job.prefix_seq, i);
  1039. }
  1040. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  1041. for (int b = 0; b < beam_size; ++b) {
  1042. // scores: (N, S)
  1043. // Note: First step (e.g. BOS)'s score is always 0.
  1044. ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
  1045. }
  1046. }
  1047. }
  1048. /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
  1049. int topk(
  1050. ggml_tensor* lprobs, // (B, V)
  1051. std::int64_t k,
  1052. ggml_tensor* candidate_indices
  1053. ) {
  1054. // Take the best 2 x `beam_size` predictions. We'll choose the first
  1055. // `beam_size` of these which don't predict EOS to continue with.
  1056. // (N, 2 x B)
  1057. // `vocab_size` - 1 to never select PAD.
  1058. std::int64_t K = std::min(k, ggml_nelements(lprobs));
  1059. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  1060. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  1061. };
  1062. GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
  1063. auto cand = (std::int32_t*)candidate_indices->data;
  1064. std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
  1065. return K;
  1066. }
  1067. void _tweak_lprobs(const SequenceGeneratorJob& job, ggml_tensor* lprobs, int step_nr, int max_seq_len, std::size_t vocab_size) {
  1068. std::size_t beam_size = job.opts.beam_size;
  1069. std::size_t eos_idx = job.eos_idx;
  1070. // Do not allow EOS before reaching the minimum sequence length.
  1071. if (step_nr < job.opts.min_seq_len) {
  1072. // lprobs[:, :, self.eos_idx] = -INFINITY;
  1073. for (size_t i = 0; i < beam_size; ++i)
  1074. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  1075. }
  1076. // If we have reached the maximum length, force the last step to be EOS.
  1077. if (step_nr == max_seq_len - 2) {
  1078. // lprobs[:, :, : self.eos_idx] = -torch.inf
  1079. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  1080. for (size_t b = 0; b < beam_size; ++b) {
  1081. size_t t = 0;
  1082. for (t = 0; t < eos_idx; ++t)
  1083. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1084. for (t = eos_idx + 1; t < vocab_size; ++t)
  1085. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1086. }
  1087. }
  1088. // Never allow PAD.
  1089. std::size_t pad_idx = job.pad_idx;
  1090. for (size_t i = 0; i < beam_size; ++i)
  1091. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  1092. // Apply UNK penalty.
  1093. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  1094. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  1095. auto lprobs_raw = ggml_get_data_f32(lprobs);
  1096. for (size_t i = 0; i < beam_size; ++i)
  1097. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  1098. }
  1099. }
  1100. /// Copies the sequence and scores of a given candidate beam.
  1101. void _finalize_hypothesis(
  1102. const SequenceGeneratorJob& job,
  1103. ggml_context* ctx,
  1104. int step_nr,
  1105. std::int32_t beam,
  1106. std::int32_t token,
  1107. float eos_score,
  1108. ggml_tensor* seqs, // (beam_size, seq_len)
  1109. ggml_tensor* scores, // (beam_size, seq_len)
  1110. ggml_tensor* lid_scores,
  1111. Hypothesis* hypothesis
  1112. ) {
  1113. ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  1114. hypothesis->seq = seq;
  1115. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  1116. hypothesis->step_scores = step_scores;
  1117. auto tok = (std::int32_t*)seq->data;
  1118. for (int i = 0; i < step_nr + 1; ++i) {
  1119. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  1120. }
  1121. tok[step_nr + 1] = token;
  1122. // Convert from cumulative to per-step scores.
  1123. auto sc = (float*)step_scores->data;
  1124. float last_score = eos_score;
  1125. for (int i = step_nr; i >= 0; --i) {
  1126. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  1127. sc[i + 1] = last_score - sc0;
  1128. last_score = sc0;
  1129. }
  1130. sc[0] = 0;
  1131. if (job.opts.normalize_scores)
  1132. // Skip first EOS since it is always 0 and skews normalization.
  1133. eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  1134. hypothesis->score = eos_score;
  1135. hypothesis->lid_scores = lid_scores;
  1136. }
  1137. // Uses ggml_context to store any object.
  1138. #define GGML_CTX_ALLOC(ctx, Type, n) \
  1139. (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
  1140. ggml_context* ctx_from_buffer(std::vector<uint8_t>& buffer) {
  1141. return ggml_init({
  1142. /*.mem_size =*/ static_cast<int64_t>(buffer.capacity()),
  1143. /*.mem_buffer =*/ buffer.data(),
  1144. /*.no_alloc =*/ false,
  1145. });
  1146. }
  1147. ggml_allocr* new_arena_allocr(std::vector<uint8_t>& buffer) {
  1148. return ggml_allocr_new(buffer.data(), buffer.capacity(), 8);
  1149. }
  1150. /// Generates a translation for a single sequence
  1151. /// The results Hypothesis are written inside `result_ctx`.
  1152. extern "C" Hypothesis* generate_sequence(
  1153. fairseq2_model& model,
  1154. const SequenceGeneratorJob& job,
  1155. ggml_tensor* encoder_output,
  1156. ggml_tensor* encoder_padding_mask,
  1157. ggml_context* result_ctx,
  1158. int n_threads
  1159. ) {
  1160. // Pre allocate memory buffers.
  1161. // * step_ctx: contains metadata for the model graph, as well as some explicit
  1162. // buffers for the lprobs tweaking.
  1163. // * prev_step_ctx: is an additional buffer because we need some results from previous steps,
  1164. // to compute next step. Notably self attention kv cache.
  1165. // * search_ctx contains tensors that should live for the full search,
  1166. // like encoder kv cache.
  1167. // * step_alloc contains buffer for the forward pass of the model.
  1168. // Split mem_mb into the different context we need to use.
  1169. int mem_mb = job.opts.mem_mb;
  1170. std::vector<uint8_t> local_bufs[4] = {
  1171. std::vector<uint8_t>(mem_mb * MB * 3 / 10), // step_ctx
  1172. std::vector<uint8_t>(mem_mb * MB * 3 / 10), // prev_step_ctx
  1173. std::vector<uint8_t>(mem_mb * MB * 3 / 10), // search_ctx
  1174. std::vector<uint8_t>(mem_mb * MB * 1 / 10), // step_alloc
  1175. };
  1176. ggml_allocr* step_alloc = new_arena_allocr(local_bufs[3]);
  1177. std::vector<int> lang_ids;
  1178. for (const auto& kv : model.vocab.token_to_id) {
  1179. if (kv.first.substr(0, 2) == "__" && kv.first.substr(kv.first.size() - 2) == "__") {
  1180. lang_ids.push_back(kv.second);
  1181. }
  1182. }
  1183. std::sort(lang_ids.begin(), lang_ids.end());
  1184. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  1185. size_t vocab_size = embed->ne[1];
  1186. std::size_t beam_size = job.opts.beam_size;
  1187. ggml_detach(encoder_output);
  1188. int source_seq_len = encoder_output->ne[1];
  1189. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  1190. ggml_context* search_ctx = ctx_from_buffer(local_bufs[2]);
  1191. ggml_context* original_ctx = model.ctx;
  1192. fairseq2_kv_cache_alloc(model, search_ctx, beam_size, max_seq_len);
  1193. // (S_enc, M) -> (B, S_enc, M)
  1194. model.ctx = search_ctx;
  1195. _fan_out_encoder_output(search_ctx, &encoder_output, &encoder_padding_mask, beam_size);
  1196. // Allocate results in the context provided by the caller.
  1197. ggml_set_no_alloc(result_ctx, false);
  1198. Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
  1199. Hypothesis* finished_searches = finished_searches_begin;
  1200. for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
  1201. Hypothesis* finished_searches_end = finished_searches + beam_size;
  1202. // Initialize buffers. (B, S)
  1203. ggml_tensor* seqs = ggml_new_tensor_2d(search_ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  1204. ggml_set_i32(seqs, 0);
  1205. ggml_set_name(seqs, "seqs_0");
  1206. ggml_tensor* scores = ggml_new_tensor_2d(search_ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  1207. ggml_set_name(scores, "scores_0");
  1208. ggml_set_f32(scores, 0.0);
  1209. int prefix_seq_len = job.prefix_seq->ne[0];
  1210. int start_step = prefix_seq_len - 1;
  1211. ggml_context* prev_step_ctx = ctx_from_buffer(local_bufs[(start_step - 1) % 2]);
  1212. ggml_context* step_ctx = ctx_from_buffer(local_bufs[start_step % 2]);
  1213. GGML_ASSERT(step_ctx != search_ctx);
  1214. GGML_ASSERT(prev_step_ctx != step_ctx);
  1215. model.ctx = prev_step_ctx;
  1216. // search_ctx because we need encoder_decoder_attn.k_cache to survive for the full search
  1217. model.kv_cache_ctx = search_ctx;
  1218. ggml_tensor* lid_scores = ggml_new_tensor_1d(result_ctx, GGML_TYPE_F32, lang_ids.size());
  1219. _bootstrap_seqs_and_scores(
  1220. model, job, seqs, scores, encoder_output, encoder_padding_mask, lid_scores, n_threads, lang_ids
  1221. );
  1222. // Now we will only add self_attn.k_cache and those need to be resorted and copied at every step.
  1223. model.kv_cache_ctx = nullptr;
  1224. // Holds the indices of beams (a beam can occur more than once) that we
  1225. // should continue with in the next step.
  1226. ggml_tensor* beam_indices = ggml_new_tensor_1d(search_ctx, GGML_TYPE_I32, beam_size);
  1227. ggml_tensor* next_tokens = ggml_new_tensor_1d(search_ctx, GGML_TYPE_I32, beam_size);
  1228. ggml_tensor* next_scores = ggml_new_tensor_1d(search_ctx, GGML_TYPE_F32, beam_size);
  1229. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  1230. ggml_tensor* candidate_indices = ggml_new_tensor_1d(search_ctx, GGML_TYPE_I32, vocab_size * beam_size);
  1231. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  1232. ((int32_t *)(candidate_indices->data))[i] = i;
  1233. printf_mem_usage(search_ctx, "search_ctx");
  1234. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  1235. model.ctx = step_ctx;
  1236. ggml_set_no_alloc(step_ctx, true); // Use allocr for the model forward pass
  1237. float max_lprob;
  1238. int p;
  1239. if (step_nr == start_step) {
  1240. // Find the most probable lang_tok and assign it to all beams, when prefix_seq[1] is <unk>
  1241. if (ggml_get_i32_1d(job.prefix_seq, 1) == model.vocab.token_to_id["<unk>"]) {
  1242. float max_lprob = std::numeric_limits<float>::min();
  1243. for(int j = 0; j < lang_ids.size(); j++) {
  1244. auto val = ggml_get_f32_1d(lid_scores, j);
  1245. if (val > max_lprob) {
  1246. max_lprob = val;
  1247. p = lang_ids[j];
  1248. }
  1249. }
  1250. for (int k = 0; k < beam_size; k++) {
  1251. ggml_set_i32_1d(seqs, k * vocab_size + step_nr, p);
  1252. }
  1253. }
  1254. }
  1255. ggml_tensor* prev_token = ggml_slice(step_ctx, seqs, 0, step_nr, step_nr + 1);
  1256. ggml_tensor* decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", prev_token);
  1257. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  1258. model,
  1259. "text_decoder",
  1260. decoder_input,
  1261. nullptr, // We never generate PAD.
  1262. encoder_output,
  1263. encoder_padding_mask
  1264. ); // (B, 1, D)
  1265. decoder_output = ggml_flatten_1d(step_ctx, decoder_output, 0); // (B, model_dim)
  1266. // Force logits to be allocated in step_ctx, not in step_alloc.
  1267. ggml_set_no_alloc(step_ctx, false);
  1268. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
  1269. ggml_tensor* lprobs = ggml_log_softmax(step_ctx, logits);
  1270. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  1271. // TODO: use ggml properly compute the tweaks
  1272. struct ggml_cgraph * gf = ggml_new_graph(step_ctx);
  1273. ggml_build_forward_expand(gf, lprobs);
  1274. size_t fwd_mem = ggml_allocr_alloc_graph(step_alloc, gf);
  1275. GGML_UNUSED(fwd_mem);
  1276. ggml_graph_compute_with_ctx(step_ctx, gf, n_threads);
  1277. ggml_detach(lprobs);
  1278. ggml_allocr_reset(step_alloc);
  1279. #if DEBUG_MEM_USAGE
  1280. printf("beam search step %d. Graph.n_nodes: %d.\n", step_nr, gf.n_nodes);
  1281. printf(" Fwd mem: %.1fMB, reserved %.1fMb\n", fwd_mem/(double)MB, local_bufs[3].capacity()/(double)MB);
  1282. std::fill(local_bufs[3].begin(), local_bufs[3].end(), 0xAA);
  1283. #endif
  1284. _tweak_lprobs(job, lprobs, step_nr, max_seq_len, vocab_size);
  1285. ggml_tensor* last_scores = ggml_slice(step_ctx, scores, 0, step_nr, step_nr+1);
  1286. if (step_nr == start_step) {
  1287. // At the initial step, all hypotheses are equally likely, so we use
  1288. // only the first beam.
  1289. lprobs = ggml_slice(step_ctx, lprobs, 1, 0, 1);
  1290. lprobs = ggml_cont(step_ctx, lprobs);
  1291. // The first step always indicates the beginning of the sequence and has no score.
  1292. if (step_nr > 0) {
  1293. last_scores = ggml_slice(step_ctx, last_scores, 1, 0, 1);
  1294. lprobs = ggml_add_inplace(step_ctx, lprobs, ggml_repeat(step_ctx, last_scores, lprobs));
  1295. }
  1296. } else {
  1297. // Make probabilities contain cumulative scores for each hypothesis.
  1298. lprobs = ggml_add_inplace(step_ctx, lprobs, ggml_repeat(step_ctx, last_scores, lprobs));
  1299. }
  1300. ggml_build_forward_expand(gf, lprobs);
  1301. ggml_graph_compute_with_ctx(step_ctx, gf, n_threads);
  1302. // Determine (beam, token) candidates for the next step.
  1303. // (N, 2 x B)
  1304. std::int64_t K = topk(
  1305. lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
  1306. );
  1307. std::size_t ongoing_beams = 0;
  1308. for (std::int32_t i = 0; i < K; ++i) {
  1309. int c = ggml_get_f32_1d(candidate_indices, i);
  1310. std::int32_t beam = c / vocab_size;
  1311. std::int32_t token = c % vocab_size;
  1312. float tok_score = ggml_get_f32_1d(lprobs, c);
  1313. // Detect beams that reached the minimum length and that end with an EOS.
  1314. bool eos = token == job.eos_idx;
  1315. eos &= tok_score != -INFINITY;
  1316. if (eos) {
  1317. _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, lid_scores, finished_searches++);
  1318. if (finished_searches == finished_searches_end)
  1319. goto end_of_beam_search;
  1320. continue;
  1321. }
  1322. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  1323. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  1324. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  1325. ongoing_beams += 1;
  1326. if (ongoing_beams >= beam_size) break;
  1327. }
  1328. // Reorder beams in the `seq` and `score` buffers. The same beam can
  1329. // be selected more than once.
  1330. // (B, S), (B) -> (B, S)
  1331. // don't use allocr API, cause it might reuse a kv cache buffer several time.
  1332. ggml_set_no_alloc(step_ctx, false);
  1333. ggml_tensor* new_seqs = ggml_get_rows(step_ctx, seqs, beam_indices);
  1334. ggml_tensor* new_scores = ggml_get_rows(step_ctx, scores, beam_indices);
  1335. struct ggml_cgraph * gf_reorder = ggml_new_graph(step_ctx);
  1336. ggml_build_forward_expand(gf_reorder, new_seqs);
  1337. ggml_build_forward_expand(gf_reorder, new_scores);
  1338. reorder_kv_cache(model, step_ctx, gf_reorder, beam_indices);
  1339. ggml_graph_compute_with_ctx(step_ctx, gf_reorder, n_threads);
  1340. seqs = ggml_detach(new_seqs);
  1341. scores = ggml_detach(new_scores);
  1342. // seqs[:, step_nr + 1] = next_tokens
  1343. // scores[:, step_nr + 1] = next_scores
  1344. for (std::size_t i = 0; i < beam_size; ++i) {
  1345. ((std::int32_t*)seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
  1346. ((float*)scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
  1347. }
  1348. printf_mem_usage(step_ctx, "step_ctx");
  1349. ggml_free(prev_step_ctx);
  1350. prev_step_ctx = step_ctx;
  1351. #if DEBUG_MEM_USAGE
  1352. std::fill(local_bufs[(step_nr + 1) % 2].begin(), local_bufs[(step_nr + 1) % 2].end(), 0xAA);
  1353. #endif
  1354. step_ctx = ctx_from_buffer(local_bufs[(step_nr + 1) % 2]);
  1355. }
  1356. end_of_beam_search:
  1357. // Ensure that hypotheses are sorted by decreasing scores before returning.
  1358. std::sort(
  1359. finished_searches_begin,
  1360. finished_searches_end,
  1361. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  1362. );
  1363. printf_mem_usage(search_ctx, "search_ctx");
  1364. fairseq2_kv_cache_reset(model);
  1365. model.ctx = original_ctx;
  1366. return finished_searches_begin;
  1367. }
  1368. extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
  1369. Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
  1370. result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
  1371. ggml_set_i32_1d(result[0].seq, 0, 314);
  1372. result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
  1373. ggml_set_i32_1d(result[1].seq, 0, 421);
  1374. return result;
  1375. }
  1376. // SPM tokenizer
  1377. // original implementation:
  1378. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1379. struct llm_symbol {
  1380. using index = int;
  1381. index prev;
  1382. index next;
  1383. const char * text;
  1384. size_t n;
  1385. llama_vocab::id id;
  1386. };
  1387. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  1388. static size_t utf8_len(char src) {
  1389. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1390. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1391. return lookup[highbits];
  1392. }
  1393. struct llm_bigram_spm {
  1394. struct comparator {
  1395. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  1396. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1397. }
  1398. };
  1399. using queue_storage = std::vector<llm_bigram_spm>;
  1400. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  1401. llm_symbol::index left;
  1402. llm_symbol::index right;
  1403. float score;
  1404. size_t size;
  1405. llama_vocab::id id;
  1406. };
  1407. struct llm_tokenizer_spm {
  1408. llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
  1409. void tokenize(const std::string& input_text, ggml_tensor* output) {
  1410. llama_vocab::id unk_idx = vocab.token_to_id.at("<unk>");
  1411. // split string into utf8 chars
  1412. int index = 0;
  1413. size_t offs = 0;
  1414. // This is kind of annoying, but needed because with SPM,
  1415. // characters following a space have a special meaning.
  1416. // And the algorithm rely on substrings to do the lookups.
  1417. std::string text = input_text;
  1418. bool need_extra_space = text.size() > 0 && text[0] != ' ';
  1419. if (need_extra_space) text = " " + text;
  1420. while (offs < text.size()) {
  1421. size_t len = utf8_len(text[offs]);
  1422. size_t n = std::min(len, text.size() - offs);
  1423. auto token = vocab.token_to_id.find(std::string(text, offs, n));
  1424. llama_vocab::id id = token == vocab.token_to_id.end() ? unk_idx : token->second;
  1425. llm_symbol sym = {
  1426. /*prev*/ index - 1,
  1427. /*next*/ offs + n == text.size() ? -1 : index + 1,
  1428. /*text*/ text.c_str() + offs,
  1429. /*n*/ n,
  1430. /*id*/ id
  1431. };
  1432. offs += n;
  1433. index++;
  1434. symbols.emplace_back(sym);
  1435. }
  1436. // seed the work queue with all possible 2-character tokens.
  1437. for (size_t i = 1; i < symbols.size(); ++i) {
  1438. try_add_bigram(i - 1, i);
  1439. }
  1440. // keep substituting the highest frequency pairs for as long as we can.
  1441. while (!work_queue.empty()) {
  1442. auto bigram = work_queue.top();
  1443. work_queue.pop();
  1444. auto & left_sym = symbols[bigram.left];
  1445. auto & right_sym = symbols[bigram.right];
  1446. const std::string text = std::string(left_sym.text, left_sym.n + right_sym.n);
  1447. // if one of the symbols already got merged, skip it.
  1448. if (
  1449. left_sym.n == 0
  1450. || right_sym.n == 0
  1451. || left_sym.n + right_sym.n != bigram.size
  1452. ) continue;
  1453. // merge the right sym into the left one
  1454. left_sym.n += right_sym.n;
  1455. left_sym.id = bigram.id;
  1456. right_sym.n = 0;
  1457. // remove the right sym from the chain
  1458. left_sym.next = right_sym.next;
  1459. if (right_sym.next >= 0) {
  1460. symbols[right_sym.next].prev = bigram.left;
  1461. }
  1462. // find more substitutions
  1463. try_add_bigram(left_sym.prev, bigram.left);
  1464. try_add_bigram(bigram.left, left_sym.next);
  1465. }
  1466. llama_vocab::id* out = (llama_vocab::id*)output->data;
  1467. int out_step = sizeof(llama_vocab::id) / output->nb[0];
  1468. int num_tokens = 0;
  1469. for (int i = 0; i > -1; i = symbols[i].next) {
  1470. llm_symbol& symbol = symbols[i];
  1471. *(out + num_tokens * out_step) = symbol.id;
  1472. num_tokens += 1;
  1473. }
  1474. *(out + num_tokens * out_step) = vocab.token_to_id.at("</s>");
  1475. num_tokens += 1;
  1476. output->ne[0] = num_tokens;
  1477. }
  1478. private:
  1479. void try_add_bigram(int left, int right) {
  1480. if (left == -1 || right == -1) {
  1481. return;
  1482. }
  1483. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  1484. auto token = vocab.token_to_id.find(text);
  1485. if (token == vocab.token_to_id.end()) {
  1486. return;
  1487. }
  1488. llama_vocab::id id = token->second;
  1489. if (static_cast<size_t>(id) >= vocab.id_to_token.size()) {
  1490. return;
  1491. }
  1492. const auto& tok_data = vocab.id_to_token[id];
  1493. llm_bigram_spm bigram = {
  1494. /*left */ left,
  1495. /*right*/ right,
  1496. /*score*/ tok_data.score,
  1497. /*size */ text.size(),
  1498. /*id */ id
  1499. };
  1500. work_queue.push(bigram);
  1501. }
  1502. const llama_vocab& vocab;
  1503. std::vector<llm_symbol> symbols;
  1504. llm_bigram_spm::queue work_queue;
  1505. };
  1506. extern "C" void fairseq2_spm_tokenize(fairseq2_model* model, const char* text, ggml_tensor* out) {
  1507. llm_tokenizer_spm spm = {model->vocab};
  1508. spm.tokenize(std::string(text), out);
  1509. }
  1510. extern "C" std::size_t fairseq2_spm_detokenize(fairseq2_model* model, ggml_tensor* tokens, char* out) {
  1511. bool no_tgt_vocab = model->tgt_vocab.id_to_token.empty();
  1512. int eos_idx = no_tgt_vocab ? model->vocab.token_to_id["</s>"] : model->tgt_vocab.token_to_id["</s>"];
  1513. int sent_len = tokens->ne[0];
  1514. std::size_t written = 0;
  1515. std::vector<llama_vocab::token_data> id_to_token = no_tgt_vocab ? model->vocab.id_to_token : model->tgt_vocab.id_to_token;
  1516. for (int i = 0; i < sent_len; ++i) {
  1517. int id = ggml_get_i32_1d(tokens, i);
  1518. // Don't print the EOS token but only if it appear at the end.
  1519. if (i == sent_len - 1 && eos_idx == id) break;
  1520. std::string token = no_tgt_vocab ? model->vocab.id_to_token.at(id).text : model->tgt_vocab.id_to_token.at(id).text;
  1521. // Skip the first space outputted.
  1522. auto begin = token.begin();
  1523. if (i == 0 && token.size() > 0 && token[0] == ' ') begin += 1;
  1524. std::copy(begin, token.end(), out);
  1525. std::size_t n = token.end() - begin;
  1526. written += n;
  1527. out += n;
  1528. }
  1529. *out = '0';
  1530. return written;
  1531. }
  1532. // TODO: Unify with the above?
  1533. std::pair<std::vector<std::string>, std::vector<float>> fairseq2_spm_detokenize(
  1534. fairseq2_model* model,
  1535. ggml_tensor* tokens,
  1536. ggml_tensor* scores,
  1537. char* out) {
  1538. bool no_tgt_vocab = model->tgt_vocab.id_to_token.empty();
  1539. int eos_idx = no_tgt_vocab ? model->vocab.token_to_id["</s>"] : model->tgt_vocab.token_to_id["</s>"];
  1540. int sent_len = tokens->ne[0];
  1541. std::size_t written = 0;
  1542. std::vector<float> word_scores;
  1543. std::vector<float> subword_scores;
  1544. std::vector<std::string> result_text;
  1545. std::string curr_token = "";
  1546. for (int i = 0; i < sent_len; ++i) {
  1547. int id = ggml_get_i32_1d(tokens, i);
  1548. // Don't print the EOS token but only if it appear at the end.
  1549. if (i == sent_len - 1 && eos_idx == id) break;
  1550. std::string token = model->vocab.id_to_token.at(id).text;
  1551. float score = ggml_get_f32_1d(scores, i+2); // 2 is prefix size
  1552. if(token[0] == ' ') {
  1553. // reset word score
  1554. if(subword_scores.size() > 0) {
  1555. float avg = std::accumulate(subword_scores.begin(), subword_scores.end(), 0.0f) / subword_scores.size();
  1556. word_scores.push_back(avg);
  1557. subword_scores.clear();
  1558. result_text.push_back(curr_token);
  1559. }
  1560. curr_token = token.substr(1);
  1561. } else {
  1562. curr_token += token;
  1563. }
  1564. subword_scores.push_back(score);
  1565. // Skip the first space outputted.
  1566. auto begin = token.begin();
  1567. if (i == 0 && token.size() > 0 && token[0] == ' ') begin += 1;
  1568. std::copy(begin, token.end(), out);
  1569. std::size_t n = token.end() - begin;
  1570. written += n;
  1571. out += n;
  1572. }
  1573. if(subword_scores.size() > 0) {
  1574. word_scores.push_back(*std::min_element(subword_scores.begin(), subword_scores.end()));
  1575. subword_scores.clear();
  1576. result_text.push_back(curr_token);
  1577. }
  1578. *out = '0';
  1579. return std::make_pair(result_text, word_scores);
  1580. }