123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776 |
- import ggml
- import ctypes
- import torch
- import pytest
- import numpy as np
- import torch
- import fairseq2.nn
- import fairseq2.nn.transformer
- import logging
- import sys
- import functools
- from typing import Tuple
- from pathlib import Path
- from ctypes_utils import Ptr
- from ctypes import c_void_p
- from typing import Any
- from pathlib import Path
- from typing import Iterator
- from ggml import NativeObj
- from ggml_convert import convert_model, read_layer_config
- from seamless_communication.models.inference.translator import Translator, Modality
- from fairseq2.data.audio import WaveformToFbankConverter
- import torchaudio
- from ctypes_utils import NULLPTR
- from fairseq2.models.wav2vec2.feature_extractor import Wav2Vec2FbankFeatureExtractor
- Ctx = ggml.ggml_context_p
- UNITY_MODELS = Path(__file__).parent / "examples/unity/models"
- CTX_PARAMS = ggml.ggml_init_params(mem_size=1024 * 1024 * 1024 * 5, mem_buffer=None)
- FAIRSEQ2_CPP = Path(__file__).parent / "examples/unity/fairseq2.cpp"
- UNITY_FLASH_ATTN = "\n# define UNITY_FLASH_ATTN 0\n" not in FAIRSEQ2_CPP.read_text()
- DATA = Path(__file__).parent
- @pytest.fixture(name="ctx")
- def _ctx() -> Iterator[Ctx]:
- """Allocate a new context with 1024 MB of memory"""
- try:
- ctx = ggml.ggml_init(params=CTX_PARAMS)
- with torch.inference_mode():
- yield ctx
- finally:
- ggml.ggml_free(ctx)
- @functools.lru_cache()
- def _load_g_model_once() -> NativeObj:
- model_file = Path(__file__).parent / "seamlessM4T_medium.ggml"
- if not model_file.exists():
- convert_model("seamlessM4T_medium", model_file)
- return ggml.load_fairseq2_ggml_file(model_file)
- @pytest.fixture()
- def g_model(ctx: Ctx) -> c_void_p:
- model = _load_g_model_once()
- ggml.lib.fairseq2_model_set_inference_ctx(model.ptr, ctx)
- return model.ptr
- @functools.lru_cache(maxsize=1)
- def load_translator() -> Translator:
- return Translator(
- "seamlessM4T_medium", "vocoder_36langs", torch.device("cpu"), torch.float32
- )
- def load_pt_model() -> Any:
- return load_translator().model
- def test_convert_linear(tmp_path: Path) -> None:
- module = fairseq2.nn.Linear(16, 24, True)
- layer_config = read_layer_config(module)
- assert layer_config == {"input_dim": 16, "output_dim": 24, "skip_init": False}
- module_file = Path("module.ggml")
- convert_model(module, module_file)
- g_module = ggml.load_fairseq2_ggml_file(module_file)
- for k, v in layer_config.items():
- assert (
- ggml.fairseq2_model_layer_config_int(g_module.ptr, bytes(k, "ascii")) == v
- )
- def test_causal_attention_mask(ctx: Ctx):
- x = torch.zeros((1, 10, 32))
- generator = fairseq2.nn.transformer.CausalAttentionMaskGenerator()
- mask_exp = generator(x).numpy()
- gx = ggml.from_numpy(ctx, x)
- gmask = ggml.causal_attention_mask(ctx, gx)
- mask = ggml.to_numpy(gmask)
- gf = ggml.ggml_build_forward(gmask)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- assert mask_exp.shape == (10, 10)
- assert mask.shape == (10, 10)
- assert np.all(mask == mask_exp)
- x = x[:, :8, :]
- mask_exp = generator(x).numpy()
- gx = ggml.from_numpy(ctx, x)
- gmask = ggml.causal_attention_mask(ctx, gx)
- mask = ggml.to_numpy(gmask)
- gf = ggml.ggml_build_forward(gmask)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- assert mask_exp.shape == (8, 8)
- assert mask.shape == (8, 8)
- assert np.all(mask == mask_exp)
- def test_LayerNorm_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 21, 1024))
- torch.nn.init.uniform_(x, -1, 1)
- pt_model = load_pt_model()
- y_exp = pt_model.text_encoder.layers[0].ffn_layer_norm(x).numpy()
- gx = ggml.from_numpy(ctx, x)
- gy = ggml.forward("LayerNorm", g_model, "text_encoder.layers.0.ffn_layer_norm", gx)
- ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- assert np.allclose(y_exp, y, atol=1e-5)
- def test_Linear_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 21, 1024))
- torch.nn.init.uniform_(x, -1, 1)
- pt_model = load_pt_model()
- y_exp = pt_model.text_encoder.layers[0].ffn.inner_proj(x).numpy()
- gx = ggml.from_numpy(ctx, x)
- gy = ggml.forward("Linear", g_model, "text_encoder.layers.0.ffn.inner_proj", gx)
- ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- assert np.allclose(y_exp, y, atol=1e-5)
- def test_FeedForwardNetwork_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 21, 1024)) # (bs, seq_len, model_dim)
- torch.nn.init.uniform_(x, -1 / 32, 1 / 32)
- # Test FFN without LayerNorm
- pt_model = load_pt_model()
- y_exp = pt_model.text_encoder.layers[0].ffn(x).numpy()
- gx = ggml.from_numpy(ctx, x)
- gy = ggml.forward(
- "StandardFeedForwardNetwork", g_model, "text_encoder.layers.0.ffn", gx
- )
- ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- assert np.allclose(y_exp, y, atol=1e-5)
- @pytest.mark.parametrize("lengths", [(11, 21), (21, 13)])
- def test_MultiheadAttention_forward(
- ctx: Ctx, g_model: c_void_p, lengths: Tuple[int, int]
- ) -> None:
- x = torch.empty((2, 21, 1024))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- # Note: we use different lengths for queries and keys,
- # this tests the implementation in decoding context too.
- # Note2: ggml_flash_attn requires that we have more keys than queries
- # qlen, klen = (11, 21) if flash_attn else (21, 13)
- qlen, klen = lengths
- xq = x[:, :qlen]
- xk = x[:, :klen]
- if qlen > klen and UNITY_FLASH_ATTN:
- pytest.skip(reason="flash_attn requires qlen > klen")
- gxq = ggml.from_numpy(ctx, xq.contiguous())
- gxk = ggml.from_numpy(ctx, xk.contiguous())
- ggml.ggml_set_name(gxk, b"xk")
- gy = ggml.forward(
- "MultiheadAttention",
- g_model,
- "text_encoder.layers.0.self_attn",
- gxq,
- gxk,
- gxk,
- NULLPTR, # TODO: tests with causal attention masks
- )
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- pt_model = load_pt_model()
- self_attn = pt_model.text_encoder.layers[0].self_attn
- q_exp = self_attn.q_proj(xq).numpy()
- y = ggml.to_numpy(gy)
- nodes = ggml.nodes(gf)
- attn_weights_hook = fairseq2.nn.transformer.StoreAttentionWeights([])
- self_attn.register_attn_weight_hook(attn_weights_hook)
- y_exp = self_attn(xq, None, xk, xk).numpy()
- q = ggml.to_numpy(nodes[b"q"])
- assert q.shape == q_exp.shape
- assert np.allclose(q_exp, q, atol=1e-5)
- # with flash_attn we don't have attn_weights
- naive_attn = b"attn_weights" in nodes
- if naive_attn:
- attn_weights = ggml.to_numpy(nodes[b"attn_weights"])
- [attn_weights_exp] = attn_weights_hook._storage
- attn_weights_exp = attn_weights_exp.numpy()
- assert attn_weights_exp.shape == attn_weights.shape
- # GGML is very agressively reducing small softmax weights to 0,
- # so the error isn't that small
- assert np.allclose(attn_weights_exp, attn_weights, atol=1e-3)
- # But the sums should be close to 1
- assert np.allclose(np.sum(attn_weights, axis=-1), np.ones((2 * 16, qlen)))
- # And the maximum index should match the original ones.
- assert np.allclose(
- np.argmax(attn_weights_exp, axis=-1), np.argmax(attn_weights, axis=-1)
- )
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-2 if naive_attn else 1e-4)
- def test_MultiheadAttention_forward_self_attn_with_cache(
- ctx: Ctx, g_model: c_void_p
- ) -> None:
- pt_model = load_pt_model()
- attn = pt_model.text_decoder.layers[0].self_attn
- x = torch.empty((2, 21, 1024))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- state_bag = fairseq2.nn.IncrementalStateBag()
- ggml.fairseq2_kv_cache_alloc(g_model, 2, 21)
- # Incremental decoding
- for t in range(3):
- xq = x[:, t : t + 1]
- y_exp = attn(xq, None, xq, xq, state_bag=state_bag).numpy()
- assert y_exp.shape == (2, 1, 1024)
- gxq = ggml.from_numpy(ctx, xq.contiguous())
- ggml.ggml_set_name(gxq, b"xq")
- gy = ggml.forward(
- "MultiheadAttention",
- g_model,
- "text_decoder.layers.0.self_attn",
- gxq,
- gxq,
- gxq,
- None, # type: ignore
- )
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- nodes = ggml.nodes(gf)
- state = state_bag.get_state(
- attn, fairseq2.nn.transformer.MultiheadAttentionState
- )
- assert state is not None
- assert np.allclose(
- state.prev_k.numpy(),
- ggml.to_numpy(nodes[b"text_decoder.layers.0.self_attn.k_cache (step=%d)" % t]),
- atol=1e-3,
- )
- y = ggml.to_numpy(gy)
- assert np.allclose(y, y_exp, atol=1e-2)
- def test_MultiheadAttention_forward_cross_attn_with_cache(
- ctx: Ctx, g_model: c_void_p
- ) -> None:
- pt_model = load_pt_model()
- attn = pt_model.text_decoder.layers[0].encoder_decoder_attn
- x = torch.empty((2, 21, 1024))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- state_bag = fairseq2.nn.IncrementalStateBag()
- ggml.fairseq2_kv_cache_alloc(g_model, 2, 21)
- # Incremental decoding, the keys come from the encoder, and don't change during decoding
- xk = x[:, :11]
- gxk = ggml.from_numpy(ctx, xk.contiguous(), name=b"xk")
- for t in range(3):
- xq = x[:, t : t + 1]
- gxq = ggml.from_numpy(ctx, xq.contiguous())
- ggml.ggml_set_name(gxq, b"xq")
- gy = ggml.forward(
- "MultiheadAttention",
- g_model,
- "text_decoder.layers.0.encoder_decoder_attn",
- gxq,
- gxk,
- gxk,
- None, # type: ignore
- )
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- y = ggml.to_numpy(gy)
- nodes = ggml.nodes(gf)
- leaves = ggml.leafs(gf)
- if t > 0:
- # the cache only appear in the graph during the second call
- state = state_bag.get_state(
- attn, fairseq2.nn.transformer.MultiheadAttentionState
- )
- assert state is not None
- assert np.allclose(
- state.prev_k.numpy(),
- ggml.to_numpy(nodes[b"text_decoder.layers.0.encoder_decoder_attn.k_cache"]),
- atol=1e-3,
- )
- y_exp = attn(xq, None, xk, xk, state_bag=state_bag).numpy()
- assert y_exp.shape == (2, 1, 1024)
- assert np.allclose(y, y_exp, atol=1e-2)
- def test_StandardTransformerEncoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 21, 1024))
- padding_mask = torch.ones((2, 21))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- pt_model = load_pt_model()
- layer = pt_model.text_encoder.layers[0]
- gx = ggml.from_numpy(ctx, x)
- ggml.ggml_set_name(gx, b"x")
- gpad = ggml.from_numpy(ctx, padding_mask)
- ggml.ggml_set_name(gpad, b"padding_mask")
- gy = ggml.forward(
- "StandardTransformerEncoderLayer",
- g_model,
- "text_encoder.layers.0",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- y = ggml.to_numpy(gy)
- y_exp, _ = layer(x, padding_mask)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-2)
- def test_StandardConformerEncoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
- pt_model = load_pt_model()
- x = torch.load(
- "/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_conformer_block.pt"
- )
- padding_mask = torch.ones((1, x.shape[1]))
- layer = pt_model.speech_encoder.inner.layers[0]
- gx = ggml.from_numpy(ctx, x[0])
- ggml.ggml_set_name(gx, b"x")
- gpad = ggml.from_numpy(ctx, padding_mask[0])
- ggml.ggml_set_name(gpad, b"padding_mask")
- gy = ggml.forward(
- "StandardConformerEncoderLayer",
- g_model,
- "speech_encoder.inner.layers.0",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- y = ggml.to_numpy(gy)
- y_exp, _ = layer(x, padding_mask)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=2e-3)
- def test_StandardConformerEncoderAdaptorLayer_forward(
- ctx: Ctx, g_model: c_void_p
- ) -> None:
- pt_model = load_pt_model()
- x = torch.load(
- "/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_adaptor.pt"
- )
- layer = pt_model.speech_encoder.adaptor_layers[0]
- gx = ggml.from_numpy(ctx, x[0])
- ggml.ggml_set_name(gx, b"x")
- gy = ggml.forward(
- "StandardConformerEncoderAdaptorLayer",
- g_model,
- "speech_encoder.adaptor_layers.0",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- y = ggml.to_numpy(gy)
- y_exp, _ = layer(x, None)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=2e-3)
- def test_StandardTransformerEncoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 21, 1024))
- padding_mask = torch.ones((2, 21))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- gx = ggml.from_numpy(ctx, x)
- ggml.ggml_set_name(gx, b"x")
- gpad = ggml.from_numpy(ctx, padding_mask)
- ggml.ggml_set_name(gpad, b"padding_mask")
- gy = ggml.forward(
- "StandardTransformerEncoder",
- g_model,
- "text_encoder",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- y = ggml.to_numpy(gy)
- pt_model = load_pt_model()
- y_exp, _ = pt_model.text_encoder(x, padding_mask)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-4)
- def test_StandardConformerEncoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
- pt_model = load_pt_model()
- wav, _ = torchaudio.load(DATA / "test.wav")
- gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
- ggml.ggml_set_name(gx, b"x")
- gy = ggml.forward(
- "StandardConformerEncoder",
- g_model,
- "speech_encoder",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- converter = WaveformToFbankConverter(
- num_mel_bins=80,
- waveform_scale=2**15,
- channel_last=True,
- standardize=True,
- )
- converter_input = {
- "waveform": wav.transpose(0, 1),
- "sample_rate": 16000.0,
- "format": -1,
- }
- y = ggml.to_numpy(gy)
- speech_encoder_input = pt_model.speech_encoder_frontend(
- converter(converter_input)["fbank"].unsqueeze(0), None
- )[0]
- y_exp, _ = pt_model.speech_encoder(speech_encoder_input, None)
- y_exp = y_exp.numpy() # remove batch dimension
- assert y.shape == y_exp.shape
- assert np.allclose(
- y_exp, y, atol=1e-2
- ) # There are 10 elements in a 137*1024 tensor with error >1e-2
- def test_WaveformToFbank_forward(ctx: Ctx, g_model: c_void_p) -> None:
- pt_model = load_pt_model()
- converter = WaveformToFbankConverter(
- num_mel_bins=80,
- waveform_scale=2**15,
- channel_last=True,
- standardize=True,
- )
- extractor = Wav2Vec2FbankFeatureExtractor(80, 2, 1)
- wav, _ = torchaudio.load(
- "/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/test.wav"
- )
- gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
- ggml.ggml_set_name(gx, b"x")
- gy = ggml.forward("WaveformToFbank", g_model, "", gx)
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- y = ggml.to_numpy(gy)
- converter_input = {
- "waveform": wav.transpose(0, 1),
- "sample_rate": 16000.0,
- "format": -1,
- }
- y_exp = extractor(converter(converter_input)["fbank"].unsqueeze(0), None)[0]
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=4e-3) # reduce? error is from standardization
- def test_causal_attention_mask(ctx: Ctx):
- x = torch.zeros((5, 10))
- generator = fairseq2.nn.transformer.CausalAttentionMaskGenerator()
- mask_exp = generator(x)
- gx = ggml.from_numpy(ctx, x)
- gmask = ggml.causal_attention_mask(ctx, gx)
- mask = ggml.to_numpy(gmask)
- assert mask_exp.shape == (10, 10)
- assert mask.shape == (10, 10)
- assert np.allclose(mask, mask_exp)
- def test_PositionalEmbedding_forward(ctx: Ctx, g_model: c_void_p) -> None:
- seq = torch.zeros((4, 20, 1024), dtype=torch.float32)
- # this _legacy_pad_idx is suspicious. Shouldn't the model use 1 ? But
- # this is consistent with pt_model.text_decoder_frontend.pos_encoder._sin_offset
- pos_encoder = fairseq2.nn.SinusoidalPositionEncoder(1024, 55, _legacy_pad_idx=0)
- y_exp = pos_encoder(seq, None)[0].numpy()
- gseq = ggml.from_numpy(ctx, seq[0].numpy())
- ggml.ggml_set_name(gseq, b"seq")
- gy = ggml.forward(
- "PositionalEmbedding", g_model, "text_decoder_frontend.pos_encoder", gseq
- )
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- y = ggml.to_numpy(gy)
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-6)
- def test_TransformerEmbeddingFrontend_forward(ctx: Ctx, g_model: c_void_p) -> None:
- seq = torch.arange(2 * 20).reshape(2, 20)
- seq[1, 15:] = 0 # padding for second sentence
- seq_len = torch.tensor([20, 15])
- gseq = ggml.from_numpy(ctx, seq.numpy().astype(np.int32))
- ggml.ggml_set_name(gseq, b"seq")
- gy = ggml.forward(
- "TransformerEmbeddingFrontend", g_model, "text_decoder_frontend", gseq
- )
- ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- pt_model = load_pt_model()
- y_exp, _ = pt_model.text_decoder_frontend(seq, seq_len)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-6)
- def test_StandardTransformerDecoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
- x = torch.empty((2, 13, 1024))
- encoder_out = torch.empty((2, 21, 1024))
- padding_mask = torch.ones((2, 13))
- torch.random.manual_seed(0)
- torch.nn.init.uniform_(x, -1, 1)
- torch.nn.init.uniform_(encoder_out, -1, 1)
- gx = ggml.from_numpy(ctx, x)
- ggml.ggml_set_name(gx, b"x")
- gpad = ggml.from_numpy(ctx, padding_mask)
- ggml.ggml_set_name(gpad, b"padding_mask")
- genc = ggml.from_numpy(ctx, encoder_out)
- gy = ggml.forward(
- "StandardTransformerDecoder",
- g_model,
- "text_decoder",
- gx,
- None, # TODO support padding mask,
- genc,
- None,
- )
- ggml.build_and_compute(ctx, gy)
- y = ggml.to_numpy(gy)
- pt_model = load_pt_model()
- y_exp, _ = pt_model.text_decoder(x, padding_mask, encoder_out, None)
- y_exp = y_exp.numpy()
- assert y.shape == y_exp.shape
- assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-3)
- def test_t2tt(ctx: Ctx, g_model: c_void_p) -> None:
- src_lang = "eng"
- src_text = "We are all in a yellow submarine."
- tgt_lang = "fra"
- sample_file = DATA / "sample_input.npz"
- beam_size = 2
- if not sample_file.exists():
- translator = load_translator()
- device = translator.device
- token_encoder = translator.text_tokenizer.create_encoder(
- task="translation", lang=src_lang, mode="source", device=device
- )
- src = translator.collate(token_encoder(src_text))
- text_out, _ = translator.get_prediction(
- translator.model,
- translator.text_tokenizer,
- translator.unit_tokenizer,
- src,
- input_modality=Modality.TEXT,
- output_modality=Modality.TEXT,
- tgt_lang=tgt_lang,
- beam_size=beam_size,
- )
- tgt_text = str(text_out.sentences[0])
- assert tgt_text == "Nous sommes tous dans un sous-marin jaune."
- hypotheses = [
- {
- "seq": h.seq.tolist(),
- "score": h.score.item(),
- "step_scores": h.step_scores.numpy(),
- }
- for h in text_out.generator_output.results[0]
- ]
- np.savez(
- sample_file,
- encoder_output=text_out.encoder_output.numpy(),
- encoder_padding_mask=text_out.encoder_padding_mask.numpy(),
- hypotheses=hypotheses,
- )
- # allow_pickle to load the hyp dicts
- text_out = np.load(sample_file, allow_pickle=True)
- encoder_out = ggml.from_numpy(ctx, text_out["encoder_output"])
- encoder_padding_mask = ggml.from_numpy(ctx, text_out["encoder_padding_mask"])
- prefix_seq = np.array(text_out["hypotheses"][0]["seq"][:2]).astype(np.int32)
- max_seq_len = max(len(h["seq"]) for h in text_out["hypotheses"])
- opts = ggml.SequenceGeneratorOptions(
- beam_size=beam_size,
- min_seq_len=1,
- soft_max_seq_len_a=1,
- soft_max_seq_len_b=200,
- hard_max_seq_len=int(max_seq_len * 1.5),
- len_penalty=1.0,
- unk_penalty=0.0,
- normalize_scores=True,
- )
- job = ggml.SequenceGeneratorJob(
- opts=opts,
- prefix_seq=ggml.from_numpy(ctx, prefix_seq),
- pad_idx=0,
- unk_idx=1,
- bos_idx=2,
- eos_idx=3,
- )
- result_ptr = ggml.generate_sequence(
- g_model, job, encoder_out, encoder_padding_mask, ctx
- )
- results = [result_ptr[i] for i in range(beam_size) if result_ptr[i].seq != None]
- assert len(results) == len(text_out["hypotheses"])
- for g_hyp, exp in zip(results, text_out["hypotheses"]):
- g_tokens = list(ggml.to_numpy(g_hyp.seq))
- g_step_scores = ggml.to_numpy(g_hyp.step_scores)
- assert g_tokens == exp["seq"]
- assert g_hyp.score == pytest.approx(exp["score"], rel=1e-2)
- # The score error is big, this may negatively impact the beam search.
- assert np.allclose(g_step_scores, exp["step_scores"], atol=0.1)
- def test_s2tt(ctx: Ctx, g_model: c_void_p):
- src_audio_wav, _ = torchaudio.load(DATA / "test.wav")
- # translator = load_translator()
- # token_encoder = translator.text_tokenizer.create_encoder(
- # task="translation"
- # )
- # decoded_audio = {
- # "waveform": src_audio_wav.t(),
- # "sample_rate": 16000.,
- # "format": -1,
- # }
- # src = translator.collate(translator.convert_to_fbank(decoded_audio))["fbank"]
- # text_out, _ = translator.get_prediction(
- # translator.model,
- # translator.text_tokenizer,
- # translator.unit_tokenizer,
- # src,
- # input_modality=Modality.SPEECH,
- # output_modality=Modality.TEXT,
- # tgt_lang="cmn",
- # )
- # tgt_text = str(text_out.sentences[0])
- # assert tgt_text == "大家好 , 世界无主题。"
- # tgt_tokens = text_out.generator_output.results[0][0].seq
- # score = text_out.generator_output.results[0][0].score.item()
- tgt_tokens = [
- 3,
- 256200,
- 16991,
- 249346,
- 249725,
- 146,
- 25220,
- 251069,
- 249211,
- 251148,
- 253935,
- 3,
- ] # "大家好 , 世界无主题。"
- score = -1.606838583946228
- gx = ggml.from_numpy(
- ctx, src_audio_wav * 2**15
- ) # Apply scale before sending into ggml!
- ggml.ggml_set_name(gx, b"x")
- gy = ggml.forward(
- "StandardConformerEncoder",
- g_model,
- "speech_encoder",
- gx,
- None, # TODO support padding mask
- )
- gf = ggml.ggml_build_forward(gy)
- ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
- encoder_out = gy
- opts = ggml.SequenceGeneratorOptions(
- beam_size=5,
- soft_max_seq_len_a=1,
- soft_max_seq_len_b=200,
- hard_max_seq_len=1000,
- )
- job = ggml.SequenceGeneratorJob(
- opts=opts,
- prefix_seq=ggml.from_numpy(ctx, np.array([3, 256200]).astype(np.int32)),
- pad_idx=0,
- unk_idx=1,
- bos_idx=2,
- eos_idx=3,
- )
- result_ptr = ggml.generate_sequence(g_model, job, encoder_out, NULLPTR, ctx)
- g_tokens = list(ggml.to_numpy(result_ptr[0].seq))
- assert g_tokens == tgt_tokens
|