123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- #include "ggml/ggml.h"
- #include <string.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <assert.h>
- #if defined(_WIN32)
- #include <windows.h>
- typedef volatile LONG atomic_int;
- static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
- return InterlockedExchangeAdd(ptr, inc);
- }
- #else
- #include <stdatomic.h>
- #endif
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- struct ggml_context * make_ctx(void) {
- struct ggml_init_params params = {
- /*.mem_size =*/ 1 * 1024 * 1024,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false,
- };
- return ggml_init(params);
- }
- char g_userdata[] = "ggml";
- atomic_int g_custom1_count = 0;
- atomic_int g_custom2_count = 0;
- atomic_int g_custom3_count = 0;
- void custom1(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata) {
- // check that the userdata is correct
- assert(userdata == NULL);
- assert(ggml_are_same_shape(dst, a));
- atomic_fetch_add(&g_custom1_count, 1);
- const float * a_data = ggml_get_data_f32(a);
- float * dst_data = ggml_get_data_f32(dst);
- // this assumes that the tensors are contiguous
- assert(ggml_is_contiguous(dst));
- assert(ggml_is_contiguous(a));
- // parallelize by elements
- const int ne = (int)ggml_nelements(dst);
- const int dr = (ne + nth - 1) / nth;
- const int ie0 = dr * ith;
- const int ie1 = MIN(ie0 + dr, ne);
- for (int i = ie0; i < ie1; ++i) {
- dst_data[i] = a_data[i] * 2;
- }
- }
- void custom2(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata) {
- // check that the userdata is correct
- assert(userdata == g_userdata);
- assert(strcmp(userdata, "ggml") == 0);
- assert(ggml_are_same_shape(dst, a));
- assert(ggml_are_same_shape(dst, b));
- atomic_fetch_add(&g_custom2_count, 1);
- const float * a_data = ggml_get_data_f32(a);
- const float * b_data = ggml_get_data_f32(b);
- float * dst_data = ggml_get_data_f32(dst);
- // parallelize by rows
- const int nr = (int)ggml_nrows(dst);
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // number of columns
- const int nc = (int)dst->ne[0];
- // this assumes that the tensors are contiguous
- assert(ggml_is_contiguous(dst));
- assert(ggml_is_contiguous(a));
- assert(ggml_is_contiguous(b));
- for (int ir = ir0; ir < ir1; ++ir) {
- for (int ic = 0; ic < nc; ++ic) {
- const int i = ir * nc + ic;
- dst_data[i] = a_data[i] + b_data[i];
- }
- }
- }
- void custom3(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata) {
- // check that the userdata is correct
- assert(userdata == g_userdata);
- assert(strcmp(userdata, "ggml") == 0);
- assert(ggml_are_same_shape(dst, a));
- assert(ggml_are_same_shape(dst, b));
- assert(ggml_are_same_shape(dst, c));
- atomic_fetch_add(&g_custom3_count, 1);
- const float * a_data = ggml_get_data_f32(a);
- const float * b_data = ggml_get_data_f32(b);
- const float * c_data = ggml_get_data_f32(c);
- float * dst_data = ggml_get_data_f32(dst);
- // dont parallelize
- assert(ith == 0);
- // number of elements
- const int ne = (int)ggml_nelements(dst);
- // this assumes that the tensors are contiguous
- assert(ggml_is_contiguous(dst));
- assert(ggml_is_contiguous(a));
- assert(ggml_is_contiguous(b));
- assert(ggml_is_contiguous(c));
- for (int i = 0; i < ne; ++i) {
- dst_data[i] = a_data[i] + b_data[i] + c_data[i];
- }
- }
- int main(int argc, const char** argv) {
- float buf1_f32[1024];
- for (int i = 0; i < 1024; ++i) {
- buf1_f32[i] = (float)(i + 1);
- }
- float buf2_f32[1024];
- for (int i = 0; i < 1024; ++i) {
- buf2_f32[i] = (float)(i + 1) * 2;
- }
- float buf3_f32[1024];
- for (int i = 0; i < 1024; ++i) {
- buf3_f32[i] = (float)(i + 1) * 3;
- }
- // map_custom1
- // 2 tasks, no userdata, parallelized by elements
- {
- struct ggml_context * ctx = make_ctx();
- struct ggml_tensor * t = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
- memcpy(t->data, buf1_f32, ggml_nbytes(t));
- struct ggml_tensor * m1 = ggml_map_custom1(ctx, t, custom1, 2, NULL);
- struct ggml_cgraph graph = ggml_build_forward(m1);
- ggml_graph_compute_with_ctx(ctx, &graph, 4);
- const float * output = ggml_get_data_f32(m1);
- for (int i = 0; i < ggml_nelements(m1); ++i) {
- assert(output[i] == buf1_f32[i] * 2);
- }
- assert(g_custom1_count == 2);
- ggml_free(ctx);
- }
- // map_custom2
- // max tasks (4), userdata, parallelized by rows
- {
- struct ggml_context * ctx = make_ctx();
- struct ggml_tensor * t1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
- memcpy(t1->data, buf1_f32, ggml_nbytes(t1));
- struct ggml_tensor * t2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
- memcpy(t2->data, buf2_f32, ggml_nbytes(t2));
- struct ggml_tensor * m2 = ggml_map_custom2(ctx, t1, t2, custom2, GGML_N_TASKS_MAX, g_userdata);
- struct ggml_cgraph graph = ggml_build_forward(m2);
- ggml_graph_compute_with_ctx(ctx, &graph, 4);
- const float * output = ggml_get_data_f32(m2);
- for (int i = 0; i < ggml_nelements(m2); ++i) {
- assert(output[i] == buf1_f32[i] + buf2_f32[i]);
- }
- assert(g_custom2_count == 4);
- ggml_free(ctx);
- }
- // map_custom3
- // 1 task, userdata, not parallelized
- {
- struct ggml_context * ctx = make_ctx();
- struct ggml_tensor * t1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
- memcpy(t1->data, buf1_f32, ggml_nbytes(t1));
- struct ggml_tensor * t2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
- memcpy(t2->data, buf2_f32, ggml_nbytes(t2));
- struct ggml_tensor * t3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 10, 2);
- memcpy(t3->data, buf3_f32, ggml_nbytes(t3));
- struct ggml_tensor * m3 = ggml_map_custom3(ctx, t1, t2, t3, custom3, 1, g_userdata);
- struct ggml_cgraph graph = ggml_build_forward(m3);
- ggml_graph_compute_with_ctx(ctx, &graph, 4);
- const float * output = ggml_get_data_f32(m3);
- for (int i = 0; i < ggml_nelements(m3); ++i) {
- assert(output[i] == buf1_f32[i] + buf2_f32[i] + buf3_f32[i]);
- }
- assert(g_custom3_count == 1);
- ggml_free(ctx);
- }
- return 0;
- }
|