test_unity_cpp.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845
  1. import ctypes
  2. import functools
  3. import logging
  4. import sys
  5. from ctypes import c_void_p
  6. from pathlib import Path
  7. from typing import Any, Iterator, List, Tuple
  8. import fairseq2.nn
  9. import fairseq2.nn.transformer
  10. from fairseq2.nn.padding import PaddingMask
  11. import numpy as np
  12. import pytest
  13. import torch
  14. import torchaudio
  15. from fairseq2.data.audio import WaveformToFbankConverter
  16. from fairseq2.generation import SequenceGeneratorOptions
  17. from fairseq2.models.wav2vec2.feature_extractor import Wav2Vec2FbankFeatureExtractor
  18. from seamless_communication.inference.translator import Modality, Translator
  19. import ggml
  20. from ctypes_utils import NULLPTR, Ptr
  21. from ggml import NativeObj
  22. from ggml_convert import convert_model, read_layer_config
  23. Ctx = ggml.ggml_context_p
  24. UNITY_MODELS = Path(__file__).parent / "examples/unity/models"
  25. CTX_PARAMS = ggml.ggml_init_params(mem_size=1024 * 1024 * 1024 * 5, mem_buffer=None)
  26. FAIRSEQ2_CPP = Path(__file__).parent / "examples/unity/fairseq2.cpp"
  27. UNITY_FLASH_ATTN = "\n# define UNITY_FLASH_ATTN 0\n" not in FAIRSEQ2_CPP.read_text()
  28. DATA = Path(__file__).parent / "test_data"
  29. DATA_DEV = DATA / "dev"
  30. if not DATA_DEV.exists():
  31. DATA_DEV = Path(
  32. "/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev"
  33. )
  34. @pytest.fixture(name="ctx")
  35. def _ctx() -> Iterator[Ctx]:
  36. """Allocate a new context with 1024 MB of memory"""
  37. try:
  38. ctx = ggml.ggml_init(params=CTX_PARAMS)
  39. with torch.inference_mode():
  40. yield ctx
  41. finally:
  42. ggml.ggml_free(ctx)
  43. @functools.lru_cache()
  44. def _load_g_model_once() -> NativeObj:
  45. model_file = Path(__file__).parent / "seamlessM4T_medium.ggml"
  46. if not model_file.exists():
  47. convert_model("seamlessM4T_medium", model_file)
  48. return ggml.load_fairseq2_ggml_file(model_file)
  49. @pytest.fixture()
  50. def g_model(ctx: Ctx) -> c_void_p:
  51. model = _load_g_model_once()
  52. ggml.lib.fairseq2_model_set_inference_ctx(model.ptr, ctx)
  53. return model.ptr
  54. @functools.lru_cache(maxsize=1)
  55. def load_translator() -> Translator:
  56. return Translator("seamlessM4T_medium", None, device=torch.device("cpu"))
  57. def load_pt_model() -> Any:
  58. return load_translator().model
  59. def test_convert_linear(tmp_path: Path) -> None:
  60. module = fairseq2.nn.Linear(16, 24, True)
  61. layer_config = read_layer_config(module)
  62. assert layer_config == {"input_dim": 16, "output_dim": 24}
  63. module_file = Path("module.ggml")
  64. convert_model(module, module_file)
  65. g_module = ggml.load_fairseq2_ggml_file(module_file)
  66. for k, v in layer_config.items():
  67. assert (
  68. ggml.fairseq2_model_layer_config_int(g_module.ptr, bytes(k, "ascii")) == v
  69. )
  70. def test_causal_attention_mask(ctx: Ctx):
  71. x = torch.zeros((1, 10, 32))
  72. generator = fairseq2.nn.transformer.CausalAttentionMaskFactory()
  73. mask_exp = generator(x, x).materialize().numpy()
  74. gx = ggml.from_numpy(ctx, x)
  75. gmask = ggml.causal_attention_mask(ctx, gx)
  76. mask = ggml.to_numpy(gmask)
  77. gf = ggml.ggml_build_forward(gmask)
  78. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  79. assert mask_exp.shape == (10, 10)
  80. assert mask.shape == (10, 10)
  81. assert np.all(mask == mask_exp)
  82. x = x[:, :8, :]
  83. mask_exp = generator(x, x).materialize().numpy()
  84. gx = ggml.from_numpy(ctx, x)
  85. gmask = ggml.causal_attention_mask(ctx, gx)
  86. mask = ggml.to_numpy(gmask)
  87. gf = ggml.ggml_build_forward(gmask)
  88. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  89. assert mask_exp.shape == (8, 8)
  90. assert mask.shape == (8, 8)
  91. assert np.all(mask == mask_exp)
  92. def test_LayerNorm_forward(ctx: Ctx, g_model: c_void_p) -> None:
  93. x = torch.empty((2, 21, 1024))
  94. torch.nn.init.uniform_(x, -1, 1)
  95. pt_model = load_pt_model()
  96. y_exp = pt_model.text_encoder.layers[0].ffn_layer_norm(x).numpy()
  97. gx = ggml.from_numpy(ctx, x)
  98. gy = ggml.forward("LayerNorm", g_model, "text_encoder.layers.0.ffn_layer_norm", gx)
  99. ggml.build_and_compute(ctx, gy)
  100. y = ggml.to_numpy(gy)
  101. assert np.allclose(y_exp, y, atol=1e-5)
  102. def test_Linear_forward(ctx: Ctx, g_model: c_void_p) -> None:
  103. x = torch.empty((2, 21, 1024))
  104. torch.nn.init.uniform_(x, -1, 1)
  105. pt_model = load_pt_model()
  106. y_exp = pt_model.text_encoder.layers[0].ffn.inner_proj(x).numpy()
  107. gx = ggml.from_numpy(ctx, x)
  108. gy = ggml.forward("Linear", g_model, "text_encoder.layers.0.ffn.inner_proj", gx)
  109. ggml.build_and_compute(ctx, gy)
  110. y = ggml.to_numpy(gy)
  111. assert np.allclose(y_exp, y, atol=1e-5)
  112. def test_FeedForwardNetwork_forward(ctx: Ctx, g_model: c_void_p) -> None:
  113. x = torch.empty((2, 21, 1024)) # (bs, seq_len, model_dim)
  114. torch.nn.init.uniform_(x, -1 / 32, 1 / 32)
  115. # Test FFN without LayerNorm
  116. pt_model = load_pt_model()
  117. y_exp = pt_model.text_encoder.layers[0].ffn(x).numpy()
  118. gx = ggml.from_numpy(ctx, x)
  119. gy = ggml.forward(
  120. "StandardFeedForwardNetwork", g_model, "text_encoder.layers.0.ffn", gx
  121. )
  122. ggml.build_and_compute(ctx, gy)
  123. y = ggml.to_numpy(gy)
  124. assert np.allclose(y_exp, y, atol=1e-5)
  125. @pytest.mark.parametrize("lengths", [(11, 21), (21, 13)])
  126. def test_MultiheadAttention_forward(
  127. ctx: Ctx, g_model: c_void_p, lengths: Tuple[int, int]
  128. ) -> None:
  129. x = torch.empty((2, 21, 1024))
  130. torch.random.manual_seed(0)
  131. torch.nn.init.uniform_(x, -1, 1)
  132. # Note: we use different lengths for queries and keys,
  133. # this tests the implementation in decoding context too.
  134. # Note2: ggml_flash_attn requires that we have more keys than queries
  135. # qlen, klen = (11, 21) if flash_attn else (21, 13)
  136. qlen, klen = lengths
  137. xq = x[:, :qlen]
  138. xk = x[:, :klen]
  139. if qlen > klen and UNITY_FLASH_ATTN:
  140. pytest.skip(reason="flash_attn requires qlen > klen")
  141. gxq = ggml.from_numpy(ctx, xq.contiguous())
  142. gxk = ggml.from_numpy(ctx, xk.contiguous())
  143. ggml.ggml_set_name(gxk, b"xk")
  144. gy = ggml.forward(
  145. "MultiheadAttention",
  146. g_model,
  147. "text_encoder.layers.0.self_attn",
  148. gxq,
  149. gxk,
  150. gxk,
  151. NULLPTR, # TODO: tests with causal attention masks
  152. )
  153. gf = ggml.ggml_build_forward(gy)
  154. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  155. pt_model = load_pt_model()
  156. self_attn = pt_model.text_encoder.layers[0].self_attn
  157. q_exp = self_attn.q_proj(xq).numpy()
  158. y = ggml.to_numpy(gy)
  159. nodes = ggml.nodes(gf)
  160. attn_weights_hook = fairseq2.nn.transformer.AttentionWeightStoreHook([])
  161. self_attn.register_attn_weight_hook(attn_weights_hook)
  162. y_exp = self_attn(xq, None, xk, None, xk).numpy()
  163. q = ggml.to_numpy(nodes[b"q"])
  164. assert q.shape == q_exp.shape
  165. assert np.allclose(q_exp, q, atol=1e-5)
  166. # with flash_attn we don't have attn_weights
  167. naive_attn = b"attn_weights" in nodes
  168. if naive_attn:
  169. attn_weights = ggml.to_numpy(nodes[b"attn_weights"]).reshape(-1, 16, qlen, klen)
  170. [(_, attn_weights_exp)] = attn_weights_hook._storage
  171. attn_weights_exp = attn_weights_exp.numpy()
  172. assert attn_weights_exp.shape == attn_weights.shape
  173. # GGML is very agressively reducing small softmax weights to 0,
  174. # so the error isn't that small
  175. assert np.allclose(attn_weights_exp, attn_weights, atol=1e-3)
  176. # But the sums should be close to 1
  177. assert np.allclose(np.sum(attn_weights, axis=-1), np.ones((2, 16, qlen)))
  178. # And the maximum index should match the original ones.
  179. assert np.allclose(
  180. np.argmax(attn_weights_exp, axis=-1), np.argmax(attn_weights, axis=-1)
  181. )
  182. assert y.shape == y_exp.shape
  183. assert np.allclose(y_exp, y, atol=1e-2 if naive_attn else 1e-4)
  184. def test_MultiheadAttention_forward_self_attn_with_cache(
  185. ctx: Ctx, g_model: c_void_p
  186. ) -> None:
  187. pt_model = load_pt_model()
  188. attn = pt_model.text_decoder.layers[0].self_attn
  189. x = torch.empty((2, 21, 1024))
  190. torch.random.manual_seed(0)
  191. torch.nn.init.uniform_(x, -1, 1)
  192. state_bag = fairseq2.nn.IncrementalStateBag(100)
  193. with ggml.fairseq2_kv_cache_alloc(g_model, 2, 21):
  194. # Incremental decoding
  195. for t in range(3):
  196. xq = x[:, t : t + 1]
  197. y_exp = attn(xq, None, xq, None, xq, state_bag=state_bag).numpy()
  198. assert y_exp.shape == (2, 1, 1024)
  199. gxq = ggml.from_numpy(ctx, xq.contiguous())
  200. ggml.ggml_set_name(gxq, b"xq")
  201. gy = ggml.forward(
  202. "MultiheadAttention",
  203. g_model,
  204. "text_decoder.layers.0.self_attn",
  205. gxq,
  206. gxq,
  207. gxq,
  208. None, # type: ignore
  209. )
  210. gf = ggml.ggml_build_forward(gy)
  211. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  212. nodes = ggml.nodes(gf)
  213. state = state_bag.get_state(attn, fairseq2.nn.transformer.AttentionState)
  214. state_bag.increment_step_nr()
  215. assert state is not None
  216. assert np.allclose(
  217. state.get()[0].transpose(1, 2).reshape(2, t + 1, -1).numpy(),
  218. ggml.to_numpy(
  219. nodes[b"text_decoder.layers.0.self_attn.k_cache (step=%d)" % t]
  220. ),
  221. atol=1e-3,
  222. )
  223. y = ggml.to_numpy(gy)
  224. assert np.allclose(y, y_exp, atol=1e-2)
  225. def test_MultiheadAttention_forward_cross_attn_with_cache(
  226. ctx: Ctx, g_model: c_void_p
  227. ) -> None:
  228. pt_model = load_pt_model()
  229. attn = pt_model.text_decoder.layers[0].encoder_decoder_attn
  230. x = torch.empty((2, 21, 1024))
  231. torch.random.manual_seed(0)
  232. torch.nn.init.uniform_(x, -1, 1)
  233. state_bag = fairseq2.nn.IncrementalStateBag(100)
  234. with ggml.fairseq2_kv_cache_alloc(g_model, 2, 21):
  235. # Incremental decoding, the keys come from the encoder, and don't change during decoding
  236. xk = x[:, :11]
  237. gxk = ggml.from_numpy(ctx, xk.contiguous(), name=b"xk")
  238. for t in range(3):
  239. xq = x[:, t : t + 1]
  240. gxq = ggml.from_numpy(ctx, xq.contiguous())
  241. ggml.ggml_set_name(gxq, b"xq")
  242. gy = ggml.forward(
  243. "MultiheadAttention",
  244. g_model,
  245. "text_decoder.layers.0.encoder_decoder_attn",
  246. gxq,
  247. gxk,
  248. gxk,
  249. None, # type: ignore
  250. )
  251. gf = ggml.ggml_build_forward(gy)
  252. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  253. y = ggml.to_numpy(gy)
  254. nodes = ggml.nodes(gf)
  255. leaves = ggml.leafs(gf)
  256. if t > 0:
  257. # the cache only appear in the graph during the second call
  258. state = state_bag.get_state(
  259. attn, fairseq2.nn.transformer.AttentionState
  260. )
  261. assert state is not None
  262. assert np.allclose(
  263. state.get()[0].transpose(1, 2).numpy(),
  264. ggml.to_numpy(
  265. nodes[
  266. b"text_decoder.layers.0.encoder_decoder_attn.k_cache (view)"
  267. ]
  268. ),
  269. atol=1e-3,
  270. )
  271. state_bag.increment_step_nr()
  272. y_exp = attn(xq, None, xk, None, xk, state_bag=state_bag).numpy()
  273. assert y_exp.shape == (2, 1, 1024)
  274. assert np.allclose(y, y_exp, atol=1e-2)
  275. def test_StandardTransformerEncoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
  276. x = torch.empty((2, 21, 1024))
  277. torch.random.manual_seed(0)
  278. torch.nn.init.uniform_(x, -1, 1)
  279. pt_model = load_pt_model()
  280. layer = pt_model.text_encoder.layers[0]
  281. gx = ggml.from_numpy(ctx, x)
  282. ggml.ggml_set_name(gx, b"x")
  283. padding_mask = fairseq2.nn.padding.PaddingMask(torch.tensor([21, 21]), 21)
  284. gpad = ggml.from_numpy(ctx, padding_mask.materialize())
  285. ggml.ggml_set_name(gpad, b"padding_mask")
  286. gy = ggml.forward(
  287. "StandardTransformerEncoderLayer",
  288. g_model,
  289. "text_encoder.layers.0",
  290. gx,
  291. None, # TODO support padding mask
  292. )
  293. gf = ggml.ggml_build_forward(gy)
  294. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  295. y = ggml.to_numpy(gy)
  296. y_exp, _ = layer(x, padding_mask=None)
  297. y_exp = y_exp.numpy()
  298. assert y.shape == y_exp.shape
  299. assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-2)
  300. def test_StandardConformerEncoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
  301. pt_model = load_pt_model()
  302. if not DATA_DEV.exists():
  303. pytest.skip(reason=f"Folder {DATA_DEV} not found !")
  304. x = torch.load(DATA_DEV / "seqs_before_conformer_block.pt")
  305. padding_mask = PaddingMask(torch.ones(1, x.shape[1]),x.shape[1])
  306. layer = pt_model.speech_encoder.inner.layers[0]
  307. gx = ggml.from_numpy(ctx, x[0])
  308. ggml.ggml_set_name(gx, b"x")
  309. gpad = ggml.from_numpy(ctx, padding_mask[0])
  310. ggml.ggml_set_name(gpad, b"padding_mask")
  311. gy = ggml.forward(
  312. "StandardConformerEncoderLayer",
  313. g_model,
  314. "speech_encoder.inner.layers.0",
  315. gx,
  316. None, # TODO support padding mask
  317. )
  318. gf = ggml.ggml_build_forward(gy)
  319. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  320. y = ggml.to_numpy(gy)
  321. y_exp, _ = layer(x, padding_mask)
  322. y_exp = y_exp.numpy()
  323. assert y.shape == y_exp.shape
  324. assert np.allclose(y_exp, y, atol=2e-3)
  325. def test_StandardConformerEncoderAdaptorLayer_forward(
  326. ctx: Ctx, g_model: c_void_p
  327. ) -> None:
  328. pt_model = load_pt_model()
  329. if not DATA_DEV.exists():
  330. pytest.skip(reason=f"Folder {DATA_DEV} not found !")
  331. x = torch.load(DATA_DEV / "seqs_before_adaptor.pt")
  332. layer = pt_model.speech_encoder.adaptor_layers[0]
  333. gx = ggml.from_numpy(ctx, x[0])
  334. ggml.ggml_set_name(gx, b"x")
  335. gy = ggml.forward(
  336. "StandardConformerEncoderAdaptorLayer",
  337. g_model,
  338. "speech_encoder.adaptor_layers.0",
  339. gx,
  340. None, # TODO support padding mask
  341. )
  342. gf = ggml.ggml_build_forward(gy)
  343. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  344. y = ggml.to_numpy(gy)
  345. y_exp, _ = layer(x, None)
  346. y_exp = y_exp.numpy()
  347. assert y.shape == y_exp.shape
  348. assert np.allclose(y_exp, y, atol=2e-3)
  349. def test_StandardTransformerEncoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
  350. x = torch.empty((2, 21, 1024))
  351. padding_mask = fairseq2.nn.padding.PaddingMask(torch.tensor([21, 21]), 21)
  352. torch.random.manual_seed(0)
  353. torch.nn.init.uniform_(x, -1, 1)
  354. gx = ggml.from_numpy(ctx, x)
  355. ggml.ggml_set_name(gx, b"x")
  356. gpad = ggml.from_numpy(ctx, padding_mask.materialize())
  357. ggml.ggml_set_name(gpad, b"padding_mask")
  358. gy = ggml.forward(
  359. "StandardTransformerEncoder",
  360. g_model,
  361. "text_encoder",
  362. gx,
  363. None, # TODO support padding mask
  364. )
  365. gf = ggml.ggml_build_forward(gy)
  366. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  367. y = ggml.to_numpy(gy)
  368. pt_model = load_pt_model()
  369. y_exp, _ = pt_model.text_encoder(x, padding_mask)
  370. y_exp = y_exp.numpy()
  371. assert y.shape == y_exp.shape
  372. assert np.allclose(y_exp, y, atol=5e-3)
  373. def test_StandardConformerEncoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
  374. pt_model = load_pt_model()
  375. wav, _ = torchaudio.load(DATA / "test.wav")
  376. gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
  377. ggml.ggml_set_name(gx, b"x")
  378. gy = ggml.forward(
  379. "StandardConformerEncoder",
  380. g_model,
  381. "speech_encoder",
  382. gx,
  383. None, # TODO support padding mask
  384. )
  385. gf = ggml.ggml_build_forward(gy)
  386. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  387. y = ggml.to_numpy(gy)
  388. cache = DATA / "test_StandardConformerEncoder_forward.npy"
  389. if not cache.exists():
  390. converter = WaveformToFbankConverter(
  391. num_mel_bins=80,
  392. waveform_scale=2**15,
  393. channel_last=True,
  394. standardize=True,
  395. )
  396. converter_input = {
  397. "waveform": wav.transpose(0, 1),
  398. "sample_rate": 16000.0,
  399. "format": -1,
  400. }
  401. pt_model = load_pt_model()
  402. speech_encoder_input = pt_model.speech_encoder_frontend(
  403. converter(converter_input)["fbank"].unsqueeze(0), None
  404. )[0]
  405. y_exp, _ = pt_model.speech_encoder(speech_encoder_input, None)
  406. y_exp = y_exp.numpy()
  407. np.save(cache, y_exp)
  408. else:
  409. y_exp = np.load(cache)
  410. assert y.shape == y_exp.shape
  411. assert np.allclose(
  412. y_exp, y, atol=1e-2
  413. ) # There are 10 elements in a 137*1024 tensor with error >1e-2
  414. def test_WaveformToFbank_forward(ctx: Ctx, g_model: c_void_p) -> None:
  415. pt_model = load_pt_model()
  416. converter = WaveformToFbankConverter(
  417. num_mel_bins=80,
  418. waveform_scale=2**15,
  419. channel_last=True,
  420. standardize=True,
  421. )
  422. extractor = Wav2Vec2FbankFeatureExtractor(80, stride=2, sample_every_k=1)
  423. wav, _ = torchaudio.load(DATA / "LJ037-0171_sr16k_test.wav")
  424. gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
  425. ggml.ggml_set_name(gx, b"x")
  426. gy = ggml.forward("WaveformToFbank", g_model, "", gx)
  427. gf = ggml.ggml_build_forward(gy)
  428. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  429. y = ggml.to_numpy(gy)
  430. converter_input = {
  431. "waveform": wav.transpose(0, 1),
  432. "sample_rate": 16000.0,
  433. "format": -1,
  434. }
  435. y_exp, _ = extractor(converter(converter_input)["fbank"].unsqueeze(0), None)
  436. y_exp = y_exp.squeeze(0).numpy()
  437. assert y.shape == y_exp.shape
  438. assert np.allclose(y_exp, y, atol=4e-3) # reduce? error is from standardization
  439. def test_PositionalEmbedding_forward(ctx: Ctx, g_model: c_void_p) -> None:
  440. seq = torch.zeros((4, 20, 1024), dtype=torch.float32)
  441. # this _legacy_pad_idx is suspicious. Shouldn't the model use 1 ? But
  442. # this is consistent with pt_model.text_decoder_frontend.pos_encoder._sin_offset
  443. pos_encoder = fairseq2.nn.SinusoidalPositionEncoder(1024, 55, _legacy_pad_idx=0)
  444. y_exp = pos_encoder(seq, None)[0].numpy()
  445. gseq = ggml.from_numpy(ctx, seq[0].clone().numpy())
  446. ggml.ggml_set_name(gseq, b"seq")
  447. gy = ggml.forward(
  448. "PositionalEmbedding", g_model, "text_decoder_frontend.pos_encoder", gseq
  449. )
  450. gf = ggml.ggml_build_forward(gy)
  451. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  452. y = ggml.to_numpy(gy)
  453. assert y.shape == y_exp.shape
  454. assert np.allclose(y_exp, y, atol=1e-6)
  455. def test_PositionalEmbedding_forward_with_cache(ctx: Ctx, g_model: c_void_p) -> None:
  456. seq = torch.zeros((4, 20, 1024), dtype=torch.float32)
  457. pos_encoder = fairseq2.nn.SinusoidalPositionEncoder(1024, 55, _legacy_pad_idx=0)
  458. pos_encoder.eval()
  459. state_bag = fairseq2.nn.IncrementalStateBag(100)
  460. with ggml.fairseq2_kv_cache_alloc(g_model, 2, 21):
  461. # Incremental decoding
  462. for t in range(20):
  463. gseq = ggml.from_numpy(ctx, seq[:, t : t + 1, :].numpy())
  464. ggml.ggml_set_name(gseq, b"seq")
  465. gy = ggml.forward(
  466. "PositionalEmbedding",
  467. g_model,
  468. "text_decoder_frontend.pos_encoder",
  469. gseq,
  470. )
  471. gf = ggml.ggml_build_forward(gy)
  472. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  473. y = ggml.to_numpy(gy)
  474. y_exp = pos_encoder(seq[:, t : t + 1, :], None, state_bag=state_bag).numpy()
  475. state_bag.increment_step_nr()
  476. assert y.shape == y_exp.shape
  477. assert np.allclose(y_exp, y, atol=1e-6)
  478. def test_TransformerEmbeddingFrontend_forward(ctx: Ctx, g_model: c_void_p) -> None:
  479. seq = torch.arange(2 * 20).reshape(2, 20)
  480. seq[1, 15:] = 0 # padding for second sentence
  481. seq_len = torch.tensor([20, 15])
  482. gseq = ggml.from_numpy(ctx, seq.numpy().astype(np.int32))
  483. ggml.ggml_set_name(gseq, b"seq")
  484. gy = ggml.forward(
  485. "TransformerEmbeddingFrontend", g_model, "text_decoder_frontend", gseq
  486. )
  487. ggml.build_and_compute(ctx, gy)
  488. y = ggml.to_numpy(gy)
  489. pt_model = load_pt_model()
  490. y_exp, _ = pt_model.text_decoder_frontend(seq, seq_len)
  491. y_exp = y_exp.numpy()
  492. assert y.shape == y_exp.shape
  493. assert np.allclose(y_exp, y, atol=1e-6)
  494. def test_StandardTransformerDecoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
  495. x = torch.empty((2, 13, 1024))
  496. encoder_out = torch.empty((2, 21, 1024))
  497. padding_mask = fairseq2.nn.padding.PaddingMask(torch.tensor([13, 13]), 13)
  498. torch.random.manual_seed(0)
  499. torch.nn.init.uniform_(x, -1, 1)
  500. torch.nn.init.uniform_(encoder_out, -1, 1)
  501. gx = ggml.from_numpy(ctx, x)
  502. ggml.ggml_set_name(gx, b"x")
  503. gpad = ggml.from_numpy(ctx, padding_mask.materialize())
  504. ggml.ggml_set_name(gpad, b"padding_mask")
  505. genc = ggml.from_numpy(ctx, encoder_out)
  506. gy = ggml.forward(
  507. "StandardTransformerDecoder",
  508. g_model,
  509. "text_decoder",
  510. gx,
  511. None, # TODO support padding mask,
  512. genc,
  513. None,
  514. )
  515. ggml.build_and_compute(ctx, gy)
  516. y = ggml.to_numpy(gy)
  517. pt_model = load_pt_model()
  518. y_exp, _ = pt_model.text_decoder(x, padding_mask, encoder_out, None)
  519. y_exp = y_exp.numpy()
  520. assert y.shape == y_exp.shape
  521. assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-3)
  522. def test_tokenizer(ctx: Ctx) -> None:
  523. tokenizer = unity.load_unity_text_tokenizer("seamlessM4T_medium")
  524. enc = tokenizer.create_encoder(task="translation", lang="eng", mode="source")
  525. spm_path = DATA / "seamlessM4T_medium.spm.ggml"
  526. # if not spm_path.exists():
  527. if True:
  528. vocab = ggml_convert.read_vocab(tokenizer)
  529. ggml_convert.write_ggml_file(spm_path, {"spm_vocab_only": True}, {}, vocab, {})
  530. g_model = ggml.load_fairseq2_ggml_file(spm_path)
  531. ggml.lib.fairseq2_model_set_inference_ctx(g_model.ptr, ctx)
  532. expected = enc("We are all in a yellow submarine.").tolist()[1:]
  533. tokens = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_I32, 256)
  534. ggml.fairseq2_spm_tokenize(
  535. g_model.ptr, b"We are all in a yellow submarine.", tokens
  536. )
  537. res = ggml.to_numpy(tokens).tolist()
  538. assert expected == res
  539. out = ctypes.create_string_buffer(144)
  540. ggml.fairseq2_spm_detokenize(g_model.ptr, tokens, out)
  541. assert ctypes.string_at(out) == b"We are all in a yellow submarine."
  542. def test_t2tt(ctx: Ctx, g_model: c_void_p) -> None:
  543. src_lang = "eng"
  544. src_text = "We are all in a yellow submarine."
  545. tgt_lang = "fra"
  546. sample_file = DATA / "sample_input.npz"
  547. beam_size = 2
  548. if not sample_file.exists():
  549. translator = load_translator()
  550. device = translator.device
  551. token_encoder = translator.text_tokenizer.create_encoder(
  552. task="translation", lang=src_lang, mode="source", device=device
  553. )
  554. src = translator.collate(token_encoder(src_text))
  555. text_out, _ = translator.get_prediction(
  556. translator.model,
  557. translator.text_tokenizer,
  558. translator.unit_tokenizer,
  559. src["seqs"],
  560. None,
  561. input_modality=Modality.TEXT,
  562. output_modality=Modality.TEXT,
  563. tgt_lang=tgt_lang,
  564. text_generation_opts=SequenceGeneratorOptions(beam_size=beam_size),
  565. unit_generation_opts=None,
  566. )
  567. tgt_text = str(text_out.sentences[0])
  568. assert tgt_text == "Nous sommes tous dans un sous-marin jaune."
  569. hypotheses = [
  570. {
  571. "seq": h.seq.tolist(),
  572. "score": h.score.item(),
  573. "step_scores": h.step_scores.numpy(),
  574. }
  575. for h in text_out.generator_output.results[0]
  576. ]
  577. np.savez(
  578. sample_file,
  579. encoder_output=text_out.encoder_output.numpy(),
  580. hypotheses=hypotheses,
  581. )
  582. # allow_pickle to load the hyp dicts
  583. text_out = np.load(sample_file, allow_pickle=True)
  584. encoder_out = ggml.from_numpy(ctx, text_out["encoder_output"])
  585. prefix_seq = np.array(text_out["hypotheses"][0]["seq"][:2]).astype(np.int32)
  586. max_seq_len = max(len(h["seq"]) for h in text_out["hypotheses"])
  587. opts = ggml.SequenceGeneratorOptions(
  588. beam_size=beam_size,
  589. min_seq_len=1,
  590. soft_max_seq_len_a=1,
  591. soft_max_seq_len_b=200,
  592. hard_max_seq_len=int(max_seq_len * 1.5),
  593. len_penalty=1.0,
  594. unk_penalty=0.0,
  595. normalize_scores=True,
  596. )
  597. job = ggml.SequenceGeneratorJob(
  598. opts=opts,
  599. prefix_seq=ggml.from_numpy(ctx, prefix_seq),
  600. pad_idx=0,
  601. unk_idx=1,
  602. bos_idx=2,
  603. eos_idx=3,
  604. num_threads=16,
  605. )
  606. result_ptr = ggml.generate_sequence(g_model, job, encoder_out, NULLPTR, ctx)
  607. results = [result_ptr[i] for i in range(beam_size) if result_ptr[i].seq != None]
  608. # The step score error is big, this may negatively impact the beam search.
  609. assert_hypotheses(
  610. text_out["hypotheses"], results, score_rtol=1e-2, step_scores_rtol=0.1
  611. )
  612. def test_s2tt(ctx: Ctx, g_model: c_void_p):
  613. src_audio_wav, _ = torchaudio.load(DATA / "test.wav")
  614. sample_file = DATA / "test.wav.npz"
  615. if not sample_file.exists():
  616. translator = load_translator()
  617. token_encoder = translator.text_tokenizer.create_encoder(task="translation")
  618. decoded_audio = {
  619. "waveform": src_audio_wav.t(),
  620. "sample_rate": 16000.0,
  621. "format": -1,
  622. }
  623. src = translator.collate(translator.convert_to_fbank(decoded_audio))["fbank"]
  624. text_out, _ = translator.get_prediction(
  625. translator.model,
  626. translator.text_tokenizer,
  627. translator.unit_tokenizer,
  628. src["seqs"],
  629. padding_mask=None,
  630. input_modality=Modality.SPEECH,
  631. output_modality=Modality.TEXT,
  632. tgt_lang="cmn",
  633. text_generation_opts=SequenceGeneratorOptions(),
  634. unit_generation_opts=None,
  635. )
  636. tgt_text = str(text_out.sentences[0])
  637. assert tgt_text == "大家好 , 世界无主题。"
  638. hypotheses = [
  639. {
  640. "seq": h.seq.tolist(),
  641. "score": h.score.item(),
  642. "step_scores": h.step_scores.numpy(),
  643. }
  644. for h in text_out.generator_output.results[0]
  645. ]
  646. np.savez(
  647. sample_file,
  648. encoder_output=text_out.encoder_output.numpy(),
  649. hypotheses=hypotheses,
  650. )
  651. exp = np.load(sample_file, allow_pickle=True)
  652. encoder_out = ggml.from_numpy(ctx, exp["encoder_output"])
  653. tgt_tokens = exp["hypotheses"][0]["seq"]
  654. max_seq_len = max(len(h["seq"]) for h in exp["hypotheses"])
  655. max_seq_len = int(max_seq_len * 1.5)
  656. # Apply scale before sending into ggml!
  657. gx = ggml.from_numpy(ctx, src_audio_wav * 2**15)
  658. ggml.ggml_set_name(gx, b"x")
  659. encoder_out = ggml.forward(
  660. "StandardConformerEncoder",
  661. g_model,
  662. "speech_encoder",
  663. gx,
  664. NULLPTR, # TODO support padding mask
  665. )
  666. gf = ggml.ggml_build_forward(encoder_out)
  667. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  668. beam_size = 5
  669. opts = ggml.SequenceGeneratorOptions(
  670. beam_size=beam_size,
  671. soft_max_seq_len_a=1,
  672. soft_max_seq_len_b=200,
  673. hard_max_seq_len=max_seq_len,
  674. )
  675. job = ggml.SequenceGeneratorJob(
  676. opts=opts,
  677. prefix_seq=ggml.from_numpy(ctx, np.array([3, 256200]).astype(np.int32)),
  678. pad_idx=0,
  679. unk_idx=1,
  680. bos_idx=2,
  681. eos_idx=3,
  682. )
  683. result_ptr = ggml.generate_sequence(g_model, Ptr(job), encoder_out, NULLPTR, ctx)
  684. results = [result_ptr[i] for i in range(beam_size) if result_ptr[i].seq != None]
  685. assert_hypotheses(exp["hypotheses"], results, score_rtol=1e-2, step_scores_rtol=0.1)
  686. def assert_hypotheses(
  687. expected: List[Any],
  688. results: List[Any],
  689. *,
  690. score_rtol: float,
  691. step_scores_rtol: float,
  692. ) -> None:
  693. assert len(results) == len(expected)
  694. for g_hyp, exp in zip(results, expected):
  695. g_tokens = list(ggml.to_numpy(g_hyp.seq))
  696. g_step_scores = ggml.to_numpy(g_hyp.step_scores)
  697. assert g_tokens == exp["seq"]
  698. assert g_hyp.score == pytest.approx(exp["score"], rel=score_rtol)
  699. assert np.allclose(g_step_scores, exp["step_scores"], rtol=step_scores_rtol)