dataset.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. # Copyright (c) Meta Platforms, Inc. and affiliates
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the license found in the
  5. # LICENSE file in the root directory of this source tree.
  6. import argparse
  7. import dataclasses
  8. import json
  9. import logging
  10. import os
  11. from pathlib import Path
  12. from seamless_communication.datasets.huggingface import (
  13. Speech2SpeechFleursDatasetBuilder,
  14. )
  15. logging.basicConfig(
  16. level=logging.INFO,
  17. format="%(asctime)s %(levelname)s -- %(name)s: %(message)s",
  18. )
  19. logger = logging.getLogger("dataset")
  20. # Full list of FLEURS langcodes is available at https://huggingface.co/datasets/google/fleurs
  21. # Full list of M4T langcodes is available
  22. # in paper "SeamlessM4T—Massively Multilingual & Multimodal Machine Translation" (Table 5)
  23. UNITY_TO_FLEURS_LANG_MAPPING = {
  24. "eng": "en_us",
  25. "ita": "it_it",
  26. "afr": "af_za",
  27. "asm": "as_in",
  28. "bel": "be_by",
  29. "bul": "bg_bg",
  30. "ben": "bn_in",
  31. "cat": "ca_es",
  32. "ces": "cs_cz",
  33. "dan": "da_dk",
  34. "deu": "de_de",
  35. "ell": "el_gr",
  36. "fin": "fi_fi",
  37. "fra": "fr_fr",
  38. "glg": "gl_es",
  39. "heb": "he_il",
  40. "hin": "hi_in",
  41. "hrv": "hr_hr",
  42. "hun": "hu_hu",
  43. "ind": "id_id",
  44. "ibo": "ig_ng",
  45. "isl": "is_is",
  46. "ita": "it_it",
  47. "jpn": "ja_jp",
  48. "jav": "jv_id",
  49. "kaz": "kk_kz",
  50. "kan": "kn_in",
  51. "kir": "ky_kg",
  52. "kor": "ko_kr",
  53. "lit": "lt_lt",
  54. "mkd": "mk_mk",
  55. "mlt": "mt_mt",
  56. "mya": "my_mm",
  57. "nld": "nl_nl",
  58. "pan": "pa_in",
  59. "pol": "pl_pl",
  60. "ron": "ro_ro",
  61. "rus": "ru_ru",
  62. "snd": "sd_in",
  63. "slk": "sk_sk",
  64. "srp": "sr_rs",
  65. "swh": "sw_ke",
  66. "tam": "ta_in",
  67. "tel": "te_in",
  68. "tha": "th_th",
  69. "tur": "tr_tr",
  70. "ukr": "uk_ua",
  71. "urd": "ur_pk",
  72. "uzn": "uz_uz",
  73. "vie": "vi_vn",
  74. "yor": "yo_ng",
  75. "zul": "zu_za",
  76. }
  77. def _check_lang_code_mapping(lang: str) -> None:
  78. if lang not in UNITY_TO_FLEURS_LANG_MAPPING:
  79. raise ValueError(
  80. f"No language code mapping for {lang}(M4T)->??(FLEURs). "
  81. "Please expand `UNITY_TO_FLEURS_LANG_MAPPING`"
  82. )
  83. def download_fleurs_dataset(
  84. source_lang: str,
  85. target_lang: str,
  86. split: str,
  87. save_directory: str,
  88. ) -> str:
  89. _check_lang_code_mapping(source_lang)
  90. _check_lang_code_mapping(target_lang)
  91. tokenizer = None
  92. dataset_iterator = Speech2SpeechFleursDatasetBuilder(
  93. source_lang=UNITY_TO_FLEURS_LANG_MAPPING[source_lang],
  94. target_lang=UNITY_TO_FLEURS_LANG_MAPPING[target_lang],
  95. dataset_cache_dir=save_directory,
  96. speech_tokenizer=tokenizer,
  97. skip_source_audio=True, # don't extract units from source audio
  98. skip_target_audio=False,
  99. split=split,
  100. )
  101. manifest_path: str = os.path.join(save_directory, f"{split}_manifest.json")
  102. with open(manifest_path, "w") as fp_out:
  103. for idx, sample in enumerate(dataset_iterator, start=1):
  104. # correction as FleursDatasetBuilder return fleurs lang codes
  105. sample.source.lang = source_lang
  106. sample.target.lang = target_lang
  107. sample.target.waveform = None # already extracted units
  108. fp_out.write(json.dumps(dataclasses.asdict(sample)) + "\n")
  109. logger.info(f"Saved {idx} samples for split={split} to {manifest_path}")
  110. return manifest_path
  111. def init_parser() -> argparse.ArgumentParser:
  112. parser = argparse.ArgumentParser(
  113. description=(
  114. "Helper script to download training/evaluation dataset (FLEURS),"
  115. "extract units from target audio and save the dataset as a manifest "
  116. "consumable by `finetune.py`."
  117. )
  118. )
  119. parser.add_argument(
  120. "--source_lang",
  121. type=str,
  122. required=True,
  123. help="M4T langcode of the dataset SOURCE language",
  124. )
  125. parser.add_argument(
  126. "--target_lang",
  127. type=str,
  128. required=True,
  129. help="M4T langcode of the dataset TARGET language",
  130. )
  131. parser.add_argument(
  132. "--split",
  133. type=str,
  134. required=True,
  135. help="Dataset split/shard to download (`train`, `validation`, `test`)",
  136. )
  137. parser.add_argument(
  138. "--save_dir",
  139. type=Path,
  140. required=True,
  141. help="Directory where the datastets will be stored with HuggingFace datasets cache files",
  142. )
  143. return parser
  144. def main() -> None:
  145. args = init_parser().parse_args()
  146. manifest_path = download_fleurs_dataset(
  147. source_lang=args.source_lang,
  148. target_lang=args.target_lang,
  149. split=args.split,
  150. save_directory=args.save_dir,
  151. )
  152. logger.info(f"Manifest saved to: {manifest_path}")
  153. if __name__ == "__main__":
  154. main()