fairseq2.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924
  1. #include <math.h>
  2. #include "ggml.h"
  3. #include "fairseq2.h"
  4. #include <unordered_map>
  5. #include <algorithm>
  6. /// allocate the fairseq2 model and hyperparameters
  7. extern "C" fairseq2_model* fairseq2_model_alloc() {
  8. // pre-allocate some memory to write hyperparameters and tensors pointers
  9. auto* model = new fairseq2_model;
  10. model->hparams = new std::uint8_t[8 * 1024];
  11. model->arch = new std::uint64_t[16 * 1024]; // max tensors allowed
  12. model->tensors_ctx = nullptr;
  13. return model;
  14. };
  15. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  16. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  17. delete (std::uint64_t*)(model->arch);
  18. delete (std::uint8_t*)model->hparams;
  19. delete model;
  20. };
  21. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  22. model->ctx = ctx;
  23. }
  24. extern "C" std::string* std_string_alloc(char* c_str) {
  25. return new std::string(c_str);
  26. }
  27. extern "C" void std_string_free(std::string* str) {
  28. delete str;
  29. }
  30. bool has_layer(fairseq2_model& model, const std::string& name) {
  31. return model.tensors.find(name) != model.tensors.end();
  32. }
  33. extern "C" ggml_tensor* Linear_forward(
  34. fairseq2_model& model,
  35. const std::string &prefix,
  36. ggml_tensor* input // (d_in)
  37. ) {
  38. // Note: for now we assumed un-batched input
  39. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  40. GGML_ASSERT(weight != nullptr);
  41. ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
  42. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  43. if (bias == nullptr) return out;
  44. return ggml_add_inplace(model.ctx, out, bias);
  45. }
  46. extern "C" ggml_tensor* LayerNorm_forward(
  47. fairseq2_model& model,
  48. const std::string &prefix,
  49. ggml_tensor* input
  50. ) {
  51. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  52. GGML_ASSERT(weight != nullptr);
  53. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  54. GGML_ASSERT(bias != nullptr);
  55. auto ctx = model.ctx;
  56. // TODO: should `eps` be part of unity hparams ?
  57. input = ggml_norm(ctx, input, /*eps*/1e-5);
  58. return ggml_add_inplace(
  59. ctx,
  60. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  61. ggml_repeat(ctx, bias, input)
  62. );
  63. }
  64. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  65. fairseq2_model& model,
  66. const std::string& prefix,
  67. ggml_tensor* seqs
  68. ) {
  69. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  70. // inner_activation = ReLu // TODO: allow other activation
  71. seqs = ggml_relu_inplace(model.ctx, seqs);
  72. if (has_layer(model, prefix + ".inner_layer_norm")) {
  73. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  74. }
  75. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  76. return seqs;
  77. }
  78. ggml_tensor* reshape_num_head(ggml_context* ctx, ggml_tensor* x, int num_heads) {
  79. int slen = x->ne[1];
  80. int model_dim = x->ne[0];
  81. // (S, dim) -> (S, H, H_dim)
  82. x = ggml_reshape_3d(ctx, x, model_dim / num_heads, num_heads, slen);
  83. // (S, H, H_dim) -> (H, S, H_dim)
  84. x = ggml_permute(ctx, x, 0, 2, 1, 3);
  85. return x;
  86. }
  87. // flash_attn doesn't work for cross attention because it assumes Q <= K
  88. // TODO: enable flash_attn only for the encoder
  89. # define UNITY_FLASH_ATTN 0
  90. extern "C" ggml_tensor* MultiheadAttention_forward(
  91. fairseq2_model& model,
  92. const std::string &prefix,
  93. ggml_tensor* queries, // (slen, d_in)
  94. ggml_tensor* keys, // (klen, d_in)
  95. ggml_tensor* values, // (klen, d_out)
  96. ggml_tensor* mask // (klen, slen)
  97. ) {
  98. int slen = queries->ne[1];
  99. int slenk = keys->ne[1];
  100. int num_heads = 16;
  101. int head_dim = queries->ne[0] / num_heads;
  102. ggml_context* ctx = model.ctx;
  103. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries);
  104. q = reshape_num_head(ctx, q, num_heads); // (H, S, H_dim)
  105. ggml_set_name(q, "q");
  106. ggml_tensor* k = Linear_forward(model, prefix + ".k_proj", keys);
  107. k = reshape_num_head(ctx, k, num_heads); // (H, Sk, H_dim)
  108. ggml_set_name(k, "k");
  109. ggml_tensor* v = Linear_forward(model, prefix + ".v_proj", values);
  110. v = ggml_reshape_3d(ctx, v, head_dim, num_heads, slenk); // (Sk, H, H_dim)
  111. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (H, H_dim, Sk)
  112. v = ggml_cont(ctx, v);
  113. ggml_set_name(v, "v");
  114. #if UNITY_FLASH_ATTN
  115. // For flash_attn, we assume either no masks, or triangular masks.
  116. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/mask != nullptr); // (H, S, H_dim)
  117. ggml_set_name(attn, "attn");
  118. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (S, H, H_dim)
  119. attn = ggml_cont(ctx, attn);
  120. attn = ggml_reshape_2d(ctx, attn, num_heads * head_dim, slen); // (S, H * H_dim)
  121. #else
  122. // (H, Sk, H_dim) x (H, S, H_dim) -> (H, S, Sk)
  123. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  124. ggml_set_name(qk, "qk");
  125. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  126. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  127. qk = ggml_scale(ctx, qk, qk_scale);
  128. ggml_set_name(qk, "qk_scaled");
  129. if (mask) qk = ggml_add(ctx, qk, mask);
  130. // TODO: upgrade qk to float32 if needed
  131. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (H, Sk, S)
  132. ggml_set_name(attn_weights, "attn_weights");
  133. // (H, S, Sk) x (H, H_dim, Sk) -> (H, H_dim, S)
  134. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  135. ggml_set_name(attn, "attn");
  136. attn = ggml_reshape_2d(ctx, attn, slen, num_heads * head_dim); // (H * H_dim, S)
  137. attn = ggml_transpose(ctx, attn); // (S, H * H_dim)
  138. // // I'm not sure why this one is needed ...
  139. attn = ggml_cont(ctx, attn);
  140. #endif // UNITY_FLASH_ATTN
  141. // out -> (S, d_out)
  142. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  143. ggml_set_name(out, "out");
  144. return out;
  145. }
  146. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  147. fairseq2_model& model,
  148. const std::string& prefix,
  149. ggml_tensor* seqs,
  150. ggml_tensor* padding_mask
  151. ) {
  152. ggml_context* ctx = model.ctx;
  153. // TODO: read norm_order from model
  154. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  155. // _forward_self_attn(seqs, padding_mask)
  156. auto residual = seqs;
  157. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  158. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  159. // TODO: add padding_mask to MultiheadAttention_forward
  160. GGML_ASSERT(padding_mask == nullptr);
  161. seqs = MultiheadAttention_forward(
  162. model,
  163. prefix + ".self_attn",
  164. seqs,
  165. seqs,
  166. seqs,
  167. /*attention masks=*/nullptr
  168. );
  169. if (has_layer(model, prefix + ".self_attn_norm"))
  170. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  171. seqs = ggml_add(ctx, seqs, residual);
  172. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  173. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  174. // _forward_ffn(seqs)
  175. residual = seqs;
  176. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  177. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  178. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  179. // TODO: if self.residual_scale is not None:
  180. // residual = self.residual_scale * residual
  181. seqs = ggml_add(ctx, seqs, residual);
  182. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  183. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  184. return seqs;
  185. }
  186. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  187. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  188. struct ggml_tensor * ggml_slice(
  189. struct ggml_context * ctx,
  190. struct ggml_tensor * a,
  191. int axis,
  192. int64_t start,
  193. int64_t end
  194. ) {
  195. int64_t ne[4];
  196. std::copy(a->ne, a->ne + 4, ne);
  197. if (axis < 0) axis = a->n_dims + axis;
  198. if (start < 0) start = ne[axis] + start;
  199. if (end < 0) end = ne[axis] + end;
  200. GGML_ASSERT(0 <= start);
  201. GGML_ASSERT(start <= end);
  202. GGML_ASSERT(end <= ne[axis]);
  203. ne[axis] = end - start;
  204. size_t offset = a->nb[axis] * start;
  205. size_t* nb = a->nb;
  206. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  207. result->n_dims = a->n_dims;
  208. return result;
  209. }
  210. extern "C" ggml_tensor* PositionalEmbedding_forward(
  211. fairseq2_model& model,
  212. const std::string& prefix,
  213. ggml_tensor* embeds
  214. ) {
  215. // This only work with the simple pos encoders
  216. int seq_len = embeds->ne[1];
  217. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  218. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
  219. return ggml_add(model.ctx, embeds, pos_embeds);
  220. }
  221. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  222. fairseq2_model& model,
  223. const std::string& prefix,
  224. ggml_tensor* seqs
  225. // TODO: state_bag
  226. ) {
  227. ggml_context* ctx = model.ctx;
  228. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  229. GGML_ASSERT(embed_weights != nullptr);
  230. ggml_tensor* embeds = ggml_get_rows(ctx, embed_weights, seqs);
  231. // padding mask ?
  232. // padding_mask = to_padding_mask(embeds, seq_lens)
  233. if (has_layer(model, prefix + ".pos_encoder")) {
  234. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  235. }
  236. if (has_layer(model, prefix + ".layer_norm")) {
  237. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  238. }
  239. return embeds;
  240. }
  241. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  242. fairseq2_model& model,
  243. const std::string& prefix,
  244. ggml_tensor* seqs,
  245. ggml_tensor* padding_mask
  246. ) {
  247. int layer_idx = 0;
  248. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  249. while (has_layer(model, layer_name)) {
  250. seqs = StandardTransformerEncoderLayer_forward(
  251. model, layer_name, seqs, padding_mask
  252. );
  253. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  254. layer_idx += 1;
  255. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  256. }
  257. if (has_layer(model, prefix + ".layer_norm"))
  258. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  259. return seqs;
  260. }
  261. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  262. fairseq2_model& model,
  263. const std::string& prefix,
  264. ggml_tensor* seqs,
  265. ggml_tensor* self_attn_mask,
  266. ggml_tensor* encoder_output,
  267. ggml_tensor* encoder_padding_mask
  268. ) {
  269. ggml_context* ctx = model.ctx;
  270. // TODO: read norm_order from model
  271. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  272. // _forward_self_attn(seqs, padding_mask)
  273. auto residual = seqs;
  274. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  275. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  276. seqs = MultiheadAttention_forward(
  277. model,
  278. prefix + ".self_attn",
  279. seqs,
  280. seqs,
  281. seqs,
  282. /*attention masks=*/self_attn_mask
  283. );
  284. if (has_layer(model, prefix + ".self_attn_norm"))
  285. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  286. seqs = ggml_add(ctx, seqs, residual);
  287. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  288. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  289. // _forward_encoder_decoder_attn
  290. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  291. // `encoder_output` must be `None` for decoder-only attention.
  292. GGML_ASSERT(encoder_output == nullptr);
  293. return seqs;
  294. }
  295. // `encoder_output` must not be `None` for encoder-decoder attention.
  296. GGML_ASSERT(encoder_output != nullptr);
  297. residual = seqs;
  298. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  299. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  300. seqs = MultiheadAttention_forward(
  301. model,
  302. prefix + ".encoder_decoder_attn",
  303. seqs,
  304. encoder_output,
  305. encoder_output,
  306. /*attention masks=*/encoder_padding_mask
  307. );
  308. seqs = ggml_add(ctx, seqs, residual);
  309. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  310. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  311. // _forward_ffn(seqs)
  312. residual = seqs;
  313. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  314. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  315. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  316. // TODO:
  317. // if self.residual_scale is not None:
  318. // residual = self.residual_scale * residual
  319. seqs = ggml_add(ctx, seqs, residual);
  320. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  321. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  322. return seqs;
  323. }
  324. ggml_tensor* causal_mask_cache = nullptr;
  325. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  326. auto seq_len = seqs->ne[1];
  327. auto mask = causal_mask_cache;
  328. // TODO: this cache only works as long as we don't change the size/device too often
  329. // TODO: allow other ggml_type
  330. if (mask == nullptr || mask->backend != seqs->backend || mask->ne[0] < seq_len) {
  331. printf("new causal_mask (%ld, %ld) created\n", seq_len, seq_len);
  332. mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  333. char* data = (char*)mask->data;
  334. // tensor([[0., -inf, -inf, -inf],
  335. // [0., 0., -inf, -inf],
  336. // [0., 0., 0., -inf],
  337. // [0., 0., 0., 0.]])
  338. for (int i = 0; i < seq_len; ++i) {
  339. char* row = data + i * mask->nb[1];
  340. for (int j = 0; j <= i; ++j) {*(float*)(row + j * mask->nb[0]) = 0;}
  341. for (int j = i + 1; j < seq_len; ++j) {*(float*)(row + j * mask->nb[0]) = -INFINITY;}
  342. }
  343. causal_mask_cache = mask;
  344. }
  345. return ggml_view_2d(ctx, mask, seq_len, seq_len, mask->nb[1], 0);
  346. }
  347. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  348. fairseq2_model& model,
  349. const std::string& prefix,
  350. ggml_tensor* seqs,
  351. ggml_tensor* padding_mask,
  352. ggml_tensor* encoder_output,
  353. ggml_tensor* encoder_padding_mask
  354. ) {
  355. int layer_idx = 0;
  356. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  357. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  358. while (has_layer(model, layer_name)) {
  359. seqs = StandardTransformerDecoderLayer_forward(
  360. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  361. );
  362. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  363. layer_idx += 1;
  364. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  365. }
  366. if (has_layer(model, prefix + ".layer_norm"))
  367. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  368. return seqs;
  369. }
  370. using IncrementalStateBag = std::unordered_map<ggml_tensor*, ggml_tensor*>*;
  371. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  372. auto opts = job.opts;
  373. int max_seq_len = -1;
  374. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  375. max_seq_len = opts.hard_max_seq_len;
  376. } else {
  377. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len + opts.soft_max_seq_len_b));
  378. }
  379. if (opts.min_seq_len > max_seq_len) {
  380. printf(
  381. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  382. opts.min_seq_len,
  383. max_seq_len
  384. );
  385. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  386. }
  387. int prefix_seq_len = job.prefix_seq->ne[0];
  388. if (prefix_seq_len >= max_seq_len) {
  389. printf(
  390. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  391. prefix_seq_len,
  392. max_seq_len
  393. );
  394. GGML_ASSERT(prefix_seq_len < max_seq_len);
  395. }
  396. return max_seq_len;
  397. }
  398. void _fan_out_encoder_output(
  399. ggml_context* ctx,
  400. ggml_tensor** encoder_output_out,
  401. ggml_tensor** encoder_padding_mask_out,
  402. int beam_size
  403. ) {
  404. // (S_enc, M)
  405. ggml_tensor* encoder_output = *encoder_output_out;
  406. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  407. // (B, S_enc, M)
  408. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  409. // (S_enc, M) -> (B, S_enc, M)
  410. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  411. // (S_enc) -> (B, S_enc)
  412. ggml_tensor* shape_mask = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], beam_size);
  413. if (encoder_padding_mask != nullptr) {
  414. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  415. }
  416. }
  417. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  418. // TODO: this isn't the most precise way of doing this
  419. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  420. }
  421. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  422. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  423. ggml_type true_type = x->type;
  424. x->type = GGML_TYPE_F32;
  425. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  426. y->type = true_type;
  427. return y;
  428. }
  429. void _bootstrap_seqs_and_scores(
  430. fairseq2_model& model,
  431. const SequenceGeneratorJob& job,
  432. ggml_tensor* full_seqs,
  433. ggml_tensor* scores,
  434. ggml_tensor* encoder_output,
  435. ggml_tensor* encoder_padding_mask,
  436. IncrementalStateBag state_bag
  437. ) {
  438. int prefix_seq_len = job.prefix_seq->ne[0];
  439. int max_seq_len = scores->ne[0];
  440. int beam_size = scores->ne[1];
  441. GGML_ASSERT(prefix_seq_len > 0);
  442. if (prefix_seq_len == 1)
  443. return;
  444. ggml_context* ctx = model.ctx;
  445. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  446. full_seqs->type = GGML_TYPE_F32;
  447. job.prefix_seq->type = GGML_TYPE_F32;
  448. ggml_tensor* seqs = ggml_cpy(ctx, job.prefix_seq, ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len));
  449. // We have to bootstrap the model with the already fanned-out encoder
  450. // output to correctly initialize its incremental state.
  451. // (S_pfx) -> (N x B, S_pfx - 1)
  452. // prefix_seq[:-1].expand(beam_size, -1)
  453. seqs = ggml_expand_2d(ctx, ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1), prefix_seq_len - 1, beam_size);
  454. seqs->type = GGML_TYPE_I32;
  455. // Bootstrap the model state with prefix sequence.
  456. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  457. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  458. model,
  459. "text_decoder",
  460. seqs,
  461. /*padding_mask*/ nullptr,
  462. encoder_output,
  463. encoder_padding_mask
  464. // TODO: state_bag
  465. );
  466. // TODO state_bag.increment_step(prefix_seq_len - 1)
  467. // logits, lprobs: (N, S_pfx - 1, V)
  468. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  469. int vocab_size = logits->ne[0];
  470. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  471. ggml_cgraph gf = ggml_build_forward(lprobs);
  472. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  473. full_seqs->type = GGML_TYPE_I32;
  474. job.prefix_seq->type = GGML_TYPE_I32;
  475. // Fetch scores of next steps from "lprobs"
  476. float p_score = 0;
  477. for (int i = 0; i < prefix_seq_len; ++i) {
  478. int p = ggml_get_i32_1d(job.prefix_seq, i);
  479. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  480. for (int b = 0; b < beam_size; ++b) {
  481. // scores: (N, S)
  482. // Note: First step (e.g. BOS)'s score is always 0.
  483. ggml_set_f32_1d(scores, b * max_seq_len + i + 1, p_score);
  484. }
  485. }
  486. }
  487. /// Represents a hypothesis produced by a sequence generator.
  488. struct Hypothesis {
  489. /// The generated sequence.
  490. ggml_tensor* seq;
  491. /// The score of the hypothesis.
  492. float score;
  493. /// The score of each individual sequence step.
  494. ggml_tensor* step_scores;
  495. };
  496. /// Represents a standard beam search algoritm.
  497. int StandardBeamSearch_step(
  498. ggml_context* ctx,
  499. int step_nr,
  500. bool is_start_step,
  501. ggml_tensor* lprobs, // (B, V)
  502. ggml_tensor* last_scores, // (B)
  503. ggml_tensor* candidate_indices
  504. ) {
  505. GGML_ASSERT(lprobs->n_dims == 2);
  506. int vocab_size = lprobs->ne[0];
  507. int beam_size = lprobs->ne[1];
  508. GGML_ASSERT(last_scores->n_dims == 2);
  509. GGML_ASSERT(last_scores->ne[0] == 1);
  510. GGML_ASSERT(last_scores->ne[1] == beam_size);
  511. GGML_ASSERT(candidate_indices->ne[0] == beam_size * vocab_size);
  512. // should this be done by the caller ?
  513. if (is_start_step) {
  514. // At the initial step, all hypotheses are equally likely, so we use
  515. // only the first beam.
  516. lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
  517. lprobs = ggml_cont(ctx, lprobs);
  518. // The first step always indicates the beginning of the sequence and
  519. // has no score.
  520. if (step_nr > 0) {
  521. lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  522. }
  523. } else {
  524. // Make probabilities contain cumulative scores for each hypothesis.
  525. // TODO this seems incorrect
  526. lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  527. }
  528. ggml_cgraph gf = ggml_build_forward(lprobs);
  529. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  530. // Take the best 2 x `beam_size` predictions. We'll choose the first
  531. // `beam_size` of these which don't predict EOS to continue with.
  532. // (N, 2 x B)
  533. // `vocab_size` - 1 to never select PAD.
  534. int topk = std::min(2 * beam_size, vocab_size - 1);
  535. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  536. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  537. };
  538. auto cand = (std::int32_t*)candidate_indices->data;
  539. std::partial_sort(cand, cand + topk, cand + (beam_size * vocab_size), comp);
  540. return topk;
  541. }
  542. void ggml_detach(ggml_tensor* a) {
  543. a->op = GGML_OP_NONE;
  544. a->src[0] = nullptr;
  545. }
  546. int _finalize_hypothesis(
  547. const SequenceGeneratorJob& job,
  548. ggml_context* ctx,
  549. int step_nr,
  550. int vocab_size,
  551. std::int32_t candidate,
  552. float tok_score,
  553. ggml_tensor* seqs, // (beam_size, seq_len)
  554. ggml_tensor* scores, // (beam_size, seq_len)
  555. std::vector<Hypothesis>& hypotheses
  556. ) {
  557. std::int32_t beam = candidate / vocab_size;
  558. std::int32_t token = candidate % vocab_size;
  559. // Detect beams that reached the minimum length and that end with an EOS.
  560. bool eos = token == job.eos_idx;
  561. eos &= tok_score != -INFINITY;
  562. if (!eos) return 0;
  563. // If the candidate beam is "finished", let's copy the score and sequence
  564. ggml_tensor* tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  565. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  566. auto tok = (std::int32_t*)tokens->data;
  567. for (int i = 0; i < step_nr + 1; ++i) {
  568. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  569. }
  570. tok[step_nr + 1] = token;
  571. // Convert from cumulative to per-step scores.
  572. auto sc = (float*)step_scores->data;
  573. float last_score = tok_score;
  574. for (int i = step_nr; i >= 0; --i) {
  575. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  576. sc[i] = last_score - sc0;
  577. last_score = sc0;
  578. }
  579. if (job.opts.normalize_scores)
  580. // Skip first EOS since it is always 0 and skews normalization.
  581. tok_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  582. // TODO the score computed here isn't the same than computed by fairseq2.
  583. hypotheses.emplace_back(Hypothesis{tokens, tok_score, step_scores});
  584. return 1;
  585. }
  586. /// Generates a translation for a single sequence
  587. // TODO: finish this for beam_size=1
  588. // * find out why score is different (seq is the same though)
  589. // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
  590. // TODO: support beam_size > 1:
  591. // * most layers assume un-batched input, but we want to handle several beams at once
  592. // * need to port "reorder_state_dict"
  593. // TODO: clean up
  594. // * replace manual tensor tweaking with ggml_set_*d (ggml_set_slice could be useful)
  595. extern "C" float generate_sequence(
  596. fairseq2_model& model,
  597. const SequenceGeneratorJob& job,
  598. ggml_tensor* encoder_output,
  599. ggml_tensor* encoder_padding_mask,
  600. ggml_tensor* output_seq
  601. ) {
  602. ggml_context* ctx = model.ctx;
  603. size_t eos_idx = job.eos_idx;
  604. auto pad_idx = job.pad_idx;
  605. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  606. size_t vocab_size = embed->ne[1];
  607. std::size_t beam_size = job.opts.beam_size;
  608. int source_seq_len = encoder_output->ne[1];
  609. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  610. // (S_enc, M) -> (B, S_enc, M)
  611. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  612. std::vector<Hypothesis> finished_searches;
  613. finished_searches.reserve(beam_size);
  614. // Initialize buffers. (B, S)
  615. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  616. ggml_set_i32(seqs, 0);
  617. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  618. ggml_set_f32(scores, 0.0);
  619. IncrementalStateBag state_bag = {};
  620. _bootstrap_seqs_and_scores(
  621. model, job, seqs, scores, encoder_output, encoder_padding_mask, state_bag
  622. );
  623. int prefix_seq_len = job.prefix_seq->ne[0];
  624. int start_step = prefix_seq_len - 1;
  625. // Holds the indices of beams (a beam can occur more than once) that we
  626. // should continue with in the next step.
  627. ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  628. ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  629. ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
  630. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  631. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  632. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  633. ((int32_t *)(candidate_indices->data))[i] = i;
  634. // TODO: memory management
  635. // there should be a per-step ggml_context for intermediary results
  636. // start of beam search:
  637. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  638. // if (beam_indices != nullptr) {
  639. // // If not `None`, it means in the last step we finalized one or
  640. // // more searches. We should ensure that we adjust `beam_indices`
  641. // // before reordering `decoder`'s incremental state.
  642. // if (search_indices != nullptr) {
  643. // num_searches = search_indices->ne[0];
  644. // // (N)
  645. // delta = search_indices - torch.arange(num_searches, device=device)
  646. // // (N) -> (N, 1)
  647. // delta.unsqueeze_(-1)
  648. // // Adjust indices to take into account removed searches.
  649. // beam_indices.view(num_searches, beam_size).add_(delta * beam_size)
  650. // }
  651. // // state_bag.reorder(beam_indices)
  652. // }
  653. // because of no IncrementalStateBag we pass input from the start
  654. // decoder_input = seqs[:, 0 : step_nr + 1]
  655. ggml_tensor* decoder_input = ggml_slice(ctx, seqs, 0, 0, step_nr + 1);
  656. decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", decoder_input);
  657. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  658. model,
  659. "text_decoder",
  660. decoder_input,
  661. nullptr, // We never generate PAD.
  662. encoder_output,
  663. encoder_padding_mask
  664. // state_bag=state_bag,
  665. );
  666. // state_bag.increment_step()
  667. // Because of no IncrementalStateBag decoder_output here is of shape (B, S, D)
  668. // Just look at the last token.
  669. decoder_output = ggml_slice(ctx, decoder_output, 1, step_nr, step_nr+1);
  670. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  671. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  672. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  673. // TODO: use ggml properly compute the tweaks
  674. ggml_cgraph gf = ggml_build_forward(lprobs);
  675. printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
  676. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  677. ggml_detach(lprobs);
  678. // // Do not allow EOS before reaching the minimum sequence length.
  679. if (step_nr < job.opts.min_seq_len) {
  680. // lprobs[:, :, self.eos_idx] = -INFINITY;
  681. for (size_t i = 0; i < beam_size; ++i)
  682. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  683. }
  684. // If we have reached the maximum length, force the last step to be EOS.
  685. // TODO: should this be done in an adhoc loop ? how often does that happen anyway ?
  686. if (step_nr == max_seq_len - 2) {
  687. // lprobs[:, :, : self.eos_idx] = -torch.inf
  688. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  689. for (size_t b = 0; b < beam_size; ++b) {
  690. size_t t = 0;
  691. for (t = 0; t < eos_idx; ++t)
  692. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  693. for (t = eos_idx + 1; t < vocab_size; ++t)
  694. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  695. }
  696. }
  697. // Never allow PAD.
  698. for (size_t i = 0; i < beam_size; ++i)
  699. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  700. // Apply UNK penalty.
  701. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  702. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  703. auto lprobs_raw = ggml_get_data_f32(lprobs);
  704. for (size_t i = 0; i < beam_size; ++i)
  705. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  706. }
  707. // Determine candidates for the next step.
  708. // (N, 2 x B)
  709. int topk = StandardBeamSearch_step(
  710. ctx,
  711. step_nr,
  712. step_nr == start_step,
  713. lprobs,
  714. ggml_slice(ctx, scores, 0, step_nr, step_nr+1),
  715. candidate_indices
  716. );
  717. std::size_t ongoing_beams = 0;
  718. int new_num_searches = 0;
  719. for (std::int32_t i = 0; i < topk; ++i) {
  720. int c = ggml_get_f32_1d(candidate_indices, i);
  721. float tok_score = ggml_get_f32_1d(lprobs, c);
  722. int finished = _finalize_hypothesis(job, ctx, step_nr, vocab_size, c, tok_score, seqs, scores, finished_searches);
  723. new_num_searches += finished;
  724. if (!finished){
  725. std::int32_t beam = c / vocab_size;
  726. std::int32_t token = c % vocab_size;
  727. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  728. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  729. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  730. ongoing_beams += 1 - finished;
  731. }
  732. if (ongoing_beams >= beam_size) break;
  733. if (finished_searches.size() >= beam_size)
  734. goto end_of_beam_search;
  735. }
  736. // Reorder beams in the `seq` and `score` buffers. The same beam can
  737. // be selected more than once.
  738. ggml_tensor* new_seqs = seqs;
  739. // ggml_get_rows and ggml_set only work with floats ...
  740. new_seqs->type = GGML_TYPE_F32;
  741. ggml_tensor* new_scores = scores;
  742. if (step_nr > start_step) {
  743. // (B, S), (B) -> (B, S)
  744. new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
  745. new_scores = ggml_get_rows(ctx, new_scores, beam_indices);
  746. }
  747. // new_seqs[:, step_nr + 1] = next_tokens
  748. gf = ggml_build_forward(ggml_set_1d_inplace(ctx, new_seqs, next_tokens, new_seqs->nb[0] * (step_nr + 1)));
  749. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  750. ggml_detach(new_seqs);
  751. new_seqs->type = GGML_TYPE_I32;
  752. gf = ggml_build_forward(ggml_set_1d_inplace(ctx, new_scores, next_scores, new_scores->nb[0] * (step_nr + 1)));
  753. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  754. ggml_detach(new_scores);
  755. // TODO the old seqs and score buffers could be reused for next step
  756. seqs = new_seqs;
  757. scores = new_scores;
  758. }
  759. end_of_beam_search:
  760. // Ensure that hypotheses are sorted by decreasing scores before returning.
  761. std::sort(
  762. finished_searches.begin(),
  763. finished_searches.end(),
  764. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  765. );
  766. // For now just return the best sequence
  767. // TODO: return structured output
  768. *output_seq = *(finished_searches[0].seq);
  769. return finished_searches[0].score;
  770. }