dataset.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. # Copyright (c) Meta Platforms, Inc. and affiliates
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the license found in the
  5. # LICENSE file in the root directory of this source tree.
  6. import argparse
  7. import dataclasses
  8. import json
  9. import logging
  10. import os
  11. from pathlib import Path
  12. import torch
  13. from seamless_communication.datasets.huggingface import (
  14. Speech2SpeechFleursDatasetBuilder,
  15. SpeechTokenizer,
  16. )
  17. from seamless_communication.models.unit_extraction import UnitExtractor
  18. logging.basicConfig(
  19. level=logging.INFO,
  20. format="%(asctime)s %(levelname)s -- %(name)s: %(message)s",
  21. )
  22. logger = logging.getLogger("dataset")
  23. # Full list of FLEURS langcodes is available at https://huggingface.co/datasets/google/fleurs
  24. # Full list of M4T langcodes is available
  25. # in paper "SeamlessM4T—Massively Multilingual & Multimodal Machine Translation" (Table 5)
  26. UNITY_TO_FLEURS_LANG_MAPPING = {
  27. "eng": "en_us",
  28. "ita": "it_it",
  29. "afr": "af_za",
  30. "asm": "as_in",
  31. "bel": "be_by",
  32. "bul": "bg_bg",
  33. "ben": "bn_in",
  34. "cat": "ca_es",
  35. "ces": "cs_cz",
  36. "dan": "da_dk",
  37. "deu": "de_de",
  38. "ell": "el_gr",
  39. "fin": "fi_fi",
  40. "fra": "fr_fr",
  41. "glg": "gl_es",
  42. "heb": "he_il",
  43. "hin": "hi_in",
  44. "hrv": "hr_hr",
  45. "hun": "hu_hu",
  46. "ind": "id_id",
  47. "ibo": "ig_ng",
  48. "isl": "is_is",
  49. "ita": "it_it",
  50. "jpn": "ja_jp",
  51. "jav": "jv_id",
  52. "kaz": "kk_kz",
  53. "kan": "kn_in",
  54. "kir": "ky_kg",
  55. "kor": "ko_kr",
  56. "lit": "lt_lt",
  57. "mkd": "mk_mk",
  58. "mlt": "mt_mt",
  59. "mya": "my_mm",
  60. "nld": "nl_nl",
  61. "pan": "pa_in",
  62. "pol": "pl_pl",
  63. "ron": "ro_ro",
  64. "rus": "ru_ru",
  65. "snd": "sd_in",
  66. "slk": "sk_sk",
  67. "srp": "sr_rs",
  68. "swh": "sw_ke",
  69. "tam": "ta_in",
  70. "tel": "te_in",
  71. "tha": "th_th",
  72. "tur": "tr_tr",
  73. "ukr": "uk_ua",
  74. "urd": "ur_pk",
  75. "uzn": "uz_uz",
  76. "vie": "vi_vn",
  77. "yor": "yo_ng",
  78. "zul": "zu_za",
  79. }
  80. def _check_lang_code_mapping(lang: str) -> None:
  81. if lang not in UNITY_TO_FLEURS_LANG_MAPPING:
  82. raise ValueError(
  83. f"No language code mapping for {lang}(M4T)->??(FLEURs). "
  84. "Please expand `UNITY_TO_FLEURS_LANG_MAPPING`"
  85. )
  86. class UnitSpeechTokenizer(SpeechTokenizer):
  87. MODEL_NAME = "xlsr2_1b_v2"
  88. KMEANS_MODEL_URI = "https://dl.fbaipublicfiles.com/seamlessM4T/models/unit_extraction/kmeans_10k.npy"
  89. OUTPUT_LAYER_IDX = 34
  90. def __init__(self, device: torch.device):
  91. super().__init__()
  92. self.device = device
  93. self.unit_extractor = UnitExtractor(
  94. model_name_or_card=self.MODEL_NAME,
  95. kmeans_uri=self.KMEANS_MODEL_URI,
  96. device=self.device,
  97. )
  98. def encode(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
  99. return self.unit_extractor.predict(
  100. wav.to(self.device),
  101. out_layer_idx=self.OUTPUT_LAYER_IDX,
  102. sample_rate=sample_rate,
  103. )
  104. def download_fleurs_dataset(
  105. source_lang: str,
  106. target_lang: str,
  107. split: str,
  108. save_directory: str,
  109. ) -> str:
  110. _check_lang_code_mapping(source_lang)
  111. _check_lang_code_mapping(target_lang)
  112. device = (
  113. torch.device("cuda:0") if torch.cuda.device_count() > 0 else torch.device("cpu")
  114. )
  115. tokenizer = UnitSpeechTokenizer(device=device)
  116. dataset_iterator = Speech2SpeechFleursDatasetBuilder(
  117. source_lang=UNITY_TO_FLEURS_LANG_MAPPING[source_lang],
  118. target_lang=UNITY_TO_FLEURS_LANG_MAPPING[target_lang],
  119. dataset_cache_dir=save_directory,
  120. speech_tokenizer=tokenizer,
  121. skip_source_audio=True, # don't extract units from source audio
  122. skip_target_audio=False,
  123. split=split,
  124. )
  125. manifest_path: str = os.path.join(save_directory, f"{split}_manifest.json")
  126. with open(manifest_path, "w") as fp_out:
  127. for idx, sample in enumerate(dataset_iterator.__iter__(), start=1):
  128. # correction as FleursDatasetBuilder return fleurs lang codes
  129. sample.source.lang = source_lang
  130. sample.target.lang = target_lang
  131. sample.target.waveform = None # already extracted units
  132. fp_out.write(json.dumps(dataclasses.asdict(sample)) + "\n")
  133. logger.info(f"Saved {idx} samples for split={split} to {manifest_path}")
  134. return manifest_path
  135. def init_parser() -> argparse.ArgumentParser:
  136. parser = argparse.ArgumentParser(
  137. description=(
  138. "Helper script to download training/evaluation dataset (FLEURS),"
  139. "extract units from target audio and save the dataset as a manifest "
  140. "consumable by `finetune.py`."
  141. )
  142. )
  143. parser.add_argument(
  144. "--source_lang",
  145. type=str,
  146. required=True,
  147. help="M4T langcode of the dataset SOURCE language",
  148. )
  149. parser.add_argument(
  150. "--target_lang",
  151. type=str,
  152. required=True,
  153. help="M4T langcode of the dataset TARGET language",
  154. )
  155. parser.add_argument(
  156. "--split",
  157. type=str,
  158. required=True,
  159. help="Dataset split/shard to download (`train`, `validation`, `test`)",
  160. )
  161. parser.add_argument(
  162. "--save_dir",
  163. type=Path,
  164. required=True,
  165. help="Directory where the datastets will be stored with HuggingFace datasets cache files",
  166. )
  167. return parser
  168. def main() -> None:
  169. args = init_parser().parse_args()
  170. manifest_path = download_fleurs_dataset(
  171. source_lang=args.source_lang,
  172. target_lang=args.target_lang,
  173. split=args.split,
  174. save_directory=args.save_dir,
  175. )
  176. logger.info(f"Manifest saved to: {manifest_path}")
  177. if __name__ == "__main__":
  178. main()