1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515 |
- #include "whisper.h"
- #ifdef WHISPER_USE_COREML
- #include "coreml/whisper-encoder.h"
- #endif
- #ifdef WHISPER_USE_OPENVINO
- #include "openvino/whisper-openvino-encoder.h"
- #endif
- #include "ggml.h"
- #include <algorithm>
- #include <cassert>
- #define _USE_MATH_DEFINES
- #include <cmath>
- #include <cstdio>
- #include <cstdarg>
- #include <cstring>
- #include <fstream>
- #include <map>
- #include <string>
- #include <thread>
- #include <vector>
- #include <regex>
- #include <random>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #if defined(GGML_BIG_ENDIAN)
- #include <bit>
- template<typename T>
- static T byteswap(T value) {
- return std::byteswap(value);
- }
- template<>
- float byteswap(float value) {
- return std::bit_cast<float>(byteswap(std::bit_cast<std::uint32_t>(value)));
- }
- template<typename T>
- static void byteswap_tensor_data(ggml_tensor * tensor) {
- T * datum = reinterpret_cast<T *>(tensor->data);
- for (int i = 0; i < ggml_nelements(tensor); i++) {
- datum[i] = byteswap(datum[i]);
- }
- }
- static void byteswap_tensor(ggml_tensor * tensor) {
- switch (tensor->type) {
- case GGML_TYPE_I16: {
- byteswap_tensor_data<int16_t>(tensor);
- break;
- }
- case GGML_TYPE_F16: {
- byteswap_tensor_data<ggml_fp16_t>(tensor);
- break;
- }
- case GGML_TYPE_I32: {
- byteswap_tensor_data<int32_t>(tensor);
- break;
- }
- case GGML_TYPE_F32: {
- byteswap_tensor_data<float>(tensor);
- break;
- }
- default: { // GML_TYPE_I8
- break;
- }
- }
- }
- #define BYTESWAP_VALUE(d) d = byteswap(d)
- #define BYTESWAP_FILTERS(f) \
- do { \
- for (auto & datum : f.data) { \
- datum = byteswap(datum); \
- } \
- } while (0)
- #define BYTESWAP_TENSOR(t) \
- do { \
- byteswap_tensor(t); \
- } while (0)
- #else
- #define BYTESWAP_VALUE(d) do {} while (0)
- #define BYTESWAP_FILTERS(f) do {} while (0)
- #define BYTESWAP_TENSOR(t) do {} while (0)
- #endif
- #define WHISPER_ASSERT(x) \
- do { \
- if (!(x)) { \
- log("WHISPER_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
- abort(); \
- } \
- } while (0)
- // define this to enable verbose trace logging - useful for debugging purposes
- //#define WHISPER_DEBUG
- #if defined(WHISPER_DEBUG)
- #define WHISPER_PRINT_DEBUG(...) \
- do { \
- fprintf(stderr, __VA_ARGS__); \
- } while (0)
- #else
- #define WHISPER_PRINT_DEBUG(...)
- #endif
- //#define WHISPER_USE_FLASH_ATTN
- //#define WHISPER_USE_FLASH_FF
- #define WHISPER_MAX_DECODERS 16
- #define WHISPER_USE_SCRATCH
- #define WHISPER_MAX_SCRATCH_BUFFERS 16
- // available whisper models
- enum e_model {
- MODEL_UNKNOWN,
- MODEL_TINY,
- MODEL_BASE,
- MODEL_SMALL,
- MODEL_MEDIUM,
- MODEL_LARGE,
- };
- static const std::map<std::string, std::pair<int, std::string>> g_lang = {
- { "en", { 0, "english", } },
- { "zh", { 1, "chinese", } },
- { "de", { 2, "german", } },
- { "es", { 3, "spanish", } },
- { "ru", { 4, "russian", } },
- { "ko", { 5, "korean", } },
- { "fr", { 6, "french", } },
- { "ja", { 7, "japanese", } },
- { "pt", { 8, "portuguese", } },
- { "tr", { 9, "turkish", } },
- { "pl", { 10, "polish", } },
- { "ca", { 11, "catalan", } },
- { "nl", { 12, "dutch", } },
- { "ar", { 13, "arabic", } },
- { "sv", { 14, "swedish", } },
- { "it", { 15, "italian", } },
- { "id", { 16, "indonesian", } },
- { "hi", { 17, "hindi", } },
- { "fi", { 18, "finnish", } },
- { "vi", { 19, "vietnamese", } },
- { "he", { 20, "hebrew", } },
- { "uk", { 21, "ukrainian", } },
- { "el", { 22, "greek", } },
- { "ms", { 23, "malay", } },
- { "cs", { 24, "czech", } },
- { "ro", { 25, "romanian", } },
- { "da", { 26, "danish", } },
- { "hu", { 27, "hungarian", } },
- { "ta", { 28, "tamil", } },
- { "no", { 29, "norwegian", } },
- { "th", { 30, "thai", } },
- { "ur", { 31, "urdu", } },
- { "hr", { 32, "croatian", } },
- { "bg", { 33, "bulgarian", } },
- { "lt", { 34, "lithuanian", } },
- { "la", { 35, "latin", } },
- { "mi", { 36, "maori", } },
- { "ml", { 37, "malayalam", } },
- { "cy", { 38, "welsh", } },
- { "sk", { 39, "slovak", } },
- { "te", { 40, "telugu", } },
- { "fa", { 41, "persian", } },
- { "lv", { 42, "latvian", } },
- { "bn", { 43, "bengali", } },
- { "sr", { 44, "serbian", } },
- { "az", { 45, "azerbaijani", } },
- { "sl", { 46, "slovenian", } },
- { "kn", { 47, "kannada", } },
- { "et", { 48, "estonian", } },
- { "mk", { 49, "macedonian", } },
- { "br", { 50, "breton", } },
- { "eu", { 51, "basque", } },
- { "is", { 52, "icelandic", } },
- { "hy", { 53, "armenian", } },
- { "ne", { 54, "nepali", } },
- { "mn", { 55, "mongolian", } },
- { "bs", { 56, "bosnian", } },
- { "kk", { 57, "kazakh", } },
- { "sq", { 58, "albanian", } },
- { "sw", { 59, "swahili", } },
- { "gl", { 60, "galician", } },
- { "mr", { 61, "marathi", } },
- { "pa", { 62, "punjabi", } },
- { "si", { 63, "sinhala", } },
- { "km", { 64, "khmer", } },
- { "sn", { 65, "shona", } },
- { "yo", { 66, "yoruba", } },
- { "so", { 67, "somali", } },
- { "af", { 68, "afrikaans", } },
- { "oc", { 69, "occitan", } },
- { "ka", { 70, "georgian", } },
- { "be", { 71, "belarusian", } },
- { "tg", { 72, "tajik", } },
- { "sd", { 73, "sindhi", } },
- { "gu", { 74, "gujarati", } },
- { "am", { 75, "amharic", } },
- { "yi", { 76, "yiddish", } },
- { "lo", { 77, "lao", } },
- { "uz", { 78, "uzbek", } },
- { "fo", { 79, "faroese", } },
- { "ht", { 80, "haitian creole", } },
- { "ps", { 81, "pashto", } },
- { "tk", { 82, "turkmen", } },
- { "nn", { 83, "nynorsk", } },
- { "mt", { 84, "maltese", } },
- { "sa", { 85, "sanskrit", } },
- { "lb", { 86, "luxembourgish", } },
- { "my", { 87, "myanmar", } },
- { "bo", { 88, "tibetan", } },
- { "tl", { 89, "tagalog", } },
- { "mg", { 90, "malagasy", } },
- { "as", { 91, "assamese", } },
- { "tt", { 92, "tatar", } },
- { "haw", { 93, "hawaiian", } },
- { "ln", { 94, "lingala", } },
- { "ha", { 95, "hausa", } },
- { "ba", { 96, "bashkir", } },
- { "jw", { 97, "javanese", } },
- { "su", { 98, "sundanese", } },
- };
- static const size_t MB = 1ull*1024*1024;
- static const std::map<e_model, size_t> MEM_REQ_SCRATCH0 = {
- { MODEL_TINY, 62ull*MB },
- { MODEL_BASE, 80ull*MB },
- { MODEL_SMALL, 120ull*MB },
- { MODEL_MEDIUM, 158ull*MB },
- { MODEL_LARGE, 198ull*MB },
- };
- static const std::map<e_model, size_t> MEM_REQ_SCRATCH1 = {
- { MODEL_TINY, 18ull*MB },
- { MODEL_BASE, 24ull*MB },
- { MODEL_SMALL, 36ull*MB },
- { MODEL_MEDIUM, 48ull*MB },
- { MODEL_LARGE, 60ull*MB },
- };
- static const std::map<e_model, size_t> MEM_REQ_SCRATCH2 = {
- { MODEL_TINY, 4ull*MB },
- { MODEL_BASE, 4ull*MB },
- { MODEL_SMALL, 6ull*MB },
- { MODEL_MEDIUM, 7ull*MB },
- { MODEL_LARGE, 9ull*MB },
- };
- static const std::map<e_model, size_t> MEM_REQ_SCRATCH3 = {
- { MODEL_TINY, 4ull*MB },
- { MODEL_BASE, 4ull*MB },
- { MODEL_SMALL, 6ull*MB },
- { MODEL_MEDIUM, 7ull*MB },
- { MODEL_LARGE, 9ull*MB },
- };
- static const std::map<ggml_type, std::map<e_model, size_t>> MEM_REQ_MODEL = {
- { GGML_TYPE_F32,
- {
- { MODEL_TINY, 74ull*MB },
- { MODEL_BASE, 142ull*MB },
- { MODEL_SMALL, 466ull*MB },
- { MODEL_MEDIUM, 1464ull*MB },
- { MODEL_LARGE, 2952ull*MB },
- },
- },
- { GGML_TYPE_F16,
- {
- { MODEL_TINY, 74ull*MB },
- { MODEL_BASE, 142ull*MB },
- { MODEL_SMALL, 466ull*MB },
- { MODEL_MEDIUM, 1464ull*MB },
- { MODEL_LARGE, 2952ull*MB },
- },
- },
- { GGML_TYPE_Q4_0,
- {
- { MODEL_TINY, 26ull*MB },
- { MODEL_BASE, 50ull*MB },
- { MODEL_SMALL, 154ull*MB },
- { MODEL_MEDIUM, 470ull*MB },
- { MODEL_LARGE, 940ull*MB },
- },
- },
- { GGML_TYPE_Q4_1,
- {
- { MODEL_TINY, 32ull*MB },
- { MODEL_BASE, 58ull*MB },
- { MODEL_SMALL, 182ull*MB },
- { MODEL_MEDIUM, 562ull*MB },
- { MODEL_LARGE, 1124ull*MB },
- },
- },
- { GGML_TYPE_Q5_0,
- {
- { MODEL_TINY, 30ull*MB },
- { MODEL_BASE, 54ull*MB },
- { MODEL_SMALL, 170ull*MB },
- { MODEL_MEDIUM, 516ull*MB },
- { MODEL_LARGE, 1034ull*MB },
- },
- },
- { GGML_TYPE_Q5_1,
- {
- { MODEL_TINY, 32ull*MB },
- { MODEL_BASE, 58ull*MB },
- { MODEL_SMALL, 182ull*MB },
- { MODEL_MEDIUM, 562ull*MB },
- { MODEL_LARGE, 1124ull*MB },
- },
- },
- { GGML_TYPE_Q8_0,
- {
- { MODEL_TINY, 45ull*MB },
- { MODEL_BASE, 84ull*MB },
- { MODEL_SMALL, 268ull*MB },
- { MODEL_MEDIUM, 834ull*MB },
- { MODEL_LARGE, 1674ull*MB },
- },
- },
- };
- static const std::map<e_model, size_t> MEM_REQ_KV_SELF = {
- { MODEL_TINY, 3ull*MB },
- { MODEL_BASE, 6ull*MB },
- { MODEL_SMALL, 16ull*MB },
- { MODEL_MEDIUM, 43ull*MB },
- { MODEL_LARGE, 71ull*MB },
- };
- static const std::map<e_model, size_t> MEM_REQ_KV_CROSS = {
- { MODEL_TINY, 9ull*MB },
- { MODEL_BASE, 18ull*MB },
- { MODEL_SMALL, 53ull*MB },
- { MODEL_MEDIUM, 141ull*MB },
- { MODEL_LARGE, 235ull*MB },
- };
- static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
- { MODEL_TINY, 30ull*MB },
- { MODEL_BASE, 38ull*MB },
- { MODEL_SMALL, 56ull*MB },
- { MODEL_MEDIUM, 74ull*MB },
- { MODEL_LARGE, 94ull*MB },
- };
- static const std::map<e_model, size_t> MEM_REQ_DECODE = {
- { MODEL_TINY, 3ull*MB },
- { MODEL_BASE, 5ull*MB },
- { MODEL_SMALL, 10ull*MB },
- { MODEL_MEDIUM, 18ull*MB },
- { MODEL_LARGE, 27ull*MB },
- };
- struct whisper_mel {
- int n_len;
- int n_len_org;
- int n_mel;
- std::vector<float> data;
- };
- struct whisper_filters {
- int32_t n_mel;
- int32_t n_fft;
- std::vector<float> data;
- };
- struct whisper_vocab {
- using id = int32_t;
- using token = std::string;
- int n_vocab = 51864;
- std::map<token, id> token_to_id;
- std::map<id, token> id_to_token;
- // reference: https://github.com/openai/whisper/blob/248b6cb124225dd263bb9bd32d060b6517e067f8/whisper/tokenizer.py#L334-L349
- id token_eot = 50256;
- id token_sot = 50257;
- // task tokens (used only for multilingual models)
- id token_translate = 50357;
- id token_transcribe = 50358;
- // other special tokens
- id token_solm = 50359; // [TDRZ] used by tinydiarize models to indicate speaker turn
- id token_prev = 50360;
- id token_nosp = 50361;
- id token_not = 50362; // no timestamps
- id token_beg = 50363; // begin timestamps
- bool is_multilingual() const {
- return n_vocab == 51865;
- }
- };
- struct whisper_segment {
- int64_t t0;
- int64_t t1;
- std::string text;
- std::vector<whisper_token_data> tokens;
- bool speaker_turn_next;
- };
- // medium
- // hparams: {
- // 'n_mels': 80,
- // 'n_vocab': 51864,
- // 'n_audio_ctx': 1500,
- // 'n_audio_state': 1024,
- // 'n_audio_head': 16,
- // 'n_audio_layer': 24,
- // 'n_text_ctx': 448,
- // 'n_text_state': 1024,
- // 'n_text_head': 16,
- // 'n_text_layer': 24
- // }
- //
- // default hparams (Whisper tiny)
- struct whisper_hparams {
- int32_t n_vocab = 51864;
- int32_t n_audio_ctx = 1500;
- int32_t n_audio_state = 384;
- int32_t n_audio_head = 6;
- int32_t n_audio_layer = 4;
- int32_t n_text_ctx = 448;
- int32_t n_text_state = 384;
- int32_t n_text_head = 6;
- int32_t n_text_layer = 4;
- int32_t n_mels = 80;
- int32_t ftype = 1;
- float eps = 1e-5f;
- };
- // audio encoding layer
- struct whisper_layer_encoder {
- // encoder.blocks.*.attn_ln
- struct ggml_tensor * attn_ln_0_w;
- struct ggml_tensor * attn_ln_0_b;
- // encoder.blocks.*.attn.out
- struct ggml_tensor * attn_ln_1_w;
- struct ggml_tensor * attn_ln_1_b;
- // encoder.blocks.*.attn.query
- struct ggml_tensor * attn_q_w;
- struct ggml_tensor * attn_q_b;
- // encoder.blocks.*.attn.key
- struct ggml_tensor * attn_k_w;
- // encoder.blocks.*.attn.value
- struct ggml_tensor * attn_v_w;
- struct ggml_tensor * attn_v_b;
- // encoder.blocks.*.mlp_ln
- struct ggml_tensor * mlp_ln_w;
- struct ggml_tensor * mlp_ln_b;
- // encoder.blocks.*.mlp.0
- struct ggml_tensor * mlp_0_w;
- struct ggml_tensor * mlp_0_b;
- // encoder.blocks.*.mlp.2
- struct ggml_tensor * mlp_1_w;
- struct ggml_tensor * mlp_1_b;
- };
- // token decoding layer
- struct whisper_layer_decoder {
- // decoder.blocks.*.attn_ln
- struct ggml_tensor * attn_ln_0_w;
- struct ggml_tensor * attn_ln_0_b;
- // decoder.blocks.*.attn.out
- struct ggml_tensor * attn_ln_1_w;
- struct ggml_tensor * attn_ln_1_b;
- // decoder.blocks.*.attn.query
- struct ggml_tensor * attn_q_w;
- struct ggml_tensor * attn_q_b;
- // decoder.blocks.*.attn.key
- struct ggml_tensor * attn_k_w;
- // decoder.blocks.*.attn.value
- struct ggml_tensor * attn_v_w;
- struct ggml_tensor * attn_v_b;
- // decoder.blocks.*.cross_attn_ln
- struct ggml_tensor * cross_attn_ln_0_w;
- struct ggml_tensor * cross_attn_ln_0_b;
- // decoder.blocks.*.cross_attn.out
- struct ggml_tensor * cross_attn_ln_1_w;
- struct ggml_tensor * cross_attn_ln_1_b;
- // decoder.blocks.*.cross_attn.query
- struct ggml_tensor * cross_attn_q_w;
- struct ggml_tensor * cross_attn_q_b;
- // decoder.blocks.*.cross_attn.key
- struct ggml_tensor * cross_attn_k_w;
- // decoder.blocks.*.cross_attn.value
- struct ggml_tensor * cross_attn_v_w;
- struct ggml_tensor * cross_attn_v_b;
- // decoder.blocks.*.mlp_ln
- struct ggml_tensor * mlp_ln_w;
- struct ggml_tensor * mlp_ln_b;
- // decoder.blocks.*.mlp.0
- struct ggml_tensor * mlp_0_w;
- struct ggml_tensor * mlp_0_b;
- // decoder.blocks.*.mlp.2
- struct ggml_tensor * mlp_1_w;
- struct ggml_tensor * mlp_1_b;
- };
- struct whisper_kv_cache {
- struct ggml_tensor * k;
- struct ggml_tensor * v;
- struct ggml_context * ctx;
- std::vector<uint8_t> buf;
- int n; // number of tokens currently in the cache
- };
- struct whisper_model {
- e_model type = MODEL_UNKNOWN;
- whisper_hparams hparams;
- whisper_filters filters;
- // encoder.positional_embedding
- struct ggml_tensor * e_pe;
- // encoder.conv1
- struct ggml_tensor * e_conv_1_w;
- struct ggml_tensor * e_conv_1_b;
- // encoder.conv2
- struct ggml_tensor * e_conv_2_w;
- struct ggml_tensor * e_conv_2_b;
- // encoder.ln_post
- struct ggml_tensor * e_ln_w;
- struct ggml_tensor * e_ln_b;
- // decoder.positional_embedding
- struct ggml_tensor * d_pe;
- // decoder.token_embedding
- struct ggml_tensor * d_te;
- // decoder.ln
- struct ggml_tensor * d_ln_w;
- struct ggml_tensor * d_ln_b;
- std::vector<whisper_layer_encoder> layers_encoder;
- std::vector<whisper_layer_decoder> layers_decoder;
- // context
- struct ggml_context * ctx;
- // the model memory buffer is read-only and can be shared between processors
- std::vector<uint8_t> * buf;
- // tensors
- int n_loaded;
- std::map<std::string, struct ggml_tensor *> tensors;
- };
- struct whisper_sequence {
- std::vector<whisper_token_data> tokens;
- // the accumulated transcription in the current iteration (used to truncate the tokens array)
- int result_len;
- double sum_logprobs_all; // the sum of the log probabilities of the tokens
- double sum_logprobs; // the sum of the log probabilities of the tokens (first result_len tokens)
- double avg_logprobs; // the average log probability of the tokens
- double entropy; // the entropy of the tokens
- double score; // likelihood rank score
- };
- // TAGS: WHISPER_DECODER_INIT
- struct whisper_decoder {
- // each decoders keeps its own KV-cache
- whisper_kv_cache kv_self;
- // the currently generated sequence of tokens
- whisper_sequence sequence;
- int seek_delta; // the window shift found so far based on the decoded timestamp tokens
- bool failed; // has the current segment failed to decode?
- bool completed; // has the decoder completed the current segment?
- bool has_ts; // have we already sampled a non-beg timestamp token for the current segment?
- // new token probs, logits and logprobs after the last whisper_decode (1-dimensional array: [n_vocab])
- std::vector<float> probs;
- std::vector<float> logits;
- std::vector<float> logprobs;
- std::vector<whisper_token> tokens_tmp; // used for whisper_decode calls
- };
- struct whisper_state {
- int64_t t_sample_us = 0;
- int64_t t_encode_us = 0;
- int64_t t_decode_us = 0;
- int64_t t_mel_us = 0;
- int32_t n_sample = 0; // number of tokens sampled
- int32_t n_encode = 0; // number of encoder calls
- int32_t n_decode = 0; // number of decoder calls
- int32_t n_fail_p = 0; // number of logprob threshold failures
- int32_t n_fail_h = 0; // number of entropy threshold failures
- // cross-attention KV cache for the decoders
- // shared between all decoders
- whisper_kv_cache kv_cross;
- whisper_mel mel;
- whisper_decoder decoders[WHISPER_MAX_DECODERS] = {};
- // memory buffers used by encode / decode contexts
- std::vector<uint8_t> buf_compute;
- std::vector<uint8_t> buf_scratch[WHISPER_MAX_SCRATCH_BUFFERS];
- int buf_last = 0;
- size_t buf_max_size[WHISPER_MAX_SCRATCH_BUFFERS] = { 0 };
- // decode output (2-dimensional array: [n_tokens][n_vocab])
- std::vector<float> logits;
- std::vector<whisper_segment> result_all;
- std::vector<whisper_token> prompt_past;
- // work container used to avoid memory allocations
- std::vector<std::pair<double, whisper_vocab::id>> logits_id;
- mutable std::mt19937 rng; // used for sampling at t > 0.0
- int lang_id = 0; // english by default
- std::string path_model; // populated by whisper_init_from_file()
- #ifdef WHISPER_USE_COREML
- whisper_coreml_context * ctx_coreml = nullptr;
- #endif
- #ifdef WHISPER_USE_OPENVINO
- whisper_openvino_context * ctx_openvino = nullptr;
- #endif
- // [EXPERIMENTAL] token-level timestamps data
- int64_t t_beg = 0;
- int64_t t_last = 0;
- whisper_token tid_last;
- std::vector<float> energy; // PCM signal energy
- // [EXPERIMENTAL] speed-up techniques
- int32_t exp_n_audio_ctx = 0; // 0 - use default
- void use_buf(struct ggml_context * ctx, int i) {
- #if defined(WHISPER_USE_SCRATCH)
- size_t last_size = 0;
- if (i == -1) {
- last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
- } else {
- auto & buf = buf_scratch[i];
- last_size = ggml_set_scratch(ctx, { 0, buf.size(), buf.data(), });
- }
- if (buf_last >= 0) {
- buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
- }
- buf_last = i;
- #else
- (void) i;
- (void) ctx;
- #endif
- }
- size_t get_buf_max_mem(int i) const {
- #if defined(WHISPER_USE_SCRATCH)
- return buf_max_size[i];
- #else
- (void) i;
- return 0;
- #endif
- }
- };
- struct whisper_context {
- int64_t t_load_us = 0;
- int64_t t_start_us = 0;
- ggml_type wtype = ggml_type::GGML_TYPE_F16; // weight type (FP32 / FP16 / QX)
- ggml_type itype = ggml_type::GGML_TYPE_F16; // intermediate type (FP32 or FP16)
- whisper_model model;
- whisper_vocab vocab;
- whisper_state * state = nullptr;
- std::string path_model; // populated by whisper_init_from_file()
- };
- static void whisper_default_log(const char * text) {
- fprintf(stderr, "%s", text);
- }
- static whisper_log_callback whisper_log = whisper_default_log;
- #ifdef __GNUC__
- #ifdef __MINGW32__
- __attribute__((gnu_format(printf, 1, 2)))
- #else
- __attribute__((format(printf, 1, 2)))
- #endif
- #endif
- static void log(const char * fmt, ...) {
- if (!whisper_log) return;
- char buf[1024];
- va_list args;
- va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
- whisper_log(buf);
- }
- template<typename T>
- static void read_safe(whisper_model_loader * loader, T & dest) {
- loader->read(loader->context, &dest, sizeof(T));
- BYTESWAP_VALUE(dest);
- }
- static bool kv_cache_init(
- const struct whisper_hparams & hparams,
- const size_t mem_bytes,
- struct whisper_kv_cache & cache,
- ggml_type wtype,
- int n_ctx) {
- cache.buf.resize(mem_bytes);
- struct ggml_init_params params = {
- /*.mem_size =*/ cache.buf.size(),
- /*.mem_buffer =*/ cache.buf.data(),
- /*.no_alloc =*/ false,
- };
- cache.ctx = ggml_init(params);
- if (!cache.ctx) {
- log("%s: failed to allocate memory for kv cache\n", __func__);
- return false;
- }
- const int n_text_state = hparams.n_text_state;
- const int n_text_layer = hparams.n_text_layer;
- const int n_mem = n_text_layer*n_ctx;
- const int n_elements = n_text_state*n_mem;
- cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- return true;
- }
- static bool kv_cache_reinit(struct whisper_kv_cache & cache) {
- WHISPER_ASSERT(cache.ctx);
- const int n_elements = ggml_nelements(cache.k);
- WHISPER_ASSERT(n_elements == ggml_nelements(cache.v));
- const ggml_type wtype = cache.k->type;
- WHISPER_ASSERT(wtype == cache.v->type);
- WHISPER_ASSERT(cache.buf.size() >= 2*n_elements*ggml_type_sizef(wtype));
- struct ggml_init_params params = {
- /*.mem_size =*/ cache.buf.size(),
- /*.mem_buffer =*/ cache.buf.data(),
- /*.no_alloc =*/ false,
- };
- cache.ctx = ggml_init(params);
- if (!cache.ctx) {
- log("%s: failed to allocate memory for kv cache\n", __func__);
- return false;
- }
- cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- return true;
- }
- static void kv_cache_free(struct whisper_kv_cache & cache) {
- if (cache.ctx) {
- ggml_free(cache.ctx);
- cache.ctx = nullptr;
- }
- }
- // load the model from a ggml file
- //
- // file format:
- //
- // - hparams
- // - pre-computed mel filters
- // - vocab
- // - weights
- //
- // see the convert-pt-to-ggml.py script for details
- //
- static bool whisper_model_load(struct whisper_model_loader * loader, whisper_context & wctx) {
- log("%s: loading model\n", __func__);
- const int64_t t_start_us = ggml_time_us();
- wctx.t_start_us = t_start_us;
- auto & model = wctx.model;
- auto & vocab = wctx.vocab;
- // verify magic
- {
- uint32_t magic;
- read_safe(loader, magic);
- if (magic != GGML_FILE_MAGIC) {
- log("%s: invalid model data (bad magic)\n", __func__);
- return false;
- }
- }
- //load hparams
- {
- auto & hparams = model.hparams;
- read_safe(loader, hparams.n_vocab);
- read_safe(loader, hparams.n_audio_ctx);
- read_safe(loader, hparams.n_audio_state);
- read_safe(loader, hparams.n_audio_head);
- read_safe(loader, hparams.n_audio_layer);
- read_safe(loader, hparams.n_text_ctx);
- read_safe(loader, hparams.n_text_state);
- read_safe(loader, hparams.n_text_head);
- read_safe(loader, hparams.n_text_layer);
- read_safe(loader, hparams.n_mels);
- read_safe(loader, hparams.ftype);
- assert(hparams.n_text_state == hparams.n_audio_state);
- if (hparams.n_audio_layer == 4) {
- model.type = e_model::MODEL_TINY;
- }
- if (hparams.n_audio_layer == 6) {
- model.type = e_model::MODEL_BASE;
- }
- if (hparams.n_audio_layer == 12) {
- model.type = e_model::MODEL_SMALL;
- }
- if (hparams.n_audio_layer == 24) {
- model.type = e_model::MODEL_MEDIUM;
- }
- if (hparams.n_audio_layer == 32) {
- model.type = e_model::MODEL_LARGE;
- }
- const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
- hparams.ftype %= GGML_QNT_VERSION_FACTOR;
- // for the big tensors, we have the option to store the data in 16-bit floats or quantized
- // in order to save memory and also to speed up the computation
- wctx.wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
- if (wctx.wtype == GGML_TYPE_COUNT) {
- log("%s: invalid model (bad ftype value %d)\n", __func__, model.hparams.ftype);
- return false;
- }
- const size_t scale = model.hparams.ftype ? 1 : 2;
- log("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- log("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
- log("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
- log("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head);
- log("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
- log("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx);
- log("%s: n_text_state = %d\n", __func__, hparams.n_text_state);
- log("%s: n_text_head = %d\n", __func__, hparams.n_text_head);
- log("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
- log("%s: n_mels = %d\n", __func__, hparams.n_mels);
- log("%s: ftype = %d\n", __func__, model.hparams.ftype);
- log("%s: qntvr = %d\n", __func__, qntvr);
- log("%s: type = %d\n", __func__, model.type);
- // print memory requirements
- {
- // this is the total memory required to run the inference
- const size_t mem_required =
- MEM_REQ_SCRATCH0.at(model.type) +
- MEM_REQ_SCRATCH1.at(model.type) +
- MEM_REQ_SCRATCH2.at(model.type) +
- MEM_REQ_SCRATCH3.at(model.type) +
- scale*MEM_REQ_MODEL.at(wctx.wtype).at(model.type) +
- scale*MEM_REQ_KV_CROSS.at(model.type) +
- scale*std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type));
- // this is the memory required by one decoder
- const size_t mem_required_decoder =
- scale*MEM_REQ_KV_SELF.at(model.type);
- log("%s: mem required = %7.2f MB (+ %7.2f MB per decoder)\n", __func__,
- mem_required / 1024.0 / 1024.0, mem_required_decoder / 1024.0 / 1024.0);
- }
- // initialize all memory buffers
- // always have at least one decoder
- wctx.model.buf = new std::vector<uint8_t>();
- wctx.model.buf->resize(scale*MEM_REQ_MODEL.at(wctx.wtype).at(model.type));
- // we skip initialization of the state until it is needed
- // because it might be that state will always be provided externally.
- }
- // load mel filters
- {
- auto & filters = wctx.model.filters;
- read_safe(loader, filters.n_mel);
- read_safe(loader, filters.n_fft);
- filters.data.resize(filters.n_mel * filters.n_fft);
- loader->read(loader->context, filters.data.data(), filters.data.size() * sizeof(float));
- BYTESWAP_FILTERS(filters);
- }
- // load vocab
- {
- int32_t n_vocab = 0;
- read_safe(loader, n_vocab);
- //if (n_vocab != model.hparams.n_vocab) {
- // log("%s: invalid model file '%s' (bad vocab size %d != %d)\n",
- // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
- // return false;
- //}
- std::string word;
- std::vector<char> tmp;
- tmp.reserve(128);
- for (int i = 0; i < n_vocab; i++) {
- uint32_t len;
- read_safe(loader, len);
- if (len > 0) {
- tmp.resize(len);
- loader->read(loader->context, &tmp[0], tmp.size()); // read to buffer
- word.assign(&tmp[0], tmp.size());
- } else {
- // seems like we have an empty-string token in multi-language models (i = 50256)
- //log("%s: warning: empty-string token in vocab, i = %d\n", __func__, i);
- word = "";
- }
- vocab.token_to_id[word] = i;
- vocab.id_to_token[i] = word;
- //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
- }
- vocab.n_vocab = model.hparams.n_vocab;
- if (vocab.is_multilingual()) {
- vocab.token_eot++;
- vocab.token_sot++;
- vocab.token_translate++;
- vocab.token_transcribe++;
- vocab.token_solm++;
- vocab.token_prev++;
- vocab.token_nosp++;
- vocab.token_not++;
- vocab.token_beg++;
- }
- if (n_vocab < model.hparams.n_vocab) {
- log("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab);
- for (int i = n_vocab; i < model.hparams.n_vocab; i++) {
- if (i > vocab.token_beg) {
- word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]";
- } else if (i == vocab.token_eot) {
- word = "[_EOT_]";
- } else if (i == vocab.token_sot) {
- word = "[_SOT_]";
- } else if (i == vocab.token_solm) {
- word = "[_SOLM_]";
- } else if (i == vocab.token_prev) {
- word = "[_PREV_]";
- } else if (i == vocab.token_nosp) {
- word = "[_NOSP_]";
- } else if (i == vocab.token_not) {
- word = "[_NOT_]";
- } else if (i == vocab.token_beg) {
- word = "[_BEG_]";
- } else {
- word = "[_extra_token_" + std::to_string(i) + "]";
- }
- vocab.token_to_id[word] = i;
- vocab.id_to_token[i] = word;
- }
- }
- }
- size_t ctx_size = 0;
- const ggml_type wtype = wctx.wtype;
- const ggml_type vtype = wctx.wtype == GGML_TYPE_F32 ? GGML_TYPE_F32 : GGML_TYPE_F16; // conv type
- {
- const auto & hparams = model.hparams;
- const int n_vocab = hparams.n_vocab;
- const int n_audio_ctx = hparams.n_audio_ctx;
- const int n_audio_state = hparams.n_audio_state;
- const int n_audio_layer = hparams.n_audio_layer;
- const int n_text_ctx = hparams.n_text_ctx;
- const int n_text_state = hparams.n_text_state;
- const int n_text_layer = hparams.n_text_layer;
- const int n_mels = hparams.n_mels;
- // encoder
- {
- ctx_size += n_audio_ctx*n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_pe;
- ctx_size += 3*n_mels*n_audio_state*ggml_type_sizef(vtype); // e_conv_1_w
- ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_conv_1_b
- ctx_size += 3*n_audio_state*n_audio_state*ggml_type_sizef(vtype); // e_conv_2_w
- ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_conv_2_b
- ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_ln_w;
- ctx_size += n_audio_state*ggml_type_sizef(GGML_TYPE_F32); // e_ln_b;
- }
- // decoder
- {
- ctx_size += n_text_ctx*n_text_state*ggml_type_sizef(GGML_TYPE_F32); // d_pe;
- ctx_size += n_vocab*n_text_state*ggml_type_sizef(wtype); // d_te;
- ctx_size += n_text_state*ggml_type_sizef(GGML_TYPE_F32); // d_ln_w;
- ctx_size += n_text_state*ggml_type_sizef(GGML_TYPE_F32); // d_ln_b;
- }
- // encoder layers
- {
- ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_w
- ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_b
- ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // mlp_0_w
- ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_0_b
- ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // mlp_1_w
- ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_1_b
- ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_w
- ctx_size += n_audio_layer*(n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_b
- ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_q_w
- ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_q_b
- ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_k_w
- ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_v_w
- ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_v_b
- ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_sizef(wtype)); // attn_ln_1_w
- ctx_size += n_audio_layer*( n_audio_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_1_b
- }
- // decoder layers
- {
- ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_w
- ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_ln_b
- ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_sizef(wtype)); // mlp_0_w
- ctx_size += n_text_layer*( 4*n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_0_b
- ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_sizef(wtype)); // mlp_1_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // mlp_1_b
- ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_w
- ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_0_b
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_q_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_q_b
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_k_w
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_v_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_v_b
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // attn_ln_1_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // attn_ln_1_b
- //
- ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_ln_0_w
- ctx_size += n_text_layer*(n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_ln_0_b
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_q_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_q_b
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_k_w
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_v_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_v_b
- ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_sizef(wtype)); // cross_attn_ln_1_w
- ctx_size += n_text_layer*( n_text_state*ggml_type_sizef(GGML_TYPE_F32)); // cross_attn_ln_1_b
- }
- ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*512; // object overhead
- log("%s: model ctx = %7.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
- }
- // create the ggml context
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ wctx.model.buf->size(),
- /*.mem_buffer =*/ wctx.model.buf->data(),
- /*.no_alloc =*/ false,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- log("%s: ggml_init() failed\n", __func__);
- return false;
- }
- }
- // prepare memory for the weights
- {
- auto & ctx = model.ctx;
- const auto & hparams = model.hparams;
- const int n_vocab = hparams.n_vocab;
- const int n_audio_ctx = hparams.n_audio_ctx;
- const int n_audio_state = hparams.n_audio_state;
- const int n_audio_layer = hparams.n_audio_layer;
- const int n_text_ctx = hparams.n_text_ctx;
- const int n_text_state = hparams.n_text_state;
- const int n_text_layer = hparams.n_text_layer;
- const int n_mels = hparams.n_mels;
- model.layers_encoder.resize(n_audio_layer);
- model.layers_decoder.resize(n_text_layer);
- // encoder
- {
- model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
- model.e_conv_1_w = ggml_new_tensor_3d(ctx, vtype, 3, n_mels, n_audio_state);
- model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
- model.e_conv_2_w = ggml_new_tensor_3d(ctx, vtype, 3, n_audio_state, n_audio_state);
- model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
- model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- // map by name
- model.tensors["encoder.positional_embedding"] = model.e_pe;
- model.tensors["encoder.conv1.weight"] = model.e_conv_1_w;
- model.tensors["encoder.conv1.bias"] = model.e_conv_1_b;
- model.tensors["encoder.conv2.weight"] = model.e_conv_2_w;
- model.tensors["encoder.conv2.bias"] = model.e_conv_2_b;
- model.tensors["encoder.ln_post.weight"] = model.e_ln_w;
- model.tensors["encoder.ln_post.bias"] = model.e_ln_b;
- for (int i = 0; i < n_audio_layer; ++i) {
- auto & layer = model.layers_encoder[i];
- layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
- layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
- layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
- layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
- layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
- layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
- layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
- layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
- // map by name
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
- model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
- }
- }
- // decoder
- {
- model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx);
- model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab);
- model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- // map by name
- model.tensors["decoder.positional_embedding"] = model.d_pe;
- model.tensors["decoder.token_embedding.weight"] = model.d_te;
- model.tensors["decoder.ln.weight"] = model.d_ln_w;
- model.tensors["decoder.ln.bias"] = model.d_ln_b;
- for (int i = 0; i < n_text_layer; ++i) {
- auto & layer = model.layers_decoder[i];
- layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state);
- layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state);
- layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state);
- layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
- layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
- // map by name
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w;
- model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b;
- }
- }
- }
- // load weights
- {
- size_t total_size = 0;
- model.n_loaded = 0;
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ttype;
- read_safe(loader, n_dims);
- read_safe(loader, length);
- read_safe(loader, ttype);
- if (loader->eof(loader->context)) {
- break;
- }
- int32_t nelements = 1;
- int32_t ne[4] = { 1, 1, 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- read_safe(loader, ne[i]);
- nelements *= ne[i];
- }
- std::string name;
- std::vector<char> tmp(length); // create a buffer
- loader->read(loader->context, &tmp[0], tmp.size()); // read to buffer
- name.assign(&tmp[0], tmp.size());
- if (model.tensors.find(name) == model.tensors.end()) {
- log("%s: unknown tensor '%s' in model file\n", __func__, name.data());
- return false;
- }
- auto tensor = model.tensors[name.data()];
- if (ggml_nelements(tensor) != nelements) {
- log("%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- log("%s: shape: [%d, %d, %d], expected: [%d, %d, %d]\n",
- __func__, ne[0], ne[1], ne[2], (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2]);
- return false;
- }
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
- log("%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
- __func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], ne[0], ne[1], ne[2]);
- return false;
- }
- const size_t bpe = ggml_type_size(ggml_type(ttype));
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
- log("%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
- return false;
- }
- loader->read(loader->context, tensor->data, ggml_nbytes(tensor));
- BYTESWAP_TENSOR(tensor);
- //printf("%48s - [%5d, %5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ne[2], ggml_type_name((ggml_type) ttype), ggml_nbytes(tensor)/1024.0/1024.0);
- total_size += ggml_nbytes(tensor);
- model.n_loaded++;
- }
- log("%s: model size = %7.2f MB\n", __func__, total_size/1024.0/1024.0);
- if (model.n_loaded == 0) {
- log("%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
- } else if (model.n_loaded != (int) model.tensors.size()) {
- log("%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
- return false;
- }
- }
- wctx.t_load_us = ggml_time_us() - t_start_us;
- return true;
- }
- // evaluate the encoder with the given state
- //
- // given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder
- // part of the transformer model and returns the encoded features
- //
- // - wctx: the model
- // - wstate: the state of the encoder
- // - n_threads: number of threads to use
- // - mel_offset: offset in the mel spectrogram (i.e. audio offset)
- //
- static bool whisper_encode_internal(
- whisper_context & wctx,
- whisper_state & wstate,
- const int mel_offset,
- const int n_threads){
- const int64_t t_start_us = ggml_time_us();
- const auto & model = wctx.model;
- const auto & mel_inp = wstate.mel;
- const auto & hparams = model.hparams;
- const int n_ctx = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : hparams.n_audio_ctx;
- const int n_state = hparams.n_audio_state;
- const int n_head = hparams.n_audio_head;
- const int n_layer = hparams.n_audio_layer;
- const int n_mels = hparams.n_mels;
- assert(mel_inp.n_mel == n_mels);
- struct ggml_init_params params = {
- /*.mem_size =*/ wstate.buf_compute.size(),
- /*.mem_buffer =*/ wstate.buf_compute.data(),
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- wstate.use_buf(ctx0, 0);
- struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
- assert(mel->type == GGML_TYPE_F32);
- {
- float * dst = (float *) mel->data;
- memset(dst, 0, ggml_nbytes(mel));
- const int i0 = std::min(mel_offset, mel_inp.n_len);
- const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
- for (int j = 0; j < mel_inp.n_mel; ++j) {
- for (int i = i0; i < i1; ++i) {
- dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
- }
- }
- }
- struct ggml_tensor * cur;
- #ifndef WHISPER_USE_COREML
- const bool use_coreml = false;
- #else
- const bool use_coreml = wstate.ctx_coreml != nullptr;
- #endif
- #ifndef WHISPER_USE_OPENVINO
- const bool use_openvino = false;
- #else
- const bool use_openvino = wstate.ctx_openvino != nullptr;
- #endif
- if (!use_coreml && !use_openvino) {
- // convolution + gelu
- {
- wstate.use_buf(ctx0, 1);
- cur = ggml_conv_1d_ph(ctx0, model.e_conv_1_w, mel, 1, 1);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- model.e_conv_1_b,
- cur),
- cur);
- cur = ggml_gelu(ctx0, cur);
- wstate.use_buf(ctx0, 0);
- cur = ggml_conv_1d_ph(ctx0, model.e_conv_2_w, cur, 2, 1);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- model.e_conv_2_b,
- cur),
- cur);
- cur = ggml_gelu(ctx0, cur);
- }
- wstate.use_buf(ctx0, 3);
- // ===================================================================
- // NOTE: experimenting with partial evaluation of the encoder (ignore)
- //static int iter = -1;
- //const int n_iter = 1500/n_ctx;
- //iter = (iter + 1) % n_iter;
- //if (iter == 0) {
- // memset(model.memory_cross_k->data, 0, ggml_nbytes(model.memory_cross_k));
- // memset(model.memory_cross_v->data, 0, ggml_nbytes(model.memory_cross_v));
- //}
- static int iter = 0;
- const size_t e_pe_stride = model.e_pe->ne[0]*ggml_element_size(model.e_pe);
- const size_t e_pe_offset = model.e_pe->ne[0]*ggml_element_size(model.e_pe)*n_ctx*iter;
- struct ggml_tensor * e_pe = ggml_view_2d(ctx0, model.e_pe, model.e_pe->ne[0], n_ctx, e_pe_stride, e_pe_offset);
- cur = ggml_add(ctx0, e_pe, ggml_transpose(ctx0, cur));
- // ===================================================================
- // original:
- //cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
- struct ggml_tensor * inpL = cur;
- for (int il = 0; il < n_layer; ++il) {
- const auto & layer = model.layers_encoder[il];
- // norm
- {
- wstate.use_buf(ctx0, 0);
- cur = ggml_norm(ctx0, inpL, hparams.eps);
- // cur = ln_0_w*cur + ln_0_b
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, layer.attn_ln_0_w, cur),
- cur),
- ggml_repeat(ctx0, layer.attn_ln_0_b, cur));
- }
- // self-attention
- {
- wstate.use_buf(ctx0, 1);
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0,
- layer.attn_q_w,
- cur);
- Qcur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- layer.attn_q_b,
- Qcur),
- Qcur);
- //Qcur = ggml_scale_inplace(ctx0, Qcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
- // note: no bias for Key
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0,
- layer.attn_k_w,
- cur);
- //Kcur = ggml_scale_inplace(ctx0, Kcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0,
- layer.attn_v_w,
- cur);
- Vcur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- layer.attn_v_b,
- Vcur),
- Vcur);
- // ------
- wstate.use_buf(ctx0, 0);
- #ifdef WHISPER_USE_FLASH_ATTN
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- ggml_cpy(ctx0,
- Qcur,
- ggml_new_tensor_3d(ctx0, wctx.itype, n_state/n_head, n_head, n_ctx)),
- 0, 2, 1, 3);
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_cpy(ctx0,
- Kcur,
- ggml_new_tensor_3d(ctx0, wctx.itype, n_state/n_head, n_head, n_ctx)),
- 0, 2, 1, 3);
- struct ggml_tensor * V =
- ggml_cpy(ctx0,
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- Vcur,
- n_state/n_head, n_head, n_ctx),
- 1, 2, 0, 3),
- ggml_new_tensor_3d(ctx0, wctx.itype, n_ctx, n_state/n_head, n_head));
- struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, false);
- #else
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- ggml_cpy(ctx0,
- Qcur,
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_state/n_head, n_head, n_ctx)),
- 0, 2, 1, 3);
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_cpy(ctx0,
- Kcur,
- ggml_new_tensor_3d(ctx0, wctx.itype, n_state/n_head, n_head, n_ctx)),
- 0, 2, 1, 3);
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- struct ggml_tensor * KQ_scaled =
- ggml_scale_inplace(ctx0,
- KQ,
- ggml_new_f32(ctx0, 1.0f/sqrt(float(n_state)/n_head))
- );
- struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_scaled);
- struct ggml_tensor * V =
- ggml_cpy(ctx0,
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- Vcur,
- n_state/n_head, n_head, n_ctx),
- 1, 2, 0, 3),
- ggml_new_tensor_3d(ctx0, wctx.itype, n_ctx, n_state/n_head, n_head)
- );
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- #endif
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- wstate.use_buf(ctx0, 1);
- cur = ggml_cpy(ctx0,
- KQV_merged,
- ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx));
- }
- // projection
- {
- wstate.use_buf(ctx0, 0);
- cur = ggml_mul_mat(ctx0,
- layer.attn_ln_1_w,
- cur);
- wstate.use_buf(ctx0, 1);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0, layer.attn_ln_1_b, cur),
- cur);
- }
- wstate.use_buf(ctx0, 2);
- // add the input
- cur = ggml_add(ctx0, cur, inpL);
- struct ggml_tensor * inpFF = cur;
- // feed-forward network
- {
- // norm
- {
- wstate.use_buf(ctx0, 0);
- cur = ggml_norm(ctx0, inpFF, hparams.eps);
- wstate.use_buf(ctx0, 1);
- // cur = mlp_ln_w*cur + mlp_ln_b
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, layer.mlp_ln_w, cur),
- cur),
- ggml_repeat(ctx0, layer.mlp_ln_b, cur));
- }
- #ifdef WHISPER_USE_FLASH_FF
- wstate.use_buf(ctx0, 0);
- cur = ggml_flash_ff(ctx0,
- ggml_cpy(ctx0, cur, ggml_new_tensor_2d(ctx0, wstate.itype, n_state, n_ctx)),
- layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
- #else
- wstate.use_buf(ctx0, 0);
- // fully connected
- cur = ggml_mul_mat(ctx0,
- layer.mlp_0_w,
- cur);
- wstate.use_buf(ctx0, 1);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0, layer.mlp_0_b, cur),
- cur);
- wstate.use_buf(ctx0, 0);
- // GELU activation
- cur = ggml_gelu(ctx0, cur);
- wstate.use_buf(ctx0, 1);
- // projection
- cur = ggml_mul_mat(ctx0,
- layer.mlp_1_w,
- cur);
- wstate.use_buf(ctx0, 0);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0, layer.mlp_1_b, cur),
- cur);
- #endif
- }
- wstate.use_buf(ctx0, 3);
- inpL = ggml_add(ctx0, cur, inpFF);
- }
- cur = inpL;
- // norm
- {
- wstate.use_buf(ctx0, 0);
- cur = ggml_norm(ctx0, cur, hparams.eps);
- wstate.use_buf(ctx0, 1);
- // cur = ln_f_g*cur + ln_f_b
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, model.e_ln_w, cur),
- cur),
- ggml_repeat(ctx0, model.e_ln_b, cur));
- }
- wstate.use_buf(ctx0, -1);
- // run the computation
- {
- struct ggml_cgraph gf = {};
- ggml_build_forward_expand (&gf, cur);
- ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
- //ggml_graph_print(&gf);
- }
- }
- #ifdef WHISPER_USE_COREML
- else if (use_coreml) {
- wstate.use_buf(ctx0, -1);
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx);
- whisper_coreml_encode(wstate.ctx_coreml, (float *) mel->data, (float *) cur->data);
- }
- #endif
- #ifdef WHISPER_USE_OPENVINO
- else if (use_openvino) {
- wstate.use_buf(ctx0, -1);
- cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx);
- if (!whisper_openvino_encode(wstate.ctx_openvino, mel, cur)) {
- return false;
- }
- }
- #endif
- // cur
- //{
- // printf("ne0 = %d\n", cur->ne[0]);
- // printf("ne1 = %d\n", cur->ne[1]);
- // for (int i = 0; i < 10; ++i) {
- // printf("%8.4f ", ((float *)(cur->data))[i]);
- // }
- // printf("... ");
- // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) {
- // printf("%8.4f ", ((float *)(cur->data))[i]);
- // }
- // printf("\n");
- //}
- // pre-compute cross-attention memory
- {
- struct ggml_cgraph gf = {};
- // TODO: hack to disconnect the encoded features from the previous graph
- cur->op = GGML_OP_NONE;
- cur->src[0] = nullptr;
- cur->src[1] = nullptr;
- for (int il = 0; il < model.hparams.n_text_layer; ++il) {
- auto& layer = model.layers_decoder[il];
- wstate.use_buf(ctx0, 0);
- struct ggml_tensor* Kcross = ggml_mul_mat(ctx0,
- layer.cross_attn_k_w,
- cur);
- Kcross = ggml_scale_inplace(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state) / n_head, -0.25)));
- wstate.use_buf(ctx0, 1);
- struct ggml_tensor* Vcross = ggml_mul_mat(ctx0,
- layer.cross_attn_v_w,
- cur);
- Vcross = ggml_add(ctx0,
- ggml_repeat(ctx0,
- layer.cross_attn_v_b,
- Vcross),
- Vcross);
- wstate.use_buf(ctx0, -1);
- Vcross = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcross, n_state, n_ctx));
- struct ggml_tensor * k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx));
- struct ggml_tensor * v = ggml_view_2d(ctx0, wstate.kv_cross.v, n_ctx, n_state,
- ( n_ctx)*ggml_element_size(wstate.kv_cross.v),
- (il*n_ctx)*ggml_element_size(wstate.kv_cross.v)*n_state);
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
- }
- ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
- //ggml_graph_print(&gf);
- }
- ////////////////////////////////////////////////////////////////////////////
- //printf("%s: used_mem = %f MB, %f MB, %f MB %f MB %f MB\n", __func__,
- // ggml_used_mem(ctx0)/1024.0/1024.0,
- // wstate.get_buf_max_mem(0)/1024.0/1024.0,
- // wstate.get_buf_max_mem(1)/1024.0/1024.0,
- // wstate.get_buf_max_mem(2)/1024.0/1024.0,
- // wstate.get_buf_max_mem(3)/1024.0/1024.0);
- ggml_free(ctx0);
- wstate.t_encode_us += ggml_time_us() - t_start_us;
- wstate.n_encode++;
- return true;
- }
- // evaluate the decoder
- //
- // given text prompt + audio features -> computes the logits for the next token
- //
- // - model: the model
- // - n_threads: number of threads to use
- // - tokens: text prompt
- // - n_tokens: number of tokens in the prompt
- // - n_past: number of past tokens to prefix the prompt with
- //
- static bool whisper_decode_internal(
- whisper_context & wctx,
- whisper_state & wstate,
- whisper_decoder & decoder,
- const whisper_token * tokens,
- const int n_tokens,
- const int n_past,
- const int n_threads) {
- const int64_t t_start_us = ggml_time_us();
- const auto & model = wctx.model;
- const auto & hparams = model.hparams;
- auto & kv_self = decoder.kv_self;
- WHISPER_ASSERT(!!kv_self.ctx);
- auto & logits_out = wstate.logits;
- const int n_vocab = hparams.n_vocab;
- const int n_ctx = hparams.n_text_ctx;
- const int n_state = hparams.n_text_state;
- const int n_head = hparams.n_text_head;
- const int n_layer = hparams.n_text_layer;
- const int N = n_tokens;
- const int M = wstate.exp_n_audio_ctx > 0 ? wstate.exp_n_audio_ctx : hparams.n_audio_ctx;
- //WHISPER_PRINT_DEBUG("%s: n_past = %d, N = %d, M = %d, n_ctx = %d\n", __func__, n_past, N, M, n_ctx);
- struct ggml_init_params params = {
- /*.mem_size =*/ wstate.buf_compute.size(),
- /*.mem_buffer =*/ wstate.buf_compute.data(),
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- struct ggml_cgraph gf = {};
- struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(embd->data, tokens, N*ggml_element_size(embd));
- struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- for (int i = 0; i < N; ++i) {
- ((int32_t *) position->data)[i] = n_past + i;
- }
- wstate.use_buf(ctx0, 3);
- // token encoding + position encoding
- struct ggml_tensor * cur =
- ggml_add(ctx0,
- ggml_get_rows(ctx0, model.d_te, embd),
- ggml_get_rows(ctx0, model.d_pe, position));
- struct ggml_tensor * inpL = cur;
- for (int il = 0; il < n_layer; ++il) {
- const auto & layer = model.layers_decoder[il];
- // norm
- {
- wstate.use_buf(ctx0, 0);
- cur = ggml_norm(ctx0, inpL, hparams.eps);
- // cur = ln_0_w*cur + ln_0_b
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, layer.attn_ln_0_w, cur),
- cur),
- ggml_repeat(ctx0, layer.attn_ln_0_b, cur));
- }
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0,
- layer.attn_q_w,
- cur);
- Qcur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- layer.attn_q_b,
- Qcur),
- Qcur);
- Qcur = ggml_scale_inplace(ctx0, Qcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
- // note: no bias for Key
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0,
- layer.attn_k_w,
- cur);
- Kcur = ggml_scale_inplace(ctx0, Kcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
- // store key and value to memory
- {
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0,
- layer.attn_v_w,
- cur);
- Vcur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- layer.attn_v_b,
- Vcur),
- Vcur);
- Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_state, N));
- struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_state, (ggml_element_size(kv_self.k)*n_state)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_state,
- ( n_ctx)*ggml_element_size(kv_self.v),
- (il*n_ctx)*ggml_element_size(kv_self.v)*n_state + n_past*ggml_element_size(kv_self.v));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
- }
- // ------
- wstate.use_buf(ctx0, 0);
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- ggml_cpy(ctx0,
- Qcur,
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_state/n_head, n_head, N)),
- 0, 2, 1, 3);
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(kv_self.k)*n_state),
- n_state/n_head, n_head, n_past + N),
- 0, 2, 1, 3);
- wstate.use_buf(ctx0, 1);
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- //struct ggml_tensor * KQ_scaled =
- // ggml_scale_inplace(ctx0,
- // KQ,
- // ggml_new_f32(ctx0, 1.0f/sqrt(float(n_state)/n_head))
- // );
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ, n_past);
- struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
- struct ggml_tensor * V =
- ggml_view_3d(ctx0, kv_self.v,
- n_past + N, n_state/n_head, n_head,
- n_ctx*ggml_element_size(kv_self.v),
- n_ctx*ggml_element_size(kv_self.v)*n_state/n_head,
- il*n_ctx*ggml_element_size(kv_self.v)*n_state);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- cur = ggml_cpy(ctx0,
- KQV_merged,
- ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, N));
- }
- // projection
- {
- wstate.use_buf(ctx0, 0);
- cur = ggml_mul_mat(ctx0,
- layer.attn_ln_1_w,
- cur);
- wstate.use_buf(ctx0, 1);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0, layer.attn_ln_1_b, cur),
- cur);
- }
- wstate.use_buf(ctx0, 2);
- // add the input
- struct ggml_tensor * inpCA = ggml_add(ctx0, cur, inpL);
- // norm
- {
- wstate.use_buf(ctx0, 0);
- cur = ggml_norm(ctx0, inpCA, hparams.eps); // note: we use inpCA here
- // cur = ln_0_w*cur + ln_0_b
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, layer.cross_attn_ln_0_w, cur),
- cur),
- ggml_repeat(ctx0, layer.cross_attn_ln_0_b, cur));
- }
- // cross-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0,
- layer.cross_attn_q_w,
- cur);
- Qcur = ggml_add(ctx0,
- ggml_repeat(ctx0,
- layer.cross_attn_q_b,
- Qcur),
- Qcur);
- Qcur = ggml_scale_inplace(ctx0, Qcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
- // Kcross is already scaled
- struct ggml_tensor * Kcross =
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, wstate.kv_cross.k, M*n_state, il*M*ggml_element_size(wstate.kv_cross.k)*n_state),
- n_state/n_head, n_head, M);
- //struct ggml_tensor * Vcross =
- // ggml_reshape_3d(ctx0,
- // ggml_view_1d(ctx0, wstate.kv_cross.v, M*n_state, il*M*ggml_element_size(wstate.kv_cross.v)*n_state),
- // n_state/n_head, n_head, M);
- //struct ggml_tensor * V_trans =
- // ggml_cpy(ctx0,
- // ggml_permute(ctx0, Vcross, 1, 2, 0, 3),
- // ggml_new_tensor_3d(ctx0, Vcross->type, M, n_state/n_head, n_head));
- struct ggml_tensor * V =
- ggml_view_3d(ctx0, wstate.kv_cross.v,
- M, n_state/n_head, n_head,
- M*ggml_element_size(wstate.kv_cross.v),
- M*ggml_element_size(wstate.kv_cross.v)*n_state/n_head,
- il*M*ggml_element_size(wstate.kv_cross.v)*n_state);
- // ------
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- ggml_cpy(ctx0,
- Qcur,
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_state/n_head, n_head, N)),
- 0, 2, 1, 3);
- struct ggml_tensor * K = ggml_permute(ctx0, Kcross, 0, 2, 1, 3);
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- //struct ggml_tensor * KQ_scaled =
- // ggml_scale_inplace(ctx0,
- // KQ,
- // ggml_new_f32(ctx0, 1.0f/sqrt(float(n_state)/n_head))
- // );
- // no masking for cross-attention
- //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
- struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- // cur = KQV_merged.contiguous().view(n_state, N)
- cur = ggml_cpy(ctx0,
- KQV_merged,
- ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, N));
- }
- // projection
- {
- wstate.use_buf(ctx0, 0);
- cur = ggml_mul_mat(ctx0,
- layer.cross_attn_ln_1_w,
- cur);
- wstate.use_buf(ctx0, 1);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0, layer.cross_attn_ln_1_b, cur),
- cur);
- }
- wstate.use_buf(ctx0, 2);
- // add the input
- cur = ggml_add(ctx0, cur, inpCA);
- struct ggml_tensor * inpFF = cur;
- // feed-forward network
- {
- // norm
- {
- wstate.use_buf(ctx0, 0);
- cur = ggml_norm(ctx0, inpFF, hparams.eps);
- wstate.use_buf(ctx0, 1);
- // cur = mlp_ln_w*cur + mlp_ln_b
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, layer.mlp_ln_w, cur),
- cur),
- ggml_repeat(ctx0, layer.mlp_ln_b, cur));
- }
- wstate.use_buf(ctx0, 0);
- // fully connected
- cur = ggml_mul_mat(ctx0,
- layer.mlp_0_w,
- cur);
- wstate.use_buf(ctx0, 1);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0, layer.mlp_0_b, cur),
- cur);
- wstate.use_buf(ctx0, 0);
- // GELU activation
- cur = ggml_gelu(ctx0, cur);
- wstate.use_buf(ctx0, 1);
- // projection
- cur = ggml_mul_mat(ctx0,
- layer.mlp_1_w,
- cur);
- wstate.use_buf(ctx0, 0);
- cur = ggml_add(ctx0,
- ggml_repeat(ctx0, layer.mlp_1_b, cur),
- cur);
- }
- wstate.use_buf(ctx0, 3);
- inpL = ggml_add(ctx0, cur, inpFF);
- }
- cur = inpL;
- // norm
- {
- wstate.use_buf(ctx0, 0);
- cur = ggml_norm(ctx0, cur, hparams.eps);
- wstate.use_buf(ctx0, 1);
- cur = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, model.d_ln_w, cur),
- cur),
- ggml_repeat(ctx0, model.d_ln_b, cur));
- }
- wstate.use_buf(ctx0, 0);
- // compute logits only for the last token
- // comment this line to compute logits for all N tokens
- // might be useful in the future
- cur = ggml_view_2d(ctx0, cur, cur->ne[0], 1, cur->nb[1], (cur->ne[1] - 1)*cur->nb[1]);
- struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur);
- wstate.use_buf(ctx0, -1);
- // run the computation
- {
- ggml_build_forward_expand (&gf, logits);
- ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
- }
- // extract logits for all N tokens
- //logits_out.resize(N*n_vocab);
- //memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab);
- // extract logits only for the last token
- logits_out.resize(n_vocab);
- memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*n_vocab);
- if (N > 1) {
- //printf("%s: used_mem = %f MB, %f MB, %f MB %f MB %f MB\n", __func__,
- // ggml_used_mem(ctx0)/1024.0/1024.0,
- // wstate.get_buf_max_mem(0)/1024.0/1024.0,
- // wstate.get_buf_max_mem(1)/1024.0/1024.0,
- // wstate.get_buf_max_mem(2)/1024.0/1024.0,
- // wstate.get_buf_max_mem(3)/1024.0/1024.0);
- }
- ggml_free(ctx0);
- wstate.t_decode_us += ggml_time_us() - t_start_us;
- wstate.n_decode++;
- return true;
- }
- // 500 -> 00:05.000
- // 6000 -> 01:00.000
- static std::string to_timestamp(int64_t t, bool comma = false) {
- int64_t msec = t * 10;
- int64_t hr = msec / (1000 * 60 * 60);
- msec = msec - hr * (1000 * 60 * 60);
- int64_t min = msec / (1000 * 60);
- msec = msec - min * (1000 * 60);
- int64_t sec = msec / 1000;
- msec = msec - sec * 1000;
- char buf[32];
- snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
- return std::string(buf);
- }
- #define SIN_COS_N_COUNT WHISPER_N_FFT
- static float sin_vals[SIN_COS_N_COUNT];
- static float cos_vals[SIN_COS_N_COUNT];
- // In FFT, we frequently use sine and cosine operations with the same values.
- // We can use precalculated values to speed up the process.
- static void fill_sin_cos_table() {
- static bool is_filled = false;
- if (is_filled) return;
- for (int i = 0; i < SIN_COS_N_COUNT; i++) {
- double theta = (2*M_PI*i)/SIN_COS_N_COUNT;
- sin_vals[i] = sinf(theta);
- cos_vals[i] = cosf(theta);
- }
- is_filled = true;
- }
- // naive Discrete Fourier Transform
- // input is real-valued
- // output is complex-valued
- static void dft(const std::vector<float> & in, std::vector<float> & out) {
- int N = in.size();
- out.resize(N*2);
- const int sin_cos_step = SIN_COS_N_COUNT / N;
- for (int k = 0; k < N; k++) {
- float re = 0;
- float im = 0;
- for (int n = 0; n < N; n++) {
- int idx = (k * n * sin_cos_step) % (SIN_COS_N_COUNT); // t = 2*M_PI*k*n/N
- re += in[n]*cos_vals[idx]; // cos(t)
- im -= in[n]*sin_vals[idx]; // sin(t)
- }
- out[k*2 + 0] = re;
- out[k*2 + 1] = im;
- }
- }
- // Cooley-Tukey FFT
- // poor man's implementation - use something better
- // input is real-valued
- // output is complex-valued
- static void fft(const std::vector<float> & in, std::vector<float> & out) {
- out.resize(in.size()*2);
- int N = in.size();
- if (N == 1) {
- out[0] = in[0];
- out[1] = 0;
- return;
- }
- if (N%2 == 1) {
- dft(in, out);
- return;
- }
- std::vector<float> even;
- std::vector<float> odd;
- even.reserve(N/2);
- odd.reserve(N/2);
- for (int i = 0; i < N; i++) {
- if (i % 2 == 0) {
- even.push_back(in[i]);
- } else {
- odd.push_back(in[i]);
- }
- }
- std::vector<float> even_fft;
- std::vector<float> odd_fft;
- fft(even, even_fft);
- fft(odd, odd_fft);
- const int sin_cos_step = SIN_COS_N_COUNT / N;
- for (int k = 0; k < N/2; k++) {
- int idx = k * sin_cos_step; // t = 2*M_PI*k/N
- float re = cos_vals[idx]; // cos(t)
- float im = -sin_vals[idx]; // sin(t)
- float re_odd = odd_fft[2*k + 0];
- float im_odd = odd_fft[2*k + 1];
- out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
- out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
- out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
- out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
- }
- }
- static bool hann_window(int length, bool periodic, std::vector<float> & output) {
- if (output.size() < static_cast<size_t>(length)) {
- output.resize(length);
- }
- int offset = -1;
- if (periodic) {
- offset = 0;
- }
- for (int i = 0; i < length; i++) {
- output[i] = 0.5*(1.0 - cosf((2.0*M_PI*i)/(length + offset)));
- }
- return true;
- }
- static void log_mel_spectrogram_worker_thread(int ith, const std::vector<float> & hann, const std::vector<float> & samples,
- int n_samples, int frame_size, int frame_step, int n_threads,
- const whisper_filters & filters, whisper_mel & mel) {
- std::vector<float> fft_in(frame_size, 0.0);
- std::vector<float> fft_out(2 * frame_step);
- // make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
- int n_fft = 1 + (frame_size / 2);
- int i = ith;
- // calculate FFT only when fft_in are not all zero
- for (; i < std::min(n_samples / frame_step + 1, mel.n_len); i += n_threads) {
- const int offset = i * frame_step;
- // apply Hanning window (~10% faster)
- for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) {
- fft_in[j] = hann[j] * samples[offset + j];
- }
- // fill the rest with zeros
- if (n_samples - offset < frame_size) {
- std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0);
- }
- // FFT
- fft(fft_in, fft_out);
- // Calculate modulus^2 of complex numbers
- // Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
- for (int j = 0; j < frame_size; j++) {
- fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
- }
- // mel spectrogram
- for (int j = 0; j < mel.n_mel; j++) {
- double sum = 0.0;
- // unroll loop (suggested by GH user @lunixbochs)
- int k = 0;
- for (k = 0; k < n_fft - 3; k += 4) {
- sum +=
- fft_out[k + 0] * filters.data[j * n_fft + k + 0] +
- fft_out[k + 1] * filters.data[j * n_fft + k + 1] +
- fft_out[k + 2] * filters.data[j * n_fft + k + 2] +
- fft_out[k + 3] * filters.data[j * n_fft + k + 3];
- }
- // handle n_fft remainder
- for (; k < n_fft; k++) {
- sum += fft_out[k] * filters.data[j * n_fft + k];
- }
- sum = log10(std::max(sum, 1e-10));
- mel.data[j * mel.n_len + i] = sum;
- }
- }
- // Otherwise fft_out are all zero
- double sum = log10(1e-10);
- for (; i < mel.n_len; i += n_threads) {
- for (int j = 0; j < mel.n_mel; j++) {
- mel.data[j * mel.n_len + i] = sum;
- }
- }
- }
- // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
- static bool log_mel_spectrogram(
- whisper_state & wstate,
- const float * samples,
- const int n_samples,
- const int /*sample_rate*/,
- const int frame_size,
- const int frame_step,
- const int n_mel,
- const int n_threads,
- const whisper_filters & filters,
- const bool debug,
- whisper_mel & mel) {
- const int64_t t_start_us = ggml_time_us();
- // Hanning window (Use cosf to eliminate difference)
- // ref: https://pytorch.org/docs/stable/generated/torch.hann_window.html
- // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L147
- std::vector<float> hann;
- hann_window(frame_size, true, hann);
- // Calculate the length of padding
- int64_t stage_1_pad = WHISPER_SAMPLE_RATE * 30;
- int64_t stage_2_pad = frame_size / 2;
- // Initialize a vector and copy data from C array to it.
- std::vector<float> samples_padded;
- samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
- std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
- // pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
- std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
- // reflective pad 200 samples at the beginning of audio
- std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
- mel.n_mel = n_mel;
- // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
- // Calculate number of frames + remove the last frame
- mel.n_len = (samples_padded.size() - frame_size) / frame_step;
- // Calculate semi-padded sample length to ensure compatibility
- mel.n_len_org = 1 + (n_samples + stage_2_pad - frame_size) / frame_step;
- mel.data.resize(mel.n_mel * mel.n_len);
- {
- std::vector<std::thread> workers(n_threads - 1);
- for (int iw = 0; iw < n_threads - 1; ++iw) {
- workers[iw] = std::thread(
- log_mel_spectrogram_worker_thread, iw + 1, std::cref(hann), samples_padded,
- n_samples + stage_2_pad, frame_size, frame_step, n_threads,
- std::cref(filters), std::ref(mel));
- }
- // main thread
- log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples + stage_2_pad, frame_size, frame_step, n_threads, filters, mel);
- for (int iw = 0; iw < n_threads - 1; ++iw) {
- workers[iw].join();
- }
- }
- // clamping and normalization
- double mmax = -1e20;
- for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
- if (mel.data[i] > mmax) {
- mmax = mel.data[i];
- }
- }
- mmax -= 8.0;
- for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
- if (mel.data[i] < mmax) {
- mel.data[i] = mmax;
- }
- mel.data[i] = (mel.data[i] + 4.0)/4.0;
- }
- wstate.t_mel_us += ggml_time_us() - t_start_us;
- // Dump log_mel_spectrogram
- if (debug) {
- std::ofstream outFile("log_mel_spectrogram.json");
- outFile << "[";
- for (uint64_t i = 0; i < mel.data.size() - 1; i++) {
- outFile << mel.data[i] << ", ";
- }
- outFile << mel.data[mel.data.size() - 1] << "]";
- outFile.close();
- }
- return true;
- }
- // split text into tokens
- //
- // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
- //
- // Regex (Python):
- // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
- //
- // Regex (C++):
- // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
- //
- static std::vector<whisper_vocab::id> tokenize(const whisper_vocab & vocab, const std::string & text) {
- std::vector<std::string> words;
- // first split the text into words
- {
- std::string str = text;
- std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
- std::regex re(pat);
- std::smatch m;
- while (std::regex_search(str, m, re)) {
- for (auto x : m) {
- words.push_back(x);
- }
- str = m.suffix();
- }
- }
- // find the longest tokens that form the words:
- std::vector<whisper_vocab::id> tokens;
- for (const auto & word : words) {
- if (word.empty()) continue;
- int i = 0;
- int n = word.size();
- while (i < n) {
- int j = n;
- bool found = false;
- while (j > i) {
- auto sub = word.substr(i, j-i);
- auto it = vocab.token_to_id.find(sub);
- if (it != vocab.token_to_id.end()) {
- tokens.push_back(it->second);
- i = j;
- found = true;
- break;
- }
- --j;
- }
- if (!found) {
- log("unknown token\n");
- ++i;
- }
- }
- }
- return tokens;
- }
- //
- // interface implementation
- //
- #ifdef WHISPER_USE_COREML
- // replace .bin with -encoder.mlmodelc
- static std::string whisper_get_coreml_path_encoder(std::string path_bin) {
- auto pos = path_bin.rfind('.');
- if (pos != std::string::npos) {
- path_bin = path_bin.substr(0, pos);
- }
- // match "-qx_x"
- pos = path_bin.rfind('-');
- if (pos != std::string::npos) {
- auto sub = path_bin.substr(pos);
- if (sub.size() == 5 && sub[1] == 'q' && sub[3] == '_') {
- path_bin = path_bin.substr(0, pos);
- }
- }
- path_bin += "-encoder.mlmodelc";
- return path_bin;
- }
- #endif
- #ifdef WHISPER_USE_OPENVINO
- // replace .bin with-encoder-openvino.xml
- static std::string whisper_openvino_get_path_encoder(std::string path_bin) {
- auto pos = path_bin.rfind('.');
- if (pos != std::string::npos) {
- path_bin = path_bin.substr(0, pos);
- }
- path_bin += "-encoder-openvino.xml";
- return path_bin;
- }
- static std::string whisper_openvino_get_path_cache(std::string path_bin) {
- auto pos = path_bin.rfind('.');
- if (pos != std::string::npos) {
- path_bin = path_bin.substr(0, pos);
- }
- path_bin += "-encoder-openvino-cache";
- return path_bin;
- }
- #endif
- struct whisper_state * whisper_init_state(whisper_context * ctx) {
- fill_sin_cos_table();
- whisper_state * state = new whisper_state;
- const size_t scale = ctx->model.hparams.ftype ? 1 : 2;
- if (!kv_cache_init(ctx->model.hparams, scale * MEM_REQ_KV_SELF.at(ctx->model.type), state->decoders[0].kv_self, ctx->itype, ctx->model.hparams.n_text_ctx)) {
- log("%s: kv_cache_init() failed for self-attention cache\n", __func__);
- delete state;
- return nullptr;
- }
- {
- const size_t memory_size = ggml_nbytes(state->decoders[0].kv_self.k) + ggml_nbytes(state->decoders[0].kv_self.v);
- log("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
- }
- if (!kv_cache_init(ctx->model.hparams, scale * MEM_REQ_KV_CROSS.at(ctx->model.type), state->kv_cross, ctx->itype, ctx->model.hparams.n_audio_ctx)) {
- log("%s: kv_cache_init() failed for cross-attention cache\n", __func__);
- delete state;
- return nullptr;
- }
- {
- const size_t memory_size = ggml_nbytes(state->kv_cross.k) + ggml_nbytes(state->kv_cross.v);
- log("%s: kv cross size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
- }
- #ifdef WHISPER_USE_COREML
- const auto path_coreml = whisper_get_coreml_path_encoder(ctx->path_model);
- log("%s: loading Core ML model from '%s'\n", __func__, path_coreml.c_str());
- log("%s: first run on a device may take a while ...\n", __func__);
- state->ctx_coreml = whisper_coreml_init(path_coreml.c_str());
- if (!state->ctx_coreml) {
- log("%s: failed to load Core ML model from '%s'\n", __func__, path_coreml.c_str());
- #ifndef WHISPER_COREML_ALLOW_FALLBACK
- return nullptr;
- #endif
- } else {
- log("%s: Core ML model loaded\n", __func__);
- }
- #endif
- state->logits.reserve(ctx->vocab.n_vocab * ctx->model.hparams.n_text_ctx);
- state->logits_id.reserve(ctx->model.hparams.n_vocab);
- // TAGS: WHISPER_DECODER_INIT
- state->decoders[0].sequence.tokens.reserve(ctx->model.hparams.n_text_ctx);
- state->decoders[0].probs.reserve(ctx->vocab.n_vocab);
- state->decoders[0].logits.reserve(ctx->vocab.n_vocab);
- state->decoders[0].logprobs.reserve(ctx->vocab.n_vocab);
- state->buf_compute.resize(scale * std::max(MEM_REQ_ENCODE.at(ctx->model.type), MEM_REQ_DECODE.at(ctx->model.type)));
- state->buf_scratch[0].resize(MEM_REQ_SCRATCH0.at(ctx->model.type));
- state->buf_scratch[1].resize(MEM_REQ_SCRATCH1.at(ctx->model.type));
- state->buf_scratch[2].resize(MEM_REQ_SCRATCH2.at(ctx->model.type));
- state->buf_scratch[3].resize(MEM_REQ_SCRATCH3.at(ctx->model.type));
- state->rng = std::mt19937(0);
- return state;
- }
- int whisper_ctx_init_openvino_encoder(
- struct whisper_context * ctx,
- const char * model_path,
- const char * device,
- const char * cache_dir) {
- #ifndef WHISPER_USE_OPENVINO
- (void)(ctx);
- (void)(model_path);
- (void)(device);
- (void)(cache_dir);
- return 1;
- #else
- if (!model_path && ctx->path_model.empty()) {
- log("%s: model_path is nullptr, and ctx has no model_path set.\n", __func__);
- return 1;
- }
- std::string path_encoder;
- if (!model_path) {
- //if model_path is not set, attempt to find it in the same directory as ggml-<model>.bin model
- path_encoder = whisper_openvino_get_path_encoder(ctx->path_model);
- } else {
- path_encoder = model_path;
- }
- std::string path_cache;
- if (!cache_dir) {
- //if cache_dir is not set, set it as a dir residing next to ggml-<model>.bin
- path_cache = whisper_openvino_get_path_cache(ctx->path_model);
- } else {
- path_cache = cache_dir;
- }
- log("%s: loading OpenVINO model from '%s'\n", __func__, path_encoder.c_str());
- log("%s: first run on a device may take a while ...\n", __func__);
- ctx->state->ctx_openvino = whisper_openvino_init(path_encoder.c_str(), device, path_cache.c_str());
- if (!ctx->state->ctx_openvino) {
- log("%s: failed to init OpenVINO encoder from '%s'\n", __func__, path_encoder.c_str());
- return 1;
- } else {
- log("%s: OpenVINO model loaded\n", __func__);
- }
- return 0;
- #endif
- }
- struct whisper_context * whisper_init_from_file_no_state(const char * path_model) {
- log("%s: loading model from '%s'\n", __func__, path_model);
- auto fin = std::ifstream(path_model, std::ios::binary);
- if (!fin) {
- log("%s: failed to open '%s'\n", __func__, path_model);
- return nullptr;
- }
- whisper_model_loader loader = {};
- loader.context = &fin;
- loader.read = [](void * ctx, void * output, size_t read_size) {
- std::ifstream * fin = (std::ifstream*)ctx;
- fin->read((char *)output, read_size);
- return read_size;
- };
- loader.eof = [](void * ctx) {
- std::ifstream * fin = (std::ifstream*)ctx;
- return fin->eof();
- };
- loader.close = [](void * ctx) {
- std::ifstream * fin = (std::ifstream*)ctx;
- fin->close();
- };
- auto ctx = whisper_init_no_state(&loader);
- if (ctx) {
- ctx->path_model = path_model;
- }
- return ctx;
- }
- struct whisper_context * whisper_init_from_buffer_no_state(void * buffer, size_t buffer_size) {
- struct buf_context {
- uint8_t* buffer;
- size_t size;
- size_t current_offset;
- };
- buf_context ctx = { reinterpret_cast<uint8_t*>(buffer), buffer_size, 0 };
- log("%s: loading model from buffer\n", __func__);
- whisper_model_loader loader = {};
- loader.context = &ctx;
- loader.read = [](void * ctx, void * output, size_t read_size) {
- buf_context * buf = reinterpret_cast<buf_context *>(ctx);
- size_t size_to_copy = buf->current_offset + read_size < buf->size ? read_size : buf->size - buf->current_offset;
- memcpy(output, buf->buffer + buf->current_offset, size_to_copy);
- buf->current_offset += size_to_copy;
- return size_to_copy;
- };
- loader.eof = [](void * ctx) {
- buf_context * buf = reinterpret_cast<buf_context *>(ctx);
- return buf->current_offset >= buf->size;
- };
- loader.close = [](void * /*ctx*/) { };
- return whisper_init_no_state(&loader);
- }
- struct whisper_context * whisper_init_no_state(struct whisper_model_loader * loader) {
- ggml_time_init();
- whisper_context * ctx = new whisper_context;
- if (!whisper_model_load(loader, *ctx)) {
- loader->close(loader->context);
- log("%s: failed to load model\n", __func__);
- delete ctx;
- return nullptr;
- }
- loader->close(loader->context);
- return ctx;
- }
- struct whisper_context * whisper_init_from_file(const char * path_model) {
- whisper_context * ctx = whisper_init_from_file_no_state(path_model);
- if (!ctx) {
- return nullptr;
- }
- ctx->state = whisper_init_state(ctx);
- if (!ctx->state) {
- whisper_free(ctx);
- return nullptr;
- }
- return ctx;
- }
- struct whisper_context * whisper_init_from_buffer(void * buffer, size_t buffer_size) {
- whisper_context * ctx = whisper_init_from_buffer_no_state(buffer, buffer_size);
- if (!ctx) {
- return nullptr;
- }
- ctx->state = whisper_init_state(ctx);
- if (!ctx->state) {
- whisper_free(ctx);
- return nullptr;
- }
- return ctx;
- }
- struct whisper_context * whisper_init(struct whisper_model_loader * loader) {
- whisper_context * ctx = whisper_init_no_state(loader);
- if (!ctx) {
- return nullptr;
- }
- ctx->state = whisper_init_state(ctx);
- if (!ctx->state) {
- whisper_free(ctx);
- return nullptr;
- }
- return ctx;
- }
- void whisper_free_state(struct whisper_state * state)
- {
- if (state) {
- kv_cache_free(state->kv_cross);
- for (int i = 0; i < WHISPER_MAX_DECODERS; ++i) {
- kv_cache_free(state->decoders[i].kv_self);
- }
- #ifdef WHISPER_USE_COREML
- if (state->ctx_coreml != nullptr) {
- whisper_coreml_free(state->ctx_coreml);
- state->ctx_coreml = nullptr;
- }
- #endif
- #ifdef WHISPER_USE_OPENVINO
- if (state->ctx_openvino != nullptr) {
- whisper_openvino_free(state->ctx_openvino);
- state->ctx_openvino = nullptr;
- }
- #endif
- delete state;
- }
- }
- void whisper_free(struct whisper_context * ctx) {
- if (ctx) {
- if (ctx->model.ctx) {
- ggml_free(ctx->model.ctx);
- }
- if (ctx->model.buf) {
- delete ctx->model.buf;
- }
- whisper_free_state(ctx->state);
- delete ctx;
- }
- }
- void whisper_free_params(struct whisper_full_params * params) {
- if (params) {
- delete params;
- }
- }
- int whisper_pcm_to_mel_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) {
- if (!log_mel_spectrogram(*state, samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, false, state->mel)) {
- log("%s: failed to compute mel spectrogram\n", __func__);
- return -1;
- }
- return 0;
- }
- int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) {
- return whisper_pcm_to_mel_with_state(ctx, ctx->state, samples, n_samples, n_threads);
- }
- // same as whisper_pcm_to_mel, but applies a Phase Vocoder to speed up the audio x2 (PV without phase lock is not good)
- int whisper_pcm_to_mel_phase_vocoder_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) {
- if (!log_mel_spectrogram(*state, samples, n_samples, WHISPER_SAMPLE_RATE, 2 * WHISPER_N_FFT, 2 * WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, false, state->mel)) {
- log("%s: failed to compute mel spectrogram\n", __func__);
- return -1;
- }
- return 0;
- }
- // same as whisper_pcm_to_mel, but applies a Phase Vocoder to speed up the audio x2 (PV without phase lock is not good)
- int whisper_pcm_to_mel_phase_vocoder(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) {
- return whisper_pcm_to_mel_phase_vocoder_with_state(ctx, ctx->state, samples, n_samples, n_threads);
- }
- // same as whisper_pcm_to_mel, but applies WSOLA to speed up the audio x2
- // TODO
- // same as whisper_pcm_to_mel, but applies HPTSM to speed up the audio x2
- // TODO
- // same as whisper_pcm_to_mel, but applies PV (with phase lock) to speed up the audio x2
- // TODO
- int whisper_set_mel_with_state(
- struct whisper_context * /*ctx*/,
- struct whisper_state * state,
- const float * data,
- int n_len,
- int n_mel) {
- if (n_mel != WHISPER_N_MEL) {
- log("%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, WHISPER_N_MEL);
- return -1;
- }
- state->mel.n_len = n_len;
- state->mel.n_len_org = n_len;
- state->mel.n_mel = n_mel;
- state->mel.data.resize(n_len*n_mel);
- memcpy(state->mel.data.data(), data, n_len*n_mel*sizeof(float));
- return 0;
- }
- int whisper_set_mel(
- struct whisper_context * ctx,
- const float * data,
- int n_len,
- int n_mel) {
- return whisper_set_mel_with_state(ctx, ctx->state, data, n_len, n_mel);
- }
- int whisper_encode_with_state(struct whisper_context * ctx, struct whisper_state * state, int offset, int n_threads) {
- if (!whisper_encode_internal(*ctx, *state, offset, n_threads)) {
- log("%s: failed to eval\n", __func__);
- return -1;
- }
- return 0;
- }
- int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
- if (!whisper_encode_internal(*ctx, *ctx->state, offset, n_threads)) {
- log("%s: failed to eval\n", __func__);
- return -1;
- }
- return 0;
- }
- int whisper_decode_with_state(struct whisper_context * ctx, struct whisper_state * state, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) {
- const int selected_decoder_id = 0;
- if (!whisper_decode_internal(*ctx, *state, state->decoders[selected_decoder_id], tokens, n_tokens, n_past, n_threads)) {
- log("%s: failed to eval\n", __func__);
- return 1;
- }
- return 0;
- }
- int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) {
- // TODO: add selected_decoder_id to state
- const int selected_decoder_id = 0;
- if (ctx->state == nullptr) {
- log("%s: ERROR state was not loaded.\n", __func__);
- return false;
- }
- if (!whisper_decode_internal(*ctx, *ctx->state, ctx->state->decoders[selected_decoder_id], tokens, n_tokens, n_past, n_threads)) {
- log("%s: failed to eval\n", __func__);
- return 1;
- }
- return 0;
- }
- int whisper_tokenize(struct whisper_context * ctx, const char * text, whisper_token * tokens, int n_max_tokens) {
- const auto res = tokenize(ctx->vocab, text);
- if (n_max_tokens < (int) res.size()) {
- log("%s: too many resulting tokens: %d (max %d)\n", __func__, (int) res.size(), n_max_tokens);
- return -1;
- }
- for (int i = 0; i < (int) res.size(); i++) {
- tokens[i] = res[i];
- }
- return res.size();
- }
- int whisper_lang_max_id() {
- auto max_id = 0;
- for (const auto & kv : g_lang) {
- max_id = std::max(max_id, kv.second.first);
- }
- return max_id;
- }
- int whisper_lang_id(const char * lang) {
- if (!g_lang.count(lang)) {
- for (const auto & kv : g_lang) {
- if (kv.second.second == lang) {
- return kv.second.first;
- }
- }
- log("%s: unknown language '%s'\n", __func__, lang);
- return -1;
- }
- return g_lang.at(lang).first;
- }
- const char * whisper_lang_str(int id) {
- for (const auto & kv : g_lang) {
- if (kv.second.first == id) {
- return kv.first.c_str();
- }
- }
- log("%s: unknown language id %d\n", __func__, id);
- return nullptr;
- }
- int whisper_lang_auto_detect_with_state(
- struct whisper_context * ctx,
- struct whisper_state * state,
- int offset_ms,
- int n_threads,
- float * lang_probs) {
- const int seek = offset_ms/10;
- if (seek < 0) {
- log("%s: offset %dms is before the start of the audio\n", __func__, offset_ms);
- return -1;
- }
- if (seek >= state->mel.n_len_org) {
- log("%s: offset %dms is past the end of the audio (%dms)\n", __func__, offset_ms, state->mel.n_len_org*10);
- return -2;
- }
- // run the encoder
- if (whisper_encode_with_state(ctx, state, seek, n_threads) != 0) {
- log("%s: failed to encode\n", __func__);
- return -6;
- }
- const std::vector<whisper_token> prompt = { whisper_token_sot(ctx) };
- if (whisper_decode_with_state(ctx, state, prompt.data(), prompt.size(), 0, n_threads) != 0) {
- log("%s: failed to decode\n", __func__);
- return -7;
- }
- auto & logits_id = state->logits_id;
- logits_id.clear();
- for (const auto & kv : g_lang) {
- const auto token_lang = whisper_token_lang(ctx, kv.second.first);
- logits_id.emplace_back(state->logits[token_lang], kv.second.first);
- }
- // sort descending
- {
- using pair_type = std::remove_reference<decltype(logits_id)>::type::value_type;
- std::sort(logits_id.begin(), logits_id.end(), [](const pair_type & a, const pair_type & b) {
- return a.first > b.first;
- });
- }
- // softmax
- {
- const auto max = logits_id[0].first;
- double sum = 0.0f;
- for (auto & kv : logits_id) {
- kv.first = exp(kv.first - max);
- sum += kv.first;
- }
- for (auto & kv : logits_id) {
- kv.first /= sum;
- }
- }
- {
- for (const auto & prob : logits_id) {
- if (lang_probs) {
- lang_probs[prob.second] = prob.first;
- }
- //printf("%s: lang %2d (%3s): %f\n", __func__, prob.second, whisper_lang_str(prob.second), prob.first);
- }
- }
- return logits_id[0].second;
- }
- int whisper_lang_auto_detect(
- struct whisper_context * ctx,
- int offset_ms,
- int n_threads,
- float * lang_probs) {
- return whisper_lang_auto_detect_with_state(ctx, ctx->state, offset_ms, n_threads, lang_probs);
- }
- int whisper_model_n_vocab(struct whisper_context * ctx) {
- return ctx->model.hparams.n_vocab;
- }
- int whisper_model_n_audio_ctx(struct whisper_context * ctx) {
- return ctx->model.hparams.n_audio_ctx;
- }
- int whisper_model_n_audio_state(struct whisper_context * ctx) {
- return ctx->model.hparams.n_audio_state;
- }
- int whisper_model_n_audio_head(struct whisper_context * ctx) {
- return ctx->model.hparams.n_audio_head;
- }
- int whisper_model_n_audio_layer(struct whisper_context * ctx) {
- return ctx->model.hparams.n_audio_layer;
- }
- int whisper_model_n_text_ctx(struct whisper_context * ctx) {
- return ctx->model.hparams.n_text_ctx;
- }
- int whisper_model_n_text_state(struct whisper_context * ctx) {
- return ctx->model.hparams.n_text_state;
- }
- int whisper_model_n_text_head(struct whisper_context * ctx) {
- return ctx->model.hparams.n_text_head;
- }
- int whisper_model_n_text_layer(struct whisper_context * ctx) {
- return ctx->model.hparams.n_text_layer;
- }
- int whisper_model_n_mels(struct whisper_context * ctx) {
- return ctx->model.hparams.n_mels;
- }
- int whisper_model_ftype(struct whisper_context * ctx) {
- return ctx->model.hparams.ftype;
- }
- int whisper_model_type(struct whisper_context * ctx) {
- return ctx->model.type;
- }
- const char *whisper_model_type_readable(struct whisper_context * ctx) {
- switch (ctx->model.type) {
- case e_model::MODEL_TINY:
- return "tiny";
- case e_model::MODEL_BASE:
- return "base";
- case e_model::MODEL_SMALL:
- return "small";
- case e_model::MODEL_MEDIUM:
- return "medium";
- case e_model::MODEL_LARGE:
- return "large";
- default:
- return "unknown";
- }
- }
- int whisper_n_len_from_state(struct whisper_state * state) {
- return state->mel.n_len_org;
- }
- int whisper_n_len(struct whisper_context * ctx) {
- return ctx->state->mel.n_len_org;
- }
- int whisper_n_vocab(struct whisper_context * ctx) {
- return ctx->vocab.n_vocab;
- }
- int whisper_n_text_ctx(struct whisper_context * ctx) {
- return ctx->model.hparams.n_text_ctx;
- }
- int whisper_n_audio_ctx(struct whisper_context * ctx) {
- return ctx->model.hparams.n_audio_ctx;
- }
- int whisper_is_multilingual(struct whisper_context * ctx) {
- return ctx->vocab.is_multilingual() ? 1 : 0;
- }
- float * whisper_get_logits(struct whisper_context * ctx) {
- return ctx->state->logits.data();
- }
- float * whisper_get_logits_from_state(struct whisper_state * state) {
- return state->logits.data();
- }
- const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token) {
- return ctx->vocab.id_to_token.at(token).c_str();
- }
- whisper_token whisper_token_eot(struct whisper_context * ctx) {
- return ctx->vocab.token_eot;
- }
- whisper_token whisper_token_sot(struct whisper_context * ctx) {
- return ctx->vocab.token_sot;
- }
- whisper_token whisper_token_solm(struct whisper_context * ctx) {
- return ctx->vocab.token_solm;
- }
- whisper_token whisper_token_prev(struct whisper_context * ctx) {
- return ctx->vocab.token_prev;
- }
- whisper_token whisper_token_nosp(struct whisper_context * ctx) {
- return ctx->vocab.token_nosp;
- }
- whisper_token whisper_token_not(struct whisper_context * ctx) {
- return ctx->vocab.token_not;
- }
- whisper_token whisper_token_beg(struct whisper_context * ctx) {
- return ctx->vocab.token_beg;
- }
- whisper_token whisper_token_lang(struct whisper_context * ctx, int lang_id) {
- return whisper_token_sot(ctx) + 1 + lang_id;
- }
- whisper_token whisper_token_translate(struct whisper_context * ctx) {
- return ctx->vocab.token_translate;
- }
- whisper_token whisper_token_transcribe(struct whisper_context * ctx) {
- return ctx->vocab.token_transcribe;
- }
- void whisper_print_timings(struct whisper_context * ctx) {
- const int64_t t_end_us = ggml_time_us();
- log("\n");
- log("%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0f);
- if (ctx->state != nullptr) {
- const int32_t n_sample = std::max(1, ctx->state->n_sample);
- const int32_t n_encode = std::max(1, ctx->state->n_encode);
- const int32_t n_decode = std::max(1, ctx->state->n_decode);
- log("%s: fallbacks = %3d p / %3d h\n", __func__, ctx->state->n_fail_p, ctx->state->n_fail_h);
- log("%s: mel time = %8.2f ms\n", __func__, ctx->state->t_mel_us / 1000.0f);
- log("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_sample_us, n_sample, 1e-3f * ctx->state->t_sample_us / n_sample);
- log("%s: encode time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_encode_us, n_encode, 1e-3f * ctx->state->t_encode_us / n_encode);
- log("%s: decode time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->state->t_decode_us, n_decode, 1e-3f * ctx->state->t_decode_us / n_decode);
- }
- log("%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f);
- }
- void whisper_reset_timings(struct whisper_context * ctx) {
- if (ctx->state != nullptr) {
- ctx->state->t_sample_us = 0;
- ctx->state->t_encode_us = 0;
- ctx->state->t_decode_us = 0;
- }
- }
- static int whisper_has_coreml(void) {
- #ifdef WHISPER_USE_COREML
- return 1;
- #else
- return 0;
- #endif
- }
- static int whisper_has_openvino(void) {
- #ifdef WHISPER_USE_OPENVINO
- return 1;
- #else
- return 0;
- #endif
- }
- const char * whisper_print_system_info(void) {
- static std::string s;
- s = "";
- s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
- s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
- s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
- s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
- s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
- s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
- s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
- s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
- s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
- s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
- s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
- s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
- s += "COREML = " + std::to_string(whisper_has_coreml()) + " | ";
- s += "OPENVINO = " + std::to_string(whisper_has_openvino()) + " | ";
- return s.c_str();
- }
- ////////////////////////////////////////////////////////////////////////////
- struct whisper_full_params * whisper_full_default_params_by_ref(enum whisper_sampling_strategy strategy) {
- struct whisper_full_params params = whisper_full_default_params(strategy);
- struct whisper_full_params* result = new whisper_full_params();
- *result = params;
- return result;
- }
- struct whisper_full_params whisper_full_default_params(enum whisper_sampling_strategy strategy) {
- struct whisper_full_params result = {
- /*.strategy =*/ strategy,
- /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
- /*.n_max_text_ctx =*/ 16384,
- /*.offset_ms =*/ 0,
- /*.duration_ms =*/ 0,
- /*.translate =*/ false,
- /*.no_context =*/ true,
- /*.single_segment =*/ false,
- /*.print_special =*/ false,
- /*.print_progress =*/ true,
- /*.print_realtime =*/ false,
- /*.print_timestamps =*/ true,
- /*.token_timestamps =*/ false,
- /*.thold_pt =*/ 0.01f,
- /*.thold_ptsum =*/ 0.01f,
- /*.max_len =*/ 0,
- /*.split_on_word =*/ false,
- /*.max_tokens =*/ 0,
- /*.speed_up =*/ false,
- /*.debug_mode =*/ false,
- /*.audio_ctx =*/ 0,
- /*.tdrz_enable =*/ false,
- /*.initial_prompt =*/ nullptr,
- /*.prompt_tokens =*/ nullptr,
- /*.prompt_n_tokens =*/ 0,
- /*.language =*/ "en",
- /*.detect_language =*/ false,
- /*.suppress_blank =*/ true,
- /*.suppress_non_speech_tokens =*/ false,
- /*.temperature =*/ 0.0f,
- /*.max_initial_ts =*/ 1.0f,
- /*.length_penalty =*/ -1.0f,
- /*.temperature_inc =*/ 0.4f,
- /*.entropy_thold =*/ 2.4f,
- /*.logprob_thold =*/ -1.0f,
- /*.no_speech_thold =*/ 0.6f,
- /*.greedy =*/ {
- /*.best_of =*/ -1,
- },
- /*.beam_search =*/ {
- /*.beam_size =*/ -1,
- /*.patience =*/ -1.0f,
- },
- /*.new_segment_callback =*/ nullptr,
- /*.new_segment_callback_user_data =*/ nullptr,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- /*.encoder_begin_callback =*/ nullptr,
- /*.encoder_begin_callback_user_data =*/ nullptr,
- /*.logits_filter_callback =*/ nullptr,
- /*.logits_filter_callback_user_data =*/ nullptr,
- };
- switch (strategy) {
- case WHISPER_SAMPLING_GREEDY:
- {
- result.greedy = {
- /*.best_of =*/ 2, // TODO: increase to 5 when we speed-up batch decoding
- };
- } break;
- case WHISPER_SAMPLING_BEAM_SEARCH:
- {
- result.beam_search = {
- /*.beam_size =*/ 2, // TODO: increase to 5 when we speed-up batch decoding
- /*.patience =*/ -1.0f,
- };
- } break;
- }
- return result;
- }
- // forward declarations
- static std::vector<float> get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window);
- static void whisper_exp_compute_token_level_timestamps(
- struct whisper_context & ctx,
- struct whisper_state & state,
- int i_segment,
- float thold_pt,
- float thold_ptsum);
- static inline bool should_split_on_word(const char * txt, bool split_on_word) {
- if (!split_on_word) return true;
- return txt[0] == ' ';
- }
- // wrap the last segment to max_len characters
- // returns the number of new segments
- static int whisper_wrap_segment(struct whisper_context & ctx, struct whisper_state & state, int max_len, bool split_on_word) {
- auto segment = state.result_all.back();
- int res = 1;
- int acc = 0;
- std::string text;
- for (int i = 0; i < (int) segment.tokens.size(); i++) {
- const auto & token = segment.tokens[i];
- if (token.id >= whisper_token_eot(&ctx)) {
- continue;
- }
- const auto txt = whisper_token_to_str(&ctx, token.id);
- const int cur = strlen(txt);
- if (acc + cur > max_len && i > 0 && should_split_on_word(txt, split_on_word)) {
- state.result_all.back().text = std::move(text);
- state.result_all.back().t1 = token.t0;
- state.result_all.back().tokens.resize(i);
- state.result_all.back().speaker_turn_next = false;
- state.result_all.push_back({});
- state.result_all.back().t0 = token.t0;
- state.result_all.back().t1 = segment.t1;
- // add tokens [i, end] to the new segment
- state.result_all.back().tokens.insert(
- state.result_all.back().tokens.end(),
- segment.tokens.begin() + i,
- segment.tokens.end());
- state.result_all.back().speaker_turn_next = segment.speaker_turn_next;
- acc = 0;
- text = "";
- segment = state.result_all.back();
- i = -1;
- res++;
- } else {
- acc += cur;
- text += txt;
- }
- }
- state.result_all.back().text = std::move(text);
- return res;
- }
- static const std::vector<std::string> non_speech_tokens = {
- "\"", "#", "(", ")", "*", "+", "/", ":", ";", "<", "=", ">", "@", "[", "\\", "]", "^",
- "_", "`", "{", "|", "}", "~", "「", "」", "『", "』", "<<", ">>", "<<<", ">>>", "--",
- "---", "-(", "-[", "('", "(\"", "((", "))", "(((", ")))", "[[", "]]", "{{", "}}", "♪♪",
- "♪♪♪","♩", "♪", "♫", "♬", "♭", "♮", "♯"
- };
- // process the logits for the selected decoder
- // - applies logit filters
- // - computes logprobs and probs
- static void whisper_process_logits(
- struct whisper_context & ctx,
- struct whisper_state & state,
- const struct whisper_full_params params,
- struct whisper_decoder & decoder,
- float temperature) {
- const auto & vocab = ctx.vocab;
- const auto & tokens_cur = decoder.sequence.tokens;
- const bool is_initial = tokens_cur.size() == 0;
- const int n_logits = vocab.id_to_token.size();
- WHISPER_ASSERT(n_logits == ctx.vocab.n_vocab);
- // extract the logits for the last token
- // we will be mutating, and therefore we don't want to use the ctx.logits buffer directly
- auto & probs = decoder.probs;
- auto & logits = decoder.logits;
- auto & logprobs = decoder.logprobs;
- {
- logits.resize(n_logits);
- memcpy(logits.data(), state.logits.data() + (state.logits.size() - n_logits), n_logits*sizeof(float));
- if (temperature > 0.0f) {
- for (int i = 0; i < n_logits; i++) {
- logits[i] /= temperature;
- }
- }
- // will be populated a bit later
- probs.resize(n_logits);
- logprobs.resize(n_logits);
- }
- // apply logit filters here
- // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L480-L493
- {
- // suppress blank
- // https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L388-L390
- if (params.suppress_blank) {
- if (is_initial) {
- logits[vocab.token_eot] = -INFINITY;
- logits[vocab.token_to_id.at(" ")] = -INFINITY;
- }
- }
- // suppress <|notimestamps|> token
- // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L410-L412
- logits[vocab.token_not] = -INFINITY;
- // suppress sot and nosp tokens
- logits[vocab.token_sot] = -INFINITY;
- logits[vocab.token_nosp] = -INFINITY; // TODO: ignore this token for now
- // [TDRZ] when tinydiarize is disabled, suppress solm token
- if (params.tdrz_enable == false) {
- logits[vocab.token_solm] = -INFINITY;
- }
- // suppress task tokens
- logits[vocab.token_translate] = -INFINITY;
- logits[vocab.token_transcribe] = -INFINITY;
- if (params.logits_filter_callback) {
- params.logits_filter_callback(&ctx, &state, tokens_cur.data(), tokens_cur.size(), logits.data(), params.logits_filter_callback_user_data);
- }
- // suppress non-speech tokens
- // ref: https://github.com/openai/whisper/blob/7858aa9c08d98f75575035ecd6481f462d66ca27/whisper/tokenizer.py#L224-L253
- if (params.suppress_non_speech_tokens) {
- for (const std::string & token : non_speech_tokens) {
- const std::string suppress_tokens[] = {token, " " + token};
- for (const std::string & suppress_token : suppress_tokens) {
- if (vocab.token_to_id.find(suppress_token) != vocab.token_to_id.end()) {
- logits[vocab.token_to_id.at(suppress_token)] = -INFINITY;
- }
- }
- }
- // allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
- if (vocab.token_to_id.find(" -") != vocab.token_to_id.end()) {
- logits[vocab.token_to_id.at(" -")] = -INFINITY;
- }
- if (vocab.token_to_id.find(" '") != vocab.token_to_id.end()) {
- logits[vocab.token_to_id.at(" '")] = -INFINITY;
- }
- }
- // timestamps have to appear in pairs, except directly before EOT; mask logits accordingly
- // https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L414-L424
- {
- const bool last_was_timestamp = tokens_cur.size() > 0 && tokens_cur.back().id >= vocab.token_beg;
- const bool penultimate_was_timestamp = tokens_cur.size() < 2 || tokens_cur[tokens_cur.size() - 2].id >= vocab.token_beg;
- //log("last_was_timestamp=%d penultimate_was_timestamp=%d\n", last_was_timestamp, penultimate_was_timestamp);
- if (last_was_timestamp) {
- if (penultimate_was_timestamp) {
- for (int i = vocab.token_beg; i < n_logits; ++i) {
- logits[i] = -INFINITY;
- }
- } else {
- for (int i = 0; i < vocab.token_eot; ++i) {
- logits[i] = -INFINITY;
- }
- }
- }
- }
- // the initial timestamp cannot be larger than max_initial_ts
- // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L426-L429
- if (is_initial && params.max_initial_ts > 0.0f) {
- const float precision = float(WHISPER_CHUNK_SIZE)/ctx.model.hparams.n_audio_ctx;
- const int tid0 = std::round(params.max_initial_ts/precision);
- for (int i = vocab.token_beg + tid0 + 1; i < n_logits; ++i) {
- logits[i] = -INFINITY;
- }
- }
- // condition timestamp tokens to be increasing
- // ref: https://github.com/openai/whisper/pull/831#issuecomment-1385910556
- if (decoder.has_ts) {
- const int tid0 = decoder.seek_delta/2;
- for (int i = vocab.token_beg; i < vocab.token_beg + tid0; ++i) {
- logits[i] = -INFINITY;
- }
- }
- // populate the logprobs array (log_softmax)
- {
- const float logit_max = *std::max_element(logits.begin(), logits.end());
- float logsumexp = 0.0f;
- for (int i = 0; i < n_logits; ++i) {
- if (logits[i] > -INFINITY) {
- logsumexp += expf(logits[i] - logit_max);
- }
- }
- logsumexp = logf(logsumexp) + logit_max;
- for (int i = 0; i < n_logits; ++i) {
- if (logits[i] > -INFINITY) {
- logprobs[i] = logits[i] - logsumexp;
- } else {
- logprobs[i] = -INFINITY;
- }
- }
- }
- // if sum of probability over timestamps is above any other token, sample timestamp
- // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L431-L437
- {
- // logsumexp over timestamps
- float timestamp_logprob = -INFINITY;
- {
- float logsumexp = 0.0f;
- const float logprob_max = *std::max_element(logprobs.begin() + vocab.token_beg, logprobs.end());
- for (int i = vocab.token_beg; i < n_logits; ++i) {
- if (logprobs[i] > -INFINITY) {
- logsumexp += expf(logprobs[i] - logprob_max);
- }
- }
- if (logsumexp > 0.0f) {
- timestamp_logprob = logf(logsumexp) + logprob_max;
- }
- }
- const float max_text_token_logprob = *std::max_element(logprobs.begin(), logprobs.begin() + vocab.token_beg);
- //log("timestamp_logprob=%f max_text_token_logprob=%f\n", timestamp_logprob, max_text_token_logprob);
- if (timestamp_logprob > max_text_token_logprob) {
- for (int i = 0; i < vocab.token_beg; ++i) {
- logits[i] = -INFINITY;
- logprobs[i] = -INFINITY;
- }
- }
- }
- }
- // compute probs
- {
- for (int i = 0; i < n_logits; ++i) {
- if (logits[i] == -INFINITY) {
- probs[i] = 0.0f;
- } else {
- probs[i] = expf(logprobs[i]);
- }
- }
- }
- #if 0
- // print first 100 logits - token string : logit
- for (int i = 0; i < 100; i++) {
- const auto token = vocab.id_to_token.at(i);
- const auto prob = probs[i];
- const auto logit = logits[i];
- const auto logprob = logprobs[i];
- printf("%s : prob=%9.5f logit=%9.5f logprob=%9.5f\n", token.c_str(), prob, logit, logprob);
- }
- // "And", "and", " And", " and"
- printf("logits[\"and\"] = %f\n", logits[vocab.token_to_id.at("and")]);
- printf("logits[\"And\"] = %f\n", logits[vocab.token_to_id.at("And")]);
- printf("logits[\" and\"] = %f\n", logits[vocab.token_to_id.at(" and")]);
- printf("logits[\" And\"] = %f\n", logits[vocab.token_to_id.at(" And")]);
- printf("logits[\" so\"] = %f\n", logits[vocab.token_to_id.at(" so")]);
- printf("logprobs[\"and\"] = %f\n", logprobs[vocab.token_to_id.at("and")]);
- printf("logprobs[\"And\"] = %f\n", logprobs[vocab.token_to_id.at("And")]);
- printf("logprobs[\" and\"] = %f\n", logprobs[vocab.token_to_id.at(" and")]);
- printf("logprobs[\" And\"] = %f\n", logprobs[vocab.token_to_id.at(" And")]);
- printf("logprobs[\" so\"] = %f\n", logprobs[vocab.token_to_id.at(" so")]);
- printf("probs[\"and\"] = %f\n", probs[vocab.token_to_id.at("and")]);
- printf("probs[\"And\"] = %f\n", probs[vocab.token_to_id.at("And")]);
- printf("probs[\" and\"] = %f\n", probs[vocab.token_to_id.at(" and")]);
- printf("probs[\" And\"] = %f\n", probs[vocab.token_to_id.at(" And")]);
- printf("probs[\" so\"] = %f\n", probs[vocab.token_to_id.at(" so")]);
- #endif
- }
- static whisper_token_data whisper_sample_token(
- whisper_context & ctx,
- whisper_state & state,
- const whisper_decoder & decoder,
- bool best) {
- whisper_token_data result = {
- 0, 0, 0.0f, 0.0f, 0.0f, 0.0f, -1, -1, 0.0f,
- };
- const auto & vocab = ctx.vocab;
- const auto & probs = decoder.probs;
- const auto & logprobs = decoder.logprobs;
- const int n_logits = vocab.n_vocab;
- {
- double sum_ts = 0.0;
- double max_ts = 0.0;
- for (int i = vocab.token_beg; i < n_logits; i++) {
- if (probs[i] == -INFINITY) {
- continue;
- }
- sum_ts += probs[i];
- if (max_ts < probs[i]) {
- max_ts = probs[i];
- result.tid = i;
- }
- }
- result.pt = max_ts/(sum_ts + 1e-10);
- result.ptsum = sum_ts;
- }
- if (best) {
- for (int i = 0; i < n_logits; ++i) {
- if (result.p < probs[i]) {
- result.id = i;
- result.p = probs[i];
- result.plog = logprobs[i];
- }
- }
- } else {
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- result.id = dist(state.rng);
- result.p = probs[result.id];
- result.plog = logprobs[result.id];
- }
- if (result.id >= vocab.token_beg) {
- result.tid = result.id;
- result.pt = result.p;
- }
- state.n_sample++;
- return result;
- }
- static std::vector<whisper_token_data> whisper_sample_token_topk(
- whisper_context & ctx,
- whisper_state & state,
- const whisper_decoder & decoder,
- int k) {
- const auto & vocab = ctx.vocab;
- const auto & probs = decoder.probs;
- const auto & logits = decoder.logits;
- const auto & logprobs = decoder.logprobs;
- const int n_logits = vocab.n_vocab;
- auto & logits_id = state.logits_id;
- logits_id.clear();
- for (int i = 0; i < n_logits; ++i) {
- logits_id.push_back({ logits[i], i });
- }
- std::partial_sort(
- logits_id.begin(),
- logits_id.begin() + k, logits_id.end(),
- [](const std::pair<double, whisper_token> & a, const std::pair<double, whisper_token> & b) {
- return a.first > b.first;
- });
- std::vector<whisper_token_data> result;
- result.reserve(k);
- whisper_token tid = vocab.token_beg;
- float pt = 0.0;
- float ptsum = 0.0;
- {
- double sum_ts = 0.0;
- double max_ts = 0.0;
- for (int i = vocab.token_beg; i < n_logits; i++) {
- if (probs[i] == -INFINITY) {
- continue;
- }
- sum_ts += probs[i];
- if (max_ts < probs[i]) {
- max_ts = probs[i];
- tid = i;
- }
- }
- pt = max_ts/(sum_ts + 1e-10);
- ptsum = sum_ts;
- }
- for (int i = 0; i < k; ++i) {
- const auto id = logits_id[i].second;
- result.push_back({ id, tid, probs[id], logprobs[id], pt, ptsum, -1, -1, 0.0f, });
- if (result[i].id >= vocab.token_beg) {
- result[i].tid = result[i].id;
- result[i].pt = result[i].p;
- }
- }
- state.n_sample++;
- return result;
- }
- // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L178-L192
- static void whisper_sequence_score(
- const struct whisper_full_params & params,
- whisper_sequence & sequence) {
- if (sequence.result_len == 0) {
- return;
- }
- double result = 0.0f;
- for (int i = 0; i < sequence.result_len; ++i) {
- result += sequence.tokens[i].plog;
- }
- sequence.sum_logprobs = result;
- sequence.avg_logprobs = result/sequence.result_len;
- double penalty = sequence.result_len;
- if (params.length_penalty > 0.0f) {
- penalty = pow((5.0 + penalty)/6.0, params.length_penalty);
- }
- sequence.score = result/penalty;
- // compute the entropy of the sequence of the last 32 tokens
- {
- const int n = 32;
- int cnt = 0;
- double entropy = 0.0f;
- std::map<whisper_token, int> token_counts;
- for (int i = std::max(0, sequence.result_len - n); i < sequence.result_len; ++i) {
- token_counts[sequence.tokens[i].id]++;
- cnt++;
- }
- for (const auto & kv : token_counts) {
- const auto p = kv.second/(double)cnt;
- entropy -= p*log(p);
- //WHISPER_PRINT_DEBUG("entropy: %d %f %f, count %d\n", kv.first, p, log(p), kv.second);
- }
- sequence.entropy = entropy;
- }
- }
- int whisper_full_with_state(
- struct whisper_context * ctx,
- struct whisper_state * state,
- struct whisper_full_params params,
- const float * samples,
- int n_samples) {
- // clear old results
- auto & result_all = state->result_all;
- result_all.clear();
- if (n_samples > 0) {
- // compute log mel spectrogram
- if (params.speed_up) {
- // TODO: Replace PV with more advanced algorithm
- log("%s: failed to compute log mel spectrogram\n", __func__);
- return -1;
- } else {
- if (whisper_pcm_to_mel_with_state(ctx, state, samples, n_samples, params.n_threads) != 0) {
- log("%s: failed to compute log mel spectrogram\n", __func__);
- return -2;
- }
- }
- }
- // auto-detect language if not specified
- if (params.language == nullptr || strlen(params.language) == 0 || strcmp(params.language, "auto") == 0 || params.detect_language) {
- std::vector<float> probs(whisper_lang_max_id() + 1, 0.0f);
- const auto lang_id = whisper_lang_auto_detect_with_state(ctx, state, 0, params.n_threads, probs.data());
- if (lang_id < 0) {
- log("%s: failed to auto-detect language\n", __func__);
- return -3;
- }
- state->lang_id = lang_id;
- params.language = whisper_lang_str(lang_id);
- log("%s: auto-detected language: %s (p = %f)\n", __func__, params.language, probs[whisper_lang_id(params.language)]);
- if (params.detect_language) {
- return 0;
- }
- }
- if (params.token_timestamps) {
- state->t_beg = 0;
- state->t_last = 0;
- state->tid_last = 0;
- if (n_samples > 0) {
- state->energy = get_signal_energy(samples, n_samples, 32);
- }
- }
- const int seek_start = params.offset_ms/10;
- const int seek_end = params.duration_ms == 0 ? whisper_n_len_from_state(state) : seek_start + params.duration_ms/10;
- // if length of spectrogram is less than 1.0s (100 frames), then return
- // basically don't process anything that is less than 1.0s
- // see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39
- if (seek_end < seek_start + (params.speed_up ? 50 : 100)) {
- return 0;
- }
- // a set of temperatures to use
- // [ t0, t0 + delta, t0 + 2*delta, ..., < 1.0f + 1e-6f ]
- std::vector<float> temperatures;
- if (params.temperature_inc > 0.0f) {
- for (float t = params.temperature; t < 1.0f + 1e-6f; t += params.temperature_inc) {
- temperatures.push_back(t);
- }
- } else {
- temperatures.push_back(params.temperature);
- }
- // initialize the decoders
- int n_decoders = 1;
- switch (params.strategy) {
- case WHISPER_SAMPLING_GREEDY:
- {
- n_decoders = params.greedy.best_of;
- } break;
- case WHISPER_SAMPLING_BEAM_SEARCH:
- {
- n_decoders = std::max(params.greedy.best_of, params.beam_search.beam_size);
- } break;
- };
- n_decoders = std::max(1, n_decoders);
- // TAGS: WHISPER_DECODER_INIT
- for (int j = 1; j < n_decoders; j++) {
- auto & decoder = state->decoders[j];
- if (decoder.kv_self.ctx == nullptr) {
- decoder.kv_self = state->decoders[0].kv_self;
- if (!kv_cache_reinit(decoder.kv_self)) {
- log("%s: kv_cache_reinit() failed for self-attention, decoder %d\n", __func__, j);
- return -4;
- }
- WHISPER_PRINT_DEBUG("%s: initialized self-attention kv cache, decoder %d\n", __func__, j);
- decoder.sequence.tokens.reserve(state->decoders[0].sequence.tokens.capacity());
- decoder.probs.resize (ctx->vocab.n_vocab);
- decoder.logits.resize (ctx->vocab.n_vocab);
- decoder.logprobs.resize(ctx->vocab.n_vocab);
- }
- }
- // the accumulated text context so far
- auto & prompt_past = state->prompt_past;
- if (params.no_context) {
- prompt_past.clear();
- }
- // prepare prompt
- {
- std::vector<whisper_token> prompt_tokens;
- // initial prompt
- if (!params.prompt_tokens && params.initial_prompt) {
- prompt_tokens.resize(1024);
- prompt_tokens.resize(whisper_tokenize(ctx, params.initial_prompt, prompt_tokens.data(), prompt_tokens.size()));
- params.prompt_tokens = prompt_tokens.data();
- params.prompt_n_tokens = prompt_tokens.size();
- }
- // prepend the prompt tokens to the prompt_past
- if (params.prompt_tokens && params.prompt_n_tokens > 0) {
- // parse tokens from the pointer
- for (int i = 0; i < params.prompt_n_tokens; i++) {
- prompt_past.push_back(params.prompt_tokens[i]);
- }
- std::rotate(prompt_past.begin(), prompt_past.end() - params.prompt_n_tokens, prompt_past.end());
- }
- }
- // overwrite audio_ctx, max allowed is hparams.n_audio_ctx
- if (params.audio_ctx > whisper_n_audio_ctx(ctx)) {
- log("%s: audio_ctx is larger than the maximum allowed (%d > %d)\n", __func__, params.audio_ctx, whisper_n_audio_ctx(ctx));
- return -5;
- }
- state->exp_n_audio_ctx = params.audio_ctx;
- // these tokens determine the task that will be performed
- std::vector<whisper_token> prompt_init = { whisper_token_sot(ctx) };
- if (whisper_is_multilingual(ctx)) {
- const int lang_id = whisper_lang_id(params.language);
- state->lang_id = lang_id;
- prompt_init.push_back(whisper_token_lang(ctx, lang_id));
- if (params.translate) {
- prompt_init.push_back(whisper_token_translate(ctx));
- } else {
- prompt_init.push_back(whisper_token_transcribe(ctx));
- }
- }
- int seek = seek_start;
- std::vector<whisper_token> prompt;
- prompt.reserve(whisper_n_text_ctx(ctx));
- // beam-search helpers
- struct kv_buf {
- std::vector<uint8_t> k;
- std::vector<uint8_t> v;
- };
- std::vector<kv_buf> kv_bufs;
- struct beam_candidate {
- int decoder_idx;
- int seek_delta;
- bool has_ts;
- whisper_sequence sequence;
- };
- std::vector<beam_candidate> beam_candidates;
- // main loop
- while (true) {
- if (params.progress_callback) {
- const int progress_cur = (100*(seek - seek_start))/(seek_end - seek_start);
- params.progress_callback(
- ctx, ctx->state, progress_cur, params.progress_callback_user_data);
- }
- // of only 1 second left, then stop
- if (seek + 100 >= seek_end) {
- break;
- }
- if (params.encoder_begin_callback) {
- if (params.encoder_begin_callback(ctx, state, params.encoder_begin_callback_user_data) == false) {
- log("%s: encoder_begin_callback returned false - aborting\n", __func__);
- break;
- }
- }
- // encode audio features starting at offset seek
- if (!whisper_encode_internal(*ctx, *state, seek, params.n_threads)) {
- log("%s: failed to encode\n", __func__);
- return -6;
- }
- // if there is a very short audio segment left to process, we remove any past prompt since it tends
- // to confuse the decoder and often make it repeat or hallucinate stuff
- if (seek > seek_start && seek + 500 >= seek_end) {
- prompt_past.clear();
- }
- int best_decoder_id = 0;
- for (int it = 0; it < (int) temperatures.size(); ++it) {
- const float t_cur = temperatures[it];
- int n_decoders_cur = 1;
- switch (params.strategy) {
- case whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY:
- {
- if (t_cur > 0.0f) {
- n_decoders_cur = params.greedy.best_of;
- }
- } break;
- case whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH:
- {
- if (t_cur > 0.0f) {
- n_decoders_cur = params.greedy.best_of;
- } else {
- n_decoders_cur = params.beam_search.beam_size;
- }
- } break;
- };
- n_decoders_cur = std::max(1, n_decoders_cur);
- WHISPER_PRINT_DEBUG("\n%s: decoding with %d decoders, temperature = %.2f\n", __func__, n_decoders_cur, t_cur);
- // TAGS: WHISPER_DECODER_INIT
- for (int j = 0; j < n_decoders_cur; ++j) {
- auto & decoder = state->decoders[j];
- decoder.kv_self.n = 0;
- decoder.sequence.tokens.clear();
- decoder.sequence.result_len = 0;
- decoder.sequence.sum_logprobs_all = 0.0;
- decoder.sequence.sum_logprobs = -INFINITY;
- decoder.sequence.avg_logprobs = -INFINITY;
- decoder.sequence.entropy = 0.0;
- decoder.sequence.score = -INFINITY;
- decoder.seek_delta = 100*WHISPER_CHUNK_SIZE;
- decoder.failed = false;
- decoder.completed = false;
- decoder.has_ts = false;
- }
- // init prompt and kv cache for the current iteration
- // run whisper_decoder() only for decoder 0 and copy the results for the other decoders
- {
- prompt.clear();
- // if we have already generated some text, use it as a prompt to condition the next generation
- if (!prompt_past.empty() && t_cur < 0.5f && params.n_max_text_ctx > 0) {
- int n_take = std::min(std::min(params.n_max_text_ctx, whisper_n_text_ctx(ctx)/2), int(prompt_past.size()));
- prompt = { whisper_token_prev(ctx) };
- prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
- }
- // init new transcription with sot, language (opt) and task tokens
- prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
- // print the prompt
- WHISPER_PRINT_DEBUG("\n\n");
- for (int i = 0; i < (int) prompt.size(); i++) {
- WHISPER_PRINT_DEBUG("%s: prompt[%d] = %s\n", __func__, i, ctx->vocab.id_to_token.at(prompt[i]).c_str());
- }
- WHISPER_PRINT_DEBUG("\n\n");
- if (!whisper_decode_internal(*ctx, *state, state->decoders[0], prompt.data(), prompt.size(), 0, params.n_threads)) {
- log("%s: failed to decode\n", __func__);
- return -7;
- }
- {
- const int64_t t_start_sample_us = ggml_time_us();
- whisper_process_logits(*ctx, *state, params, state->decoders[0], t_cur);
- state->decoders[0].kv_self.n += prompt.size();
- for (int j = 1; j < n_decoders_cur; ++j) {
- auto & decoder = state->decoders[j];
- memcpy(decoder.kv_self.k->data, state->decoders[0].kv_self.k->data, ggml_nbytes(decoder.kv_self.k));
- memcpy(decoder.kv_self.v->data, state->decoders[0].kv_self.v->data, ggml_nbytes(decoder.kv_self.v));
- decoder.kv_self.n += prompt.size();
- memcpy(decoder.probs.data(), state->decoders[0].probs.data(), decoder.probs.size()*sizeof(decoder.probs[0]));
- memcpy(decoder.logits.data(), state->decoders[0].logits.data(), decoder.logits.size()*sizeof(decoder.logits[0]));
- memcpy(decoder.logprobs.data(), state->decoders[0].logprobs.data(), decoder.logprobs.size()*sizeof(decoder.logprobs[0]));
- }
- state->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- for (int i = 0, n_max = whisper_n_text_ctx(ctx)/2 - 4; i < n_max; ++i) {
- const int64_t t_start_sample_us = ggml_time_us();
- // store the KV caches of all decoders when doing beam-search
- if (params.strategy == whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH) {
- kv_bufs.resize(n_decoders_cur);
- for (int j = 0; j < n_decoders_cur; ++j) {
- auto & decoder = state->decoders[j];
- if (decoder.completed || decoder.failed) {
- continue;
- }
- kv_bufs[j].k.resize(ggml_nbytes(decoder.kv_self.k));
- kv_bufs[j].v.resize(ggml_nbytes(decoder.kv_self.v));
- memcpy(kv_bufs[j].k.data(), decoder.kv_self.k->data, kv_bufs[j].k.size());
- memcpy(kv_bufs[j].v.data(), decoder.kv_self.v->data, kv_bufs[j].v.size());
- }
- beam_candidates.clear();
- }
- // generate new sequence candidates for each decoder
- for (int j = 0; j < n_decoders_cur; ++j) {
- auto & decoder = state->decoders[j];
- if (decoder.completed || decoder.failed) {
- continue;
- }
- switch (params.strategy) {
- case whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY:
- {
- if (t_cur < 1e-6f) {
- decoder.sequence.tokens.push_back(whisper_sample_token(*ctx, *state, decoder, true));
- } else {
- decoder.sequence.tokens.push_back(whisper_sample_token(*ctx, *state, decoder, false));
- }
- decoder.sequence.sum_logprobs_all += decoder.sequence.tokens.back().plog;
- } break;
- case whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH:
- {
- const auto tokens_new = whisper_sample_token_topk(*ctx, *state, decoder, params.beam_search.beam_size);
- for (const auto & token : tokens_new) {
- beam_candidates.push_back({ j, decoder.seek_delta, decoder.has_ts, decoder.sequence });
- beam_candidates.back().sequence.tokens.push_back(token);
- beam_candidates.back().sequence.sum_logprobs_all += token.plog;
- //WHISPER_PRINT_DEBUG("%s: beam candidate: %s (%f, %f)\n", __func__, ctx->vocab.id_to_token.at(token.id).c_str(), token.plog, beam_candidates.back().sequence.sum_logprobs_all);
- }
- } break;
- };
- }
- // for beam-search, choose the top candidates and update the KV caches
- if (params.strategy == whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH) {
- std::sort(
- beam_candidates.begin(),
- beam_candidates.end(),
- [](const beam_candidate & a, const beam_candidate & b) {
- return a.sequence.sum_logprobs_all > b.sequence.sum_logprobs_all;
- });
- uint32_t cur_c = 0;
- for (int j = 0; j < n_decoders_cur; ++j) {
- auto & decoder = state->decoders[j];
- if (decoder.completed || decoder.failed) {
- continue;
- }
- auto & cur = beam_candidates[cur_c++];
- while (beam_candidates.size() > cur_c && beam_candidates[cur_c].sequence.sum_logprobs_all == cur.sequence.sum_logprobs_all && i > 0) {
- ++cur_c;
- }
- decoder.sequence = cur.sequence;
- decoder.seek_delta = cur.seek_delta;
- decoder.has_ts = cur.has_ts;
- memcpy(decoder.kv_self.k->data, kv_bufs[cur.decoder_idx].k.data(), kv_bufs[cur.decoder_idx].k.size());
- memcpy(decoder.kv_self.v->data, kv_bufs[cur.decoder_idx].v.data(), kv_bufs[cur.decoder_idx].v.size());
- WHISPER_PRINT_DEBUG("%s: beam search: decoder %d: from decoder %d: token = %10s, plog = %8.5f, sum_logprobs = %8.5f\n",
- __func__, j, cur.decoder_idx, ctx->vocab.id_to_token.at(decoder.sequence.tokens.back().id).c_str(), decoder.sequence.tokens.back().plog, decoder.sequence.sum_logprobs_all);
- }
- }
- // update the decoder state
- // - check if the sequence is completed
- // - check if the sequence is failed
- // - update sliding window based on timestamp tokens
- for (int j = 0; j < n_decoders_cur; ++j) {
- auto & decoder = state->decoders[j];
- if (decoder.completed || decoder.failed) {
- continue;
- }
- auto & has_ts = decoder.has_ts;
- auto & failed = decoder.failed;
- auto & completed = decoder.completed;
- auto & seek_delta = decoder.seek_delta;
- auto & result_len = decoder.sequence.result_len;
- {
- const auto & token = decoder.sequence.tokens.back();
- // timestamp token - update sliding window
- if (token.id > whisper_token_beg(ctx)) {
- const int seek_delta_new = 2*(token.id - whisper_token_beg(ctx));
- // do not allow to go back in time
- if (has_ts && seek_delta > seek_delta_new && result_len < i) {
- failed = true; // TODO: maybe this is not a failure ?
- continue;
- }
- seek_delta = seek_delta_new;
- result_len = i + 1;
- has_ts = true;
- }
- #ifdef WHISPER_DEBUG
- {
- const auto tt = token.pt > 0.10 ? ctx->vocab.id_to_token.at(token.tid) : "[?]";
- WHISPER_PRINT_DEBUG("%s: id = %3d, decoder = %d, token = %6d, p = %6.3f, ts = %10s, %6.3f, result_len = %4d '%s'\n",
- __func__, i, j, token.id, token.p, tt.c_str(), token.pt, result_len, ctx->vocab.id_to_token.at(token.id).c_str());
- }
- #endif
- // end of segment
- if (token.id == whisper_token_eot(ctx) || // end of text token
- (params.max_tokens > 0 && i >= params.max_tokens) || // max tokens per segment reached
- (has_ts && seek + seek_delta + 100 >= seek_end) // end of audio reached
- ) {
- if (result_len == 0) {
- if (seek + seek_delta + 100 >= seek_end) {
- result_len = i + 1;
- } else {
- failed = true;
- continue;
- }
- }
- if (params.single_segment) {
- result_len = i + 1;
- seek_delta = 100*WHISPER_CHUNK_SIZE;
- }
- completed = true;
- continue;
- }
- // TESTS: if no tensors are loaded, it means we are running tests
- if (ctx->model.n_loaded == 0) {
- seek_delta = 100*WHISPER_CHUNK_SIZE;
- completed = true;
- continue;
- }
- }
- // sometimes, the decoding can get stuck in a repetition loop
- // this is an attempt to mitigate such cases - we flag the decoding as failed and use a fallback strategy
- if (i == n_max - 1 && (result_len == 0 || seek_delta < 100*WHISPER_CHUNK_SIZE/2)) {
- failed = true;
- continue;
- }
- }
- // check if all decoders have finished (i.e. completed or failed)
- {
- bool completed_all = true;
- for (int j = 0; j < n_decoders_cur; ++j) {
- auto & decoder = state->decoders[j];
- if (decoder.completed || decoder.failed) {
- continue;
- }
- completed_all = false;
- }
- if (completed_all) {
- break;
- }
- }
- state->t_sample_us += ggml_time_us() - t_start_sample_us;
- // obtain logits for the next token
- for (int j = 0; j < n_decoders_cur; ++j) {
- auto & decoder = state->decoders[j];
- if (decoder.failed || decoder.completed) {
- continue;
- }
- decoder.tokens_tmp.resize(1);
- decoder.tokens_tmp[0] = decoder.sequence.tokens.back().id;
- //WHISPER_PRINT_DEBUG("%s: decoder %d: token %d, kv_self.n %d, seek_delta %d\n", __func__, j, decoder.tokens_tmp[0], decoder.kv_self.n, decoder.seek_delta);
- if (!whisper_decode_internal(*ctx, *state, decoder, decoder.tokens_tmp.data(), decoder.tokens_tmp.size(), decoder.kv_self.n, params.n_threads)) {
- log("%s: failed to decode\n", __func__);
- return -8;
- }
- {
- const int64_t t_start_sample_us = ggml_time_us();
- whisper_process_logits(*ctx, *state, params, decoder, t_cur);
- ++decoder.kv_self.n;
- state->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- }
- // rank the resulting sequences and select the best one
- {
- double best_score = -INFINITY;
- for (int j = 0; j < n_decoders_cur; ++j) {
- auto & decoder = state->decoders[j];
- if (decoder.failed) {
- continue;
- }
- decoder.sequence.tokens.resize(decoder.sequence.result_len);
- whisper_sequence_score(params, decoder.sequence);
- WHISPER_PRINT_DEBUG("%s: decoder %2d: score = %8.5f, result_len = %3d, avg_logprobs = %8.5f, entropy = %8.5f\n",
- __func__, j, decoder.sequence.score, decoder.sequence.result_len, decoder.sequence.avg_logprobs, decoder.sequence.entropy);
- if (decoder.sequence.result_len > 32 && decoder.sequence.entropy < params.entropy_thold) {
- WHISPER_PRINT_DEBUG("%s: decoder %2d: failed due to entropy %8.5f < %8.5f\n",
- __func__, j, decoder.sequence.entropy, params.entropy_thold);
- decoder.failed = true;
- state->n_fail_h++;
- continue;
- }
- if (best_score < decoder.sequence.score) {
- best_score = decoder.sequence.score;
- best_decoder_id = j;
- }
- }
- WHISPER_PRINT_DEBUG("%s: best decoder = %d\n", __func__, best_decoder_id);
- }
- // was the decoding successful for the current temperature?
- // do fallback only if:
- // - we are not at the last temperature
- // - we are not at the end of the audio (3 sec)
- if (it != (int) temperatures.size() - 1 &&
- seek_end - seek > 10*WHISPER_CHUNK_SIZE) {
- bool success = true;
- const auto & decoder = state->decoders[best_decoder_id];
- if (decoder.failed || decoder.sequence.avg_logprobs < params.logprob_thold) {
- success = false;
- state->n_fail_p++;
- }
- if (success) {
- //for (auto & token : ctx->decoders[best_decoder_id].sequence.tokens) {
- // WHISPER_PRINT_DEBUG("%s: token = %d, p = %6.3f, pt = %6.3f, ts = %s, str = %s\n", __func__, token.id, token.p, token.pt, ctx->vocab.id_to_token.at(token.tid).c_str(), ctx->vocab.id_to_token.at(token.id).c_str());
- //}
- break;
- }
- }
- WHISPER_PRINT_DEBUG("\n%s: failed to decode with temperature = %.2f\n", __func__, t_cur);
- }
- // output results through a user-provided callback
- {
- const auto & best_decoder = state->decoders[best_decoder_id];
- const auto seek_delta = best_decoder.seek_delta;
- const auto result_len = best_decoder.sequence.result_len;
- const auto & tokens_cur = best_decoder.sequence.tokens;
- //WHISPER_PRINT_DEBUG("prompt_init.size() = %d, prompt.size() = %d, result_len = %d, seek_delta = %d\n", prompt_init.size(), prompt.size(), result_len, seek_delta);
- // update prompt_past
- prompt_past.clear();
- if (prompt.front() == whisper_token_prev(ctx)) {
- prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end() - prompt_init.size());
- }
- for (int i = 0; i < result_len; ++i) {
- prompt_past.push_back(tokens_cur[i].id);
- }
- if (!tokens_cur.empty() && ctx->model.n_loaded > 0) {
- int i0 = 0;
- auto t0 = seek + 2*(tokens_cur.front().tid - whisper_token_beg(ctx));
- std::string text;
- bool speaker_turn_next = false;
- for (int i = 0; i < (int) tokens_cur.size(); i++) {
- //printf("%s: %18s %6.3f %18s %6.3f\n", __func__,
- // ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].p,
- // ctx->vocab.id_to_token[tokens_cur[i].tid].c_str(), tokens_cur[i].pt);
- if (params.print_special || tokens_cur[i].id < whisper_token_eot(ctx)) {
- text += whisper_token_to_str(ctx, tokens_cur[i].id);
- }
- // [TDRZ] record if speaker turn was predicted after current segment
- if (params.tdrz_enable && tokens_cur[i].id == whisper_token_solm(ctx)) {
- speaker_turn_next = true;
- }
- if (tokens_cur[i].id > whisper_token_beg(ctx) && !params.single_segment) {
- const auto t1 = seek + 2*(tokens_cur[i].tid - whisper_token_beg(ctx));
- if (!text.empty()) {
- const auto tt0 = params.speed_up ? 2*t0 : t0;
- const auto tt1 = params.speed_up ? 2*t1 : t1;
- if (params.print_realtime) {
- if (params.print_timestamps) {
- printf("[%s --> %s] %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str());
- } else {
- printf("%s", text.c_str());
- fflush(stdout);
- }
- }
- //printf("tt0 = %d, tt1 = %d, text = %s, token = %s, token_id = %d, tid = %d\n", tt0, tt1, text.c_str(), ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].id, tokens_cur[i].tid);
- result_all.push_back({ tt0, tt1, text, {}, speaker_turn_next });
- for (int j = i0; j <= i; j++) {
- result_all.back().tokens.push_back(tokens_cur[j]);
- }
- int n_new = 1;
- if (params.token_timestamps) {
- whisper_exp_compute_token_level_timestamps(
- *ctx, *state, result_all.size() - 1, params.thold_pt, params.thold_ptsum);
- if (params.max_len > 0) {
- n_new = whisper_wrap_segment(*ctx, *state, params.max_len, params.split_on_word);
- }
- }
- if (params.new_segment_callback) {
- params.new_segment_callback(ctx, state, n_new, params.new_segment_callback_user_data);
- }
- }
- text = "";
- while (i < (int) tokens_cur.size() && tokens_cur[i].id > whisper_token_beg(ctx)) {
- i++;
- }
- i--;
- t0 = t1;
- i0 = i + 1;
- speaker_turn_next = false;
- }
- }
- if (!text.empty()) {
- const auto t1 = seek + seek_delta;
- const auto tt0 = params.speed_up ? 2*t0 : t0;
- const auto tt1 = params.speed_up ? 2*t1 : t1;
- if (params.print_realtime) {
- if (params.print_timestamps) {
- printf("[%s --> %s] %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str());
- } else {
- printf("%s", text.c_str());
- fflush(stdout);
- }
- }
- result_all.push_back({ tt0, tt1, text, {} , speaker_turn_next });
- for (int j = i0; j < (int) tokens_cur.size(); j++) {
- result_all.back().tokens.push_back(tokens_cur[j]);
- }
- int n_new = 1;
- if (params.token_timestamps) {
- whisper_exp_compute_token_level_timestamps(
- *ctx, *state, result_all.size() - 1, params.thold_pt, params.thold_ptsum);
- if (params.max_len > 0) {
- n_new = whisper_wrap_segment(*ctx, *state, params.max_len, params.split_on_word);
- }
- }
- if (params.new_segment_callback) {
- params.new_segment_callback(ctx, state, n_new, params.new_segment_callback_user_data);
- }
- }
- }
- // update audio window
- seek += seek_delta;
- WHISPER_PRINT_DEBUG("seek = %d, seek_delta = %d\n", seek, seek_delta);
- }
- }
- return 0;
- }
- int whisper_full(
- struct whisper_context * ctx,
- struct whisper_full_params params,
- const float * samples,
- int n_samples) {
- return whisper_full_with_state(ctx, ctx->state, params, samples, n_samples);
- }
- int whisper_full_parallel(
- struct whisper_context * ctx,
- struct whisper_full_params params,
- const float * samples,
- int n_samples,
- int n_processors) {
- if (n_processors == 1) {
- return whisper_full(ctx, params, samples, n_samples);
- }
- int ret = 0;
- // prepare separate states for each thread
- std::vector<whisper_state*> states;
- const int offset_samples = (WHISPER_SAMPLE_RATE*params.offset_ms)/1000;
- const int n_samples_per_processor = (n_samples - offset_samples)/n_processors;
- // the calling thread will process the first chunk
- // while the other threads will process the remaining chunks
- std::vector<std::thread> workers(n_processors - 1);
- for (int i = 0; i < n_processors - 1; ++i) {
- // create a new state for each thread
- states.push_back(whisper_init_state(ctx));
- const int start_samples = offset_samples + (i + 1)*n_samples_per_processor;
- const int n_samples_cur = (i == n_processors - 2) ? n_samples - start_samples : n_samples_per_processor;
- auto params_cur = params;
- params_cur.offset_ms = 0;
- params_cur.print_progress = false;
- params_cur.print_realtime = false;
- params_cur.new_segment_callback = nullptr;
- params_cur.new_segment_callback_user_data = nullptr;
- params_cur.progress_callback = nullptr;
- params_cur.progress_callback_user_data = nullptr;
- workers[i] = std::thread(whisper_full_with_state, ctx, states[i], std::move(params_cur), samples + start_samples, n_samples_cur);
- }
- {
- auto params_cur = params;
- // We need to disable the print real-time for this one as well, otherwise it will show only for the first chunk.
- params_cur.print_realtime = false;
- // Run the first transformation using default state but only for the first chunk.
- ret = whisper_full_with_state(ctx, ctx->state, std::move(params_cur), samples, offset_samples + n_samples_per_processor);
- }
- for (int i = 0; i < n_processors - 1; ++i) {
- workers[i].join();
- }
- const int64_t offset_t = (int64_t) params.offset_ms/10.0;
- // combine results into result_state->result_all from all other states
- for (int i = 0; i < n_processors - 1; ++i) {
- auto& results_i = states[i]->result_all;
- for (auto& result : results_i) {
- // correct the segment timestamp taking into account the offset
- result.t0 += 100 * ((i + 1) * n_samples_per_processor) / WHISPER_SAMPLE_RATE + offset_t;
- result.t1 += 100 * ((i + 1) * n_samples_per_processor) / WHISPER_SAMPLE_RATE + offset_t;
- // make sure that segments are not overlapping
- if (!ctx->state->result_all.empty()) {
- result.t0 = std::max(result.t0, ctx->state->result_all.back().t1);
- }
- ctx->state->result_all.push_back(std::move(result));
- // call the new_segment_callback for each segment
- if (params.new_segment_callback) {
- params.new_segment_callback(ctx, ctx->state, 1, params.new_segment_callback_user_data);
- }
- }
- ctx->state->t_mel_us += states[i]->t_mel_us;
- ctx->state->t_sample_us += states[i]->t_sample_us;
- ctx->state->t_encode_us += states[i]->t_encode_us;
- ctx->state->t_decode_us += states[i]->t_decode_us;
- whisper_free_state(states[i]);
- }
- // average the timings
- ctx->state->t_mel_us /= n_processors;
- ctx->state->t_sample_us /= n_processors;
- ctx->state->t_encode_us /= n_processors;
- ctx->state->t_decode_us /= n_processors;
- // print information about the audio boundaries
- log("\n");
- log("%s: the audio has been split into %d chunks at the following times:\n", __func__, n_processors);
- for (int i = 0; i < n_processors - 1; ++i) {
- log("%s: split %d - %s\n", __func__, (i + 1), to_timestamp(100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t).c_str());
- }
- log("%s: the transcription quality may be degraded near these boundaries\n", __func__);
- return ret;
- }
- int whisper_full_n_segments_from_state(struct whisper_state * state) {
- return state->result_all.size();
- }
- int whisper_full_n_segments(struct whisper_context * ctx) {
- return ctx->state->result_all.size();
- }
- int whisper_full_lang_id_from_state(struct whisper_state * state) {
- return state->lang_id;
- }
- int whisper_full_lang_id(struct whisper_context * ctx) {
- return ctx->state->lang_id;
- }
- int64_t whisper_full_get_segment_t0_from_state(struct whisper_state * state, int i_segment) {
- return state->result_all[i_segment].t0;
- }
- int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) {
- return ctx->state->result_all[i_segment].t0;
- }
- int64_t whisper_full_get_segment_t1_from_state(struct whisper_state * state, int i_segment) {
- return state->result_all[i_segment].t1;
- }
- int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment) {
- return ctx->state->result_all[i_segment].t1;
- }
- bool whisper_full_get_segment_speaker_turn_next(struct whisper_context * ctx, int i_segment) {
- return ctx->state->result_all[i_segment].speaker_turn_next;
- }
- const char * whisper_full_get_segment_text_from_state(struct whisper_state * state, int i_segment) {
- return state->result_all[i_segment].text.c_str();
- }
- const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) {
- return ctx->state->result_all[i_segment].text.c_str();
- }
- int whisper_full_n_tokens_from_state(struct whisper_state * state, int i_segment) {
- return state->result_all[i_segment].tokens.size();
- }
- int whisper_full_n_tokens(struct whisper_context * ctx, int i_segment) {
- return ctx->state->result_all[i_segment].tokens.size();
- }
- const char * whisper_full_get_token_text_from_state(struct whisper_context * ctx, struct whisper_state * state, int i_segment, int i_token) {
- return ctx->vocab.id_to_token[state->result_all[i_segment].tokens[i_token].id].c_str();
- }
- const char* whisper_full_get_token_text(struct whisper_context * ctx, int i_segment, int i_token) {
- return ctx->vocab.id_to_token[ctx->state->result_all[i_segment].tokens[i_token].id].c_str();
- }
- whisper_token whisper_full_get_token_id_from_state(struct whisper_state * state, int i_segment, int i_token) {
- return state->result_all[i_segment].tokens[i_token].id;
- }
- whisper_token whisper_full_get_token_id(struct whisper_context * ctx, int i_segment, int i_token) {
- return ctx->state->result_all[i_segment].tokens[i_token].id;
- }
- struct whisper_token_data whisper_full_get_token_data_from_state(struct whisper_state * state, int i_segment, int i_token) {
- return state->result_all[i_segment].tokens[i_token];
- }
- struct whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token) {
- return ctx->state->result_all[i_segment].tokens[i_token];
- }
- float whisper_full_get_token_p_from_state(struct whisper_state * state, int i_segment, int i_token) {
- return state->result_all[i_segment].tokens[i_token].p;
- }
- float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token) {
- return ctx->state->result_all[i_segment].tokens[i_token].p;
- }
- // =================================================================================================
- //
- // Temporary interface needed for exposing ggml interface
- // Will be removed in the future when ggml becomes a separate library
- //
- WHISPER_API int whisper_bench_memcpy(int n_threads) {
- fputs(whisper_bench_memcpy_str(n_threads), stderr);
- return 0;
- }
- WHISPER_API const char * whisper_bench_memcpy_str(int n_threads) {
- static std::string s;
- s = "";
- char strbuf[256];
- ggml_time_init();
- size_t n = 20;
- size_t arr = n_threads > 0 ? 1024llu : n_threads; // trick to avoid compiler optimizations
- // 1GB MB array
- const size_t size = arr*1024llu*1024llu;
- // single-thread
- {
- char * src = (char *) malloc(size);
- char * dst = (char *) malloc(size);
- for (size_t i = 0; i < size; i++) src[i] = i;
- memcpy(dst, src, size); // heat-up
- double tsum = 0.0;
- double sum = 0.0;
- for (size_t i = 0; i < n; i++) {
- const int64_t t0 = ggml_time_us();
- memcpy(dst, src, size);
- const int64_t t1 = ggml_time_us();
- tsum += (t1 - t0)*1e-6;
- src[rand() % size] = rand() % 256;
- }
- snprintf(strbuf, sizeof(strbuf), "memcpy: %.2f GB/s (1 thread)\n", (double) (n*size)/(tsum*1024llu*1024llu*1024llu));
- s += strbuf;
- // needed to prevent the compiler from optimizing the memcpy away
- {
- for (size_t i = 0; i < size; i++) sum += dst[i];
- snprintf(strbuf, sizeof(strbuf), "sum: %f\n", sum);
- s += strbuf;
- }
- free(src);
- free(dst);
- }
- return s.c_str();
- }
- WHISPER_API int whisper_bench_ggml_mul_mat(int n_threads) {
- fputs(whisper_bench_ggml_mul_mat_str(n_threads), stderr);
- return 0;
- }
- WHISPER_API const char * whisper_bench_ggml_mul_mat_str(int n_threads) {
- static std::string s;
- s = "";
- char strbuf[256];
- ggml_time_init();
- const int n_max = 128;
- const std::vector<size_t> sizes = {
- 64, 128, 256, 512, 1024, 2048, 4096,
- };
- const size_t N_max = sizes.back();
- // a: N*N*sizeof(float)
- // b: N*N*sizeof(float)
- // c: N*N*sizeof(float)
- // when F16 is used, there is an extra work buffer of size N*N*sizeof(float)
- std::vector<char> buf(4llu*N_max*N_max*sizeof(float) + 4*512);
- // put a bunch of random data in the buffer
- for (size_t i = 0; i < buf.size(); i++) buf[i] = i;
- for (int j = 0; j < (int) sizes.size(); j++) {
- int n_q4_0 = 0;
- int n_q4_1 = 0;
- int n_q5_0 = 0;
- int n_q5_1 = 0;
- int n_q8_0 = 0;
- int n_fp16 = 0;
- int n_fp32 = 0;
- // GFLOPS/s
- double s_q4_0 = 0.0;
- double s_q4_1 = 0.0;
- double s_q5_0 = 0.0;
- double s_q5_1 = 0.0;
- double s_q8_0 = 0.0;
- double s_fp16 = 0.0;
- double s_fp32 = 0.0;
- const size_t N = sizes[j];
- for (int k = 0; k < 7; ++k) {
- const ggml_type wtype =
- k == 0 ? GGML_TYPE_Q4_0 :
- k == 1 ? GGML_TYPE_Q4_1 :
- k == 2 ? GGML_TYPE_Q5_0 :
- k == 3 ? GGML_TYPE_Q5_1 :
- k == 4 ? GGML_TYPE_Q8_0 :
- k == 5 ? GGML_TYPE_F16 : GGML_TYPE_F32;
- double & s = k == 0 ? s_q4_0 : k == 1 ? s_q4_1 : k == 2 ? s_q5_0 : k == 3 ? s_q5_1 : k == 4 ? s_q8_0 : k == 5 ? s_fp16 : /*k == 6*/ s_fp32;
- int & n = k == 0 ? n_q4_0 : k == 1 ? n_q4_1 : k == 2 ? n_q5_0 : k == 3 ? n_q5_1 : k == 4 ? n_q8_0 : k == 5 ? n_fp16 : /*k == 6*/ n_fp32;
- struct ggml_init_params gparams = {
- /*.mem_size =*/ buf.size(),
- /*.mem_buffer =*/ buf.data(),
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(gparams);
- struct ggml_tensor * a = ggml_new_tensor_2d(ctx0, wtype, N, N);
- struct ggml_tensor * b = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, N, N);
- struct ggml_tensor * c = ggml_mul_mat(ctx0, a, b);
- struct ggml_cgraph gf = ggml_build_forward(c);
- double tsum = 0.0;
- // heat-up
- ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
- for (int i = 0; i < n_max; ++i) {
- const int64_t t0 = ggml_time_us();
- ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
- const int64_t t1 = ggml_time_us();
- tsum += (t1 - t0)*1e-6;
- n++;
- if (tsum > 1.0 && n >= 3) {
- break;
- }
- }
- ggml_free(ctx0);
- s = ((2.0*N*N*N*n)/tsum)*1e-9;
- }
- // Q4_0 | Q4_1
- snprintf(strbuf, sizeof(strbuf), "%4zu x %4zu: Q4_0 %7.1f GFLOPS (%3d runs) | Q4_1 %7.1f GFLOPS (%3d runs)\n",
- N, N, s_q4_0, n_q4_0, s_q4_1, n_q4_1);
- s += strbuf;
- // Q5_0 | Q5_1 | Q8_0
- snprintf(strbuf, sizeof(strbuf), "%4zu x %4zu: Q5_0 %7.1f GFLOPS (%3d runs) | Q5_1 %7.1f GFLOPS (%3d runs) | Q8_0 %7.1f GFLOPS (%3d runs)\n",
- N, N, s_q5_0, n_q5_0, s_q5_1, n_q5_1, s_q8_0, n_q8_0);
- s += strbuf;
- // F16 | F32
- snprintf(strbuf, sizeof(strbuf), "%4zu x %4zu: F16 %7.1f GFLOPS (%3d runs) | F32 %7.1f GFLOPS (%3d runs)\n",
- N, N, s_fp16, n_fp16, s_fp32, n_fp32);
- s += strbuf;
- }
- return s.c_str();
- }
- // =================================================================================================
- // =================================================================================================
- //
- // Experimental stuff below
- //
- // Not sure if these should be part of the library at all, because the quality of the results is not
- // guaranteed. Might get removed at some point unless a robust algorithm implementation is found
- //
- // =================================================================================================
- //
- // token-level timestamps
- //
- static int timestamp_to_sample(int64_t t, int n_samples) {
- return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
- }
- static int64_t sample_to_timestamp(int i_sample) {
- return (100ll*i_sample)/WHISPER_SAMPLE_RATE;
- }
- // a cost-function / heuristic that is high for text that takes longer to pronounce
- // obviously, can be improved
- static float voice_length(const std::string & text) {
- float res = 0.0f;
- for (char c : text) {
- if (c == ' ') {
- res += 0.01f;
- } else if (c == ',') {
- res += 2.00f;
- } else if (c == '.') {
- res += 3.00f;
- } else if (c == '!') {
- res += 3.00f;
- } else if (c == '?') {
- res += 3.00f;
- } else if (c >= '0' && c <= '9') {
- res += 3.00f;
- } else {
- res += 1.00f;
- }
- }
- return res;
- }
- // average the fabs of the signal
- static std::vector<float> get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window) {
- const int hw = n_samples_per_half_window;
- std::vector<float> result(n_samples);
- for (int i = 0; i < n_samples; i++) {
- float sum = 0;
- for (int j = -hw; j <= hw; j++) {
- if (i + j >= 0 && i + j < n_samples) {
- sum += fabs(signal[i + j]);
- }
- }
- result[i] = sum/(2*hw + 1);
- }
- return result;
- }
- static void whisper_exp_compute_token_level_timestamps(
- struct whisper_context & ctx,
- struct whisper_state & state,
- int i_segment,
- float thold_pt,
- float thold_ptsum) {
- auto & segment = state.result_all[i_segment];
- auto & tokens = segment.tokens;
- const int n_samples = state.energy.size();
- if (n_samples == 0) {
- log("%s: no signal data available\n", __func__);
- return;
- }
- const int64_t t0 = segment.t0;
- const int64_t t1 = segment.t1;
- const int n = tokens.size();
- if (n == 0) {
- return;
- }
- if (n == 1) {
- tokens[0].t0 = t0;
- tokens[0].t1 = t1;
- return;
- }
- auto & t_beg = state.t_beg;
- auto & t_last = state.t_last;
- auto & tid_last = state.tid_last;
- for (int j = 0; j < n; ++j) {
- auto & token = tokens[j];
- if (j == 0) {
- if (token.id == whisper_token_beg(&ctx)) {
- tokens[j ].t0 = t0;
- tokens[j ].t1 = t0;
- tokens[j + 1].t0 = t0;
- t_beg = t0;
- t_last = t0;
- tid_last = whisper_token_beg(&ctx);
- } else {
- tokens[j ].t0 = t_last;
- }
- }
- const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(&ctx));
- tokens[j].id = token.id;
- tokens[j].tid = token.tid;
- tokens[j].p = token.p;
- tokens[j].pt = token.pt;
- tokens[j].ptsum = token.ptsum;
- tokens[j].vlen = voice_length(whisper_token_to_str(&ctx, token.id));
- if (token.pt > thold_pt && token.ptsum > thold_ptsum && token.tid > tid_last && tt <= t1) {
- if (j > 0) {
- tokens[j - 1].t1 = tt;
- }
- tokens[j].t0 = tt;
- tid_last = token.tid;
- }
- }
- tokens[n - 2].t1 = t1;
- tokens[n - 1].t0 = t1;
- tokens[n - 1].t1 = t1;
- t_last = t1;
- // find intervals of tokens with unknown timestamps
- // fill the timestamps by proportionally splitting the interval based on the token voice lengths
- {
- int p0 = 0;
- int p1 = 0;
- while (true) {
- while (p1 < n && tokens[p1].t1 < 0) {
- p1++;
- }
- if (p1 >= n) {
- p1--;
- }
- //printf("p0=%d p1=%d t0=%lld t1=%lld\n", p0, p1, tokens[p0].t0, tokens[p1].t1);
- if (p1 > p0) {
- double psum = 0.0;
- for (int j = p0; j <= p1; j++) {
- psum += tokens[j].vlen;
- }
- //printf("analyzing %d - %d, psum = %f\n", p0, p1, psum);
- const double dt = tokens[p1].t1 - tokens[p0].t0;
- // split the time proportionally to the voice length
- for (int j = p0 + 1; j <= p1; j++) {
- const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum;
- tokens[j - 1].t1 = ct;
- tokens[j ].t0 = ct;
- }
- }
- p1++;
- p0 = p1;
- if (p1 >= n) {
- break;
- }
- }
- }
- // fix up (just in case)
- for (int j = 0; j < n - 1; j++) {
- if (tokens[j].t1 < 0) {
- tokens[j + 1].t0 = tokens[j].t1;
- }
- if (j > 0) {
- if (tokens[j - 1].t1 > tokens[j].t0) {
- tokens[j].t0 = tokens[j - 1].t1;
- tokens[j].t1 = std::max(tokens[j].t0, tokens[j].t1);
- }
- }
- }
- // VAD
- // expand or contract tokens based on voice activity
- {
- const int hw = WHISPER_SAMPLE_RATE/8;
- for (int j = 0; j < n; j++) {
- if (tokens[j].id >= whisper_token_eot(&ctx)) {
- continue;
- }
- int s0 = timestamp_to_sample(tokens[j].t0, n_samples);
- int s1 = timestamp_to_sample(tokens[j].t1, n_samples);
- const int ss0 = std::max(s0 - hw, 0);
- const int ss1 = std::min(s1 + hw, n_samples);
- const int ns = ss1 - ss0;
- float sum = 0.0f;
- for (int k = ss0; k < ss1; k++) {
- sum += state.energy[k];
- }
- const float thold = 0.5*sum/ns;
- {
- int k = s0;
- if (state.energy[k] > thold && j > 0) {
- while (k > 0 && state.energy[k] > thold) {
- k--;
- }
- tokens[j].t0 = sample_to_timestamp(k);
- if (tokens[j].t0 < tokens[j - 1].t1) {
- tokens[j].t0 = tokens[j - 1].t1;
- } else {
- s0 = k;
- }
- } else {
- while (state.energy[k] < thold && k < s1) {
- k++;
- }
- s0 = k;
- tokens[j].t0 = sample_to_timestamp(k);
- }
- }
- {
- int k = s1;
- if (state.energy[k] > thold) {
- while (k < n_samples - 1 && state.energy[k] > thold) {
- k++;
- }
- tokens[j].t1 = sample_to_timestamp(k);
- if (j < ns - 1 && tokens[j].t1 > tokens[j + 1].t0) {
- tokens[j].t1 = tokens[j + 1].t0;
- } else {
- s1 = k;
- }
- } else {
- while (state.energy[k] < thold && k > s0) {
- k--;
- }
- s1 = k;
- tokens[j].t1 = sample_to_timestamp(k);
- }
- }
- }
- }
- // fixed token expand (optional)
- //{
- // const int t_expand = 0;
- // for (int j = 0; j < n; j++) {
- // if (j > 0) {
- // tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand));
- // }
- // if (j < n - 1) {
- // tokens[j].t1 = tokens[j].t1 + t_expand;
- // }
- // }
- //}
- // debug info
- //for (int j = 0; j < n; ++j) {
- // const auto & token = tokens[j];
- // const auto tt = token.pt > thold_pt && token.ptsum > 0.01 ? whisper_token_to_str(&ctx, token.tid) : "[?]";
- // printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__,
- // tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, whisper_token_to_str(&ctx, token.id));
- // if (tokens[j].id >= whisper_token_eot(&ctx)) {
- // continue;
- // }
- //}
- }
- void whisper_set_log_callback(whisper_log_callback callback) {
- whisper_log = callback;
- }
|