fairseq2.cpp 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425
  1. #include <math.h>
  2. #include "kaldi-native-fbank/csrc/feature-fbank.h"
  3. #include "kaldi-native-fbank/csrc/feature-window.h"
  4. #include "ggml.h"
  5. #include "fairseq2.h"
  6. #include <unordered_map>
  7. #include <algorithm>
  8. #include <iostream>
  9. #include <fnmatch.h>
  10. void ggml_detach(ggml_tensor* a) {
  11. a->op = GGML_OP_NONE;
  12. std::fill(a->src, a->src + GGML_MAX_SRC, nullptr);
  13. }
  14. /// allocate the fairseq2 model and hyperparameters
  15. extern "C" fairseq2_model* fairseq2_model_alloc() {
  16. // pre-allocate some memory to write hyperparameters and tensors pointers
  17. auto* model = new fairseq2_model;
  18. model->tensors_ctx = nullptr;
  19. return model;
  20. }
  21. extern "C" void fairseq2_kv_cache_alloc(const fairseq2_model& model, int beam_size, int max_seq_len) {
  22. // Note: we only allocate the cache for the decoder attention.
  23. // For encoder attention since we compute it all at once,
  24. // the allocation is delayed to the first forward pass, to not over allocate.
  25. auto attn_glob = "*decoder.*_attn.k_proj.weight";
  26. auto self_attn_glob = "*decoder.*self_attn.k_proj.weight";
  27. ggml_tensor* self_attn_mask = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, max_seq_len, max_seq_len);
  28. self_attn_mask = ggml_diag_mask_inf_inplace(model.ctx, self_attn_mask, 0);
  29. ggml_format_name(self_attn_mask, "self_attn_mask[%d]", max_seq_len);
  30. for (auto named_tensor : model.tensors) {
  31. const std::string& name = named_tensor.first;
  32. if (::fnmatch(attn_glob, name.c_str(), 0) == FNM_NOMATCH)
  33. continue;
  34. // create a cache entry without the ".k_proj.weight" suffix
  35. const std::string& shortname = name.substr(0, name.size() - 14);
  36. KeyValueTensor& kv = model.kv_cache[shortname];
  37. kv.step_nr = 0;
  38. if (::fnmatch(self_attn_glob, name.c_str(), 0) == FNM_NOMATCH) {
  39. // enc_dec_attn
  40. // the tensors will be allocated during the first forward
  41. continue;
  42. }
  43. // self_attn
  44. ggml_tensor* k_proj = named_tensor.second;
  45. int model_dim = k_proj->ne[0];
  46. kv.full_k = ggml_new_tensor_3d(model.ctx, k_proj->type, model_dim, max_seq_len, beam_size);
  47. kv.full_v = ggml_new_tensor_3d(model.ctx, k_proj->type, model_dim, max_seq_len, beam_size);
  48. kv.self_attn_mask = self_attn_mask;
  49. ggml_format_name(kv.full_k, "%s.k_cache", shortname.c_str());
  50. ggml_format_name(kv.full_v, "%s.v_cache", shortname.c_str());
  51. }
  52. }
  53. bool has_kv_cache(const fairseq2_model& model) {
  54. return model.kv_cache.size() > 0;
  55. }
  56. // copy k and v to kv cache
  57. // kv.full_k[step_nr] = k;
  58. // kv.full_v[step_nr] = v;
  59. void append_to_prev_kv(const fairseq2_model& model, const std::string& prefix, ggml_tensor** k, ggml_tensor** v, ggml_tensor** self_attn_mask) {
  60. KeyValueTensor& kv = model.kv_cache[prefix];
  61. GGML_ASSERT(kv.full_k != nullptr); // key not found !
  62. int step_nr = kv.step_nr;
  63. ggml_tensor* full_k = kv.full_k;
  64. ggml_tensor* full_v = kv.full_v;
  65. // (N, S_kv, K_proj)
  66. GGML_ASSERT((*k)->ne[1] == 1); // TODO I think we could handle adding a full prefix sequence
  67. ggml_tensor* updated_k = ggml_set_2d_inplace(model.ctx, full_k, *k, full_k->nb[2], full_k->nb[1] * step_nr);
  68. ggml_tensor* updated_v = ggml_set_2d_inplace(model.ctx, full_v, *v, full_v->nb[2], full_v->nb[1] * step_nr);
  69. *k = ggml_slice(model.ctx, updated_k, 1, 0, step_nr + 1);
  70. *v = ggml_slice(model.ctx, updated_v, 1, 0, step_nr + 1);
  71. ggml_format_name(*k, "%s (step=%d)", full_k->name, step_nr);
  72. ggml_format_name(*v, "%s (step=%d)", full_v->name, step_nr);
  73. // qk is (B * H, Sq, Sk) == (B*H, 1, Sk) in incremental mode
  74. // we return the Sq slice of the (Sq, Sk) attention mask
  75. *self_attn_mask = ggml_slice(
  76. model.ctx,
  77. ggml_slice(model.ctx, kv.self_attn_mask, 0, 0, step_nr + 1),
  78. 1,
  79. step_nr,
  80. step_nr + 1
  81. );
  82. kv.step_nr = step_nr + 1;
  83. }
  84. // variant of ggml_get_rows that allows for a with more than 2 dims.
  85. ggml_tensor* ggml_get_rows2(ggml_context* ctx, ggml_tensor* a, ggml_tensor* b) {
  86. int flattened = 0;
  87. GGML_ASSERT(a->n_dims <= 3);
  88. if (a->n_dims == 3) {
  89. flattened = a->ne[0];
  90. a = ggml_flatten_1d(ctx, a, 0);
  91. }
  92. a = ggml_get_rows(ctx, a, b);
  93. if (flattened) {
  94. a = ggml_unflatten_1d(ctx, a, 0, flattened);
  95. }
  96. return a;
  97. }
  98. void _reorder_kv_cache(ggml_context* ctx, ggml_cgraph* gf, KeyValueTensor& kv, ggml_tensor* new_order) {
  99. if (kv.full_k != nullptr) {
  100. ggml_detach(kv.full_k);
  101. kv.full_k = ggml_get_rows2(ctx, kv.full_k, new_order);
  102. ggml_build_forward_expand(gf, kv.full_k);
  103. }
  104. if (kv.full_v != nullptr) {
  105. ggml_detach(kv.full_v);
  106. kv.full_v = ggml_get_rows2(ctx, kv.full_v, new_order);
  107. ggml_build_forward_expand(gf, kv.full_v);
  108. }
  109. }
  110. void reorder_kv_cache(const fairseq2_model& model, ggml_cgraph* gf, ggml_tensor* new_order) {
  111. ggml_context* ctx = model.ctx;
  112. for (auto& named_kv : model.kv_cache) {
  113. _reorder_kv_cache(ctx, gf, named_kv.second, new_order);
  114. }
  115. }
  116. inline double model_layer_config_d(const fairseq2_model& model, std::string name) {
  117. const std::int64_t* data = &model.layer_config.at(name);
  118. double val = *(const double*)data;
  119. return val;
  120. }
  121. extern "C" double fairseq2_model_layer_config_double(const fairseq2_model& model, const char* name) {
  122. return model_layer_config_d(model, std::string(name));
  123. }
  124. extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, const char* name) {
  125. return model.layer_config.at(std::string(name));
  126. }
  127. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  128. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  129. delete model;
  130. }
  131. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  132. model->ctx = ctx;
  133. }
  134. extern "C" std::string* std_string_alloc(char* c_str) {
  135. return new std::string(c_str);
  136. }
  137. extern "C" void std_string_free(std::string* str) {
  138. delete str;
  139. }
  140. bool has_layer(fairseq2_model& model, const std::string& name) {
  141. return model.tensors.find(name) != model.tensors.end();
  142. }
  143. extern "C" ggml_tensor* Linear_forward(
  144. fairseq2_model& model,
  145. const std::string &prefix,
  146. ggml_tensor* input // (d_in)
  147. ) {
  148. // Note: for now we assumed un-batched input
  149. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  150. GGML_ASSERT(weight != nullptr);
  151. ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
  152. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  153. if (bias == nullptr) return out;
  154. return ggml_add_inplace(model.ctx, out, bias);
  155. }
  156. extern "C" ggml_tensor* LayerNorm_forward(
  157. fairseq2_model& model,
  158. const std::string &prefix,
  159. ggml_tensor* input
  160. ) {
  161. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  162. GGML_ASSERT(weight != nullptr);
  163. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  164. GGML_ASSERT(bias != nullptr);
  165. auto ctx = model.ctx;
  166. double eps = model_layer_config_d(model, prefix + ".eps");
  167. input = ggml_norm(ctx, input, /*eps*/eps);
  168. return ggml_add_inplace(
  169. ctx,
  170. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  171. ggml_repeat(ctx, bias, input)
  172. );
  173. }
  174. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  175. fairseq2_model& model,
  176. const std::string& prefix,
  177. ggml_tensor* seqs
  178. ) {
  179. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  180. // inner_activation = ReLu // TODO: allow other activation
  181. seqs = ggml_relu_inplace(model.ctx, seqs);
  182. if (has_layer(model, prefix + ".inner_layer_norm")) {
  183. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  184. }
  185. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  186. return seqs;
  187. }
  188. extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
  189. fairseq2_model& model,
  190. const std::string& prefix,
  191. ggml_tensor* seqs
  192. ) {
  193. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  194. seqs = ggml_silu(model.ctx, seqs);
  195. if (has_layer(model, prefix + ".inner_layer_norm")) {
  196. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  197. }
  198. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  199. return seqs;
  200. }
  201. ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
  202. int n_dims = x->n_dims;
  203. GGML_ASSERT(dim >= 0);
  204. GGML_ASSERT(dim < n_dims);
  205. GGML_ASSERT(ggml_is_contiguous(x));
  206. // Nothing to do
  207. if (dim == n_dims - 1) return x;
  208. if (n_dims == 2) {
  209. return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
  210. } else if (n_dims == 3) {
  211. if (dim == 0) {
  212. return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
  213. } else { // dim == 1
  214. return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
  215. }
  216. } else { // n_dims == 4
  217. if (dim == 0) {
  218. return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
  219. } else if (dim == 1) {
  220. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
  221. } else { // dim == 2
  222. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
  223. }
  224. }
  225. }
  226. ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
  227. int n_dims = x->n_dims;
  228. GGML_ASSERT(dim >= 0);
  229. GGML_ASSERT(dim < n_dims);
  230. GGML_ASSERT(n_dims < 4);
  231. GGML_ASSERT(x->ne[dim] % num_el == 0);
  232. GGML_ASSERT(x->nb[dim + 1] == x->nb[dim] * x->ne[dim]); // `x` isn't contiguous along `dim`
  233. if (n_dims == 1) {
  234. return ggml_view_2d(ctx, x, num_el, x->ne[0] / num_el, x->nb[0] * num_el, 0);
  235. } else if (n_dims == 2) {
  236. if (dim == 0) {
  237. return ggml_view_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->nb[0] * num_el, x->nb[1], 0);
  238. } else { // dim == 1
  239. return ggml_view_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->nb[1], num_el * x->nb[1], 0);
  240. }
  241. } else { // (n_dims == 3)
  242. if (dim == 0) {
  243. return ggml_view_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2], x->nb[0] * num_el, x->nb[1], x->nb[2], 0);
  244. } else if (dim == 1) {
  245. return ggml_view_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2], x->nb[1], num_el * x->nb[1], x->nb[2], 0);
  246. } else { // dim == 2
  247. return ggml_view_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el, x->nb[1], x->nb[2], num_el * x->nb[2], 0);
  248. }
  249. }
  250. }
  251. ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
  252. // (B, S, dim) -> (B, S, H, H_dim)
  253. x = ggml_unflatten_1d(ctx, x, 0, head_dim);
  254. x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
  255. x = ggml_cont(ctx, x);
  256. x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
  257. return x;
  258. }
  259. /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
  260. ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
  261. // (B, Sk, dim) -> (B, Sk, H, H_dim)
  262. v = ggml_unflatten_1d(ctx, v, 0, head_dim);
  263. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
  264. v = ggml_cont(ctx, v);
  265. v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
  266. return v;
  267. }
  268. // flash_attn doesn't work for cross attention because it assumes Q <= K
  269. // and it seems to yield slightly different scores than expected, and thus a different beam search
  270. # define UNITY_FLASH_ATTN 0
  271. extern "C" ggml_tensor* MultiheadAttention_forward(
  272. fairseq2_model& model,
  273. const std::string &prefix,
  274. ggml_tensor* queries, // (slen, d_in)
  275. ggml_tensor* keys, // (klen, d_in)
  276. ggml_tensor* values, // (klen, d_out)
  277. ggml_tensor* attn_mask // (klen, slen)
  278. ) {
  279. int model_dim = queries->ne[0];
  280. int num_heads = model.layer_config.at(prefix + ".num_heads");
  281. int head_dim = model_dim / num_heads;
  282. GGML_ASSERT(model_dim % num_heads == 0);
  283. ggml_context* ctx = model.ctx;
  284. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
  285. ggml_set_name(q, "q");
  286. q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
  287. ggml_tensor *k, *v;
  288. if (!has_kv_cache(model)) {
  289. k = Linear_forward(model, prefix + ".k_proj", keys);
  290. ggml_set_name(k, "k");
  291. v = Linear_forward(model, prefix + ".v_proj", values);
  292. ggml_set_name(v, "v");
  293. } else {
  294. bool encoder_decoder_attn = keys == values && keys != queries;
  295. if (encoder_decoder_attn) {
  296. // The K and V tensors of an encoder-decoder attention (i.e. the
  297. // projected encoder outputs) remain static during evaluation.
  298. KeyValueTensor& kv_cache = model.kv_cache[prefix];
  299. if (kv_cache.step_nr == 0) {
  300. k = Linear_forward(model, prefix + ".k_proj", keys);
  301. ggml_format_name(k, "%s.k_cache", prefix.c_str());
  302. v = Linear_forward(model, prefix + ".v_proj", values);
  303. ggml_format_name(v, "%s.v_cache", prefix.c_str());
  304. // TODO: encoder_padding_mask
  305. kv_cache.full_k = k;
  306. kv_cache.full_v = v;
  307. kv_cache.step_nr = keys->ne[1];
  308. } else {
  309. k = kv_cache.full_k;
  310. v = kv_cache.full_v;
  311. // This is a cache collision. TODO: fairseq2_kv_cache_reset
  312. GGML_ASSERT(keys->ne[1] == k->ne[1]);
  313. GGML_ASSERT(values->ne[1] == v->ne[1]);
  314. }
  315. } else { // self attention
  316. // (1, K) -> (N, 1, K_proj)
  317. k = Linear_forward(model, prefix + ".k_proj", keys);
  318. ggml_set_name(k, "k");
  319. // (1, V) -> (N, 1, V_proj)
  320. v = Linear_forward(model, prefix + ".v_proj", values);
  321. ggml_set_name(v, "v");
  322. append_to_prev_kv(model, prefix, &k, &v, &attn_mask);
  323. }
  324. }
  325. k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
  326. v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
  327. v = ggml_cont(ctx, v);
  328. #if UNITY_FLASH_ATTN
  329. // For flash_attn, we assume either no masks, or triangular masks.
  330. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
  331. ggml_set_name(attn, "attn");
  332. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  333. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
  334. #else
  335. // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
  336. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  337. ggml_set_name(qk, "qk");
  338. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  339. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  340. qk = ggml_scale(ctx, qk, qk_scale);
  341. ggml_set_name(qk, "qk_scaled");
  342. // TODO: Should we replace this by ggml_diag_mask_inf ?
  343. if (attn_mask) qk = ggml_add_inplace(ctx, qk, attn_mask);
  344. // TODO: upgrade qk to float32 if needed
  345. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
  346. ggml_set_name(attn_weights, "attn_weights");
  347. // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
  348. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  349. ggml_set_name(attn, "attn");
  350. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  351. attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
  352. #endif // UNITY_FLASH_ATTN
  353. attn = ggml_cont(ctx, attn);
  354. attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
  355. // out -> (B, S, d_out)
  356. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  357. ggml_set_name(out, "out");
  358. return out;
  359. }
  360. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  361. fairseq2_model& model,
  362. const std::string& prefix,
  363. ggml_tensor* seqs,
  364. ggml_tensor* padding_mask
  365. ) {
  366. ggml_context* ctx = model.ctx;
  367. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  368. // _forward_self_attn(seqs, padding_mask)
  369. auto residual = seqs;
  370. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  371. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  372. // TODO: add padding_mask to MultiheadAttention_forward
  373. GGML_ASSERT(padding_mask == nullptr);
  374. seqs = MultiheadAttention_forward(
  375. model,
  376. prefix + ".self_attn",
  377. seqs,
  378. seqs,
  379. seqs,
  380. /*attn_mask=*/nullptr
  381. );
  382. if (has_layer(model, prefix + ".self_attn_norm"))
  383. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  384. seqs = ggml_add(ctx, seqs, residual);
  385. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  386. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  387. // _forward_ffn(seqs)
  388. residual = seqs;
  389. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  390. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  391. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  392. // TODO: if self.residual_scale is not None:
  393. // residual = self.residual_scale * residual
  394. seqs = ggml_add(ctx, seqs, residual);
  395. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  396. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  397. return seqs;
  398. }
  399. extern "C" ggml_tensor* WaveformToFbank_forward(
  400. fairseq2_model& model,
  401. const std::string &prefix,
  402. ggml_tensor* waveform
  403. ) {
  404. // Hardcoding: num_bins 80, sample rate 16k, always standardize
  405. ggml_context* ctx = model.ctx;
  406. knf::MelBanksOptions mel_opts{};
  407. mel_opts.num_bins = 80;
  408. knf::FrameExtractionOptions frame_opts{};
  409. frame_opts.samp_freq = 16000;
  410. knf::FbankOptions opts{};
  411. opts.frame_opts = frame_opts;
  412. opts.mel_opts = mel_opts;
  413. std::vector<float_t> signal_frame{};
  414. std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
  415. struct ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames);
  416. knf::FbankComputer native_(opts);
  417. knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
  418. for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
  419. signal_frame.resize(0);
  420. // Extract the frame from the waveform tensor.
  421. knf::ExtractWindow(
  422. /*sample_offset=*/0,
  423. (float *)(waveform->data),
  424. waveform->ne[0],
  425. frame_nr,
  426. frame_opts,
  427. window_fn_,
  428. &signal_frame);
  429. native_.Compute(
  430. /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
  431. }
  432. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  433. output = ggml_norm(ctx, output, 1e-5);
  434. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  435. if (output->ne[1] % 2 == 1) {
  436. struct ggml_tensor * remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);
  437. for (int i = 0; i < output->ne[1]-1; ++i) {
  438. ((int32_t *) remove_last->data)[i] = i;
  439. }
  440. output = ggml_get_rows(ctx, output, remove_last);
  441. }
  442. output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
  443. return output;
  444. }
  445. // TODO: Check if it's possible to merge with standard MHA
  446. extern "C" ggml_tensor* RelativePositionMHA_forward(
  447. fairseq2_model& model,
  448. const std::string& prefix,
  449. ggml_tensor* seqs
  450. ) {
  451. ggml_context* ctx = model.ctx;
  452. ggml_tensor* residual = seqs;
  453. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  454. // self_attn: qkv
  455. struct ggml_tensor * Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
  456. struct ggml_tensor * Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
  457. struct ggml_tensor * Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
  458. // self_attn: rel_pos SDPA
  459. int32_t S = seqs->ne[1];
  460. int32_t H = 16; // TODO: Make this configurable
  461. int32_t n_ctx = 4096;
  462. int32_t K_h = seqs->ne[0] / H;
  463. int32_t start_index = n_ctx - S;
  464. int32_t end_index = n_ctx + S - 1;
  465. int num_indices = end_index - start_index;
  466. struct ggml_tensor *rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices);
  467. rows->data = malloc(ggml_nbytes(rows));
  468. for (int i = 0; i < num_indices; i++) {
  469. ((int32_t *)rows->data)[i] = start_index + i;
  470. }
  471. // self_attn: load pos_enc weights & compute_r
  472. // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
  473. // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
  474. struct ggml_tensor * r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
  475. r = ggml_mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
  476. r = ggml_dup(ctx, ggml_permute(ctx,
  477. ggml_cpy(ctx,
  478. r,
  479. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S*2-1)),
  480. 0, 2, 1, 3));
  481. struct ggml_tensor * u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
  482. struct ggml_tensor * v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
  483. // self_attn: Permute QKV
  484. struct ggml_tensor * Q =
  485. ggml_dup(ctx, ggml_permute(ctx,
  486. ggml_cpy(ctx,
  487. Qcur,
  488. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  489. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  490. struct ggml_tensor * K =
  491. ggml_dup(ctx, ggml_permute(ctx,
  492. ggml_cpy(ctx,
  493. Kcur,
  494. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  495. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  496. struct ggml_tensor * V =
  497. ggml_dup(ctx, ggml_permute(ctx,
  498. ggml_cpy(ctx,
  499. Vcur,
  500. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  501. 1, 2, 0, 3)); // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
  502. struct ggml_tensor * q_with_u_bias = ggml_add(ctx, Q, u_bias); // (K_h, S, H)
  503. struct ggml_tensor * q_with_v_bias = ggml_add(ctx, Q, v_bias); // (K_h, S, H)
  504. struct ggml_tensor * ac = ggml_mul_mat(ctx, K, q_with_u_bias);
  505. struct ggml_tensor * bd = ggml_mul_mat(ctx, r, q_with_v_bias);
  506. // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
  507. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
  508. struct ggml_tensor * pad = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1);
  509. pad->data = malloc(ggml_nbytes(pad));
  510. pad = ggml_set_f32(pad, 0.0);
  511. bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
  512. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
  513. bd = ggml_dup(ctx, ggml_reshape_3d(ctx, bd, S, 2*S, H)); // (S, 2S, H)
  514. bd = ggml_remove_head_row(ctx, bd); // A custom operator introduced to reduce 1st row (in the 2nd dim)
  515. bd = ggml_reshape_3d(ctx, bd, 2*S-1, S, H);
  516. bd = ggml_get_first_cols_by_rows(ctx, bd); // A custom operator introduced to get first #rows cols.
  517. // self_attn: compute attn / weights
  518. struct ggml_tensor * attn_weights = ggml_add(ctx, ac, bd);
  519. struct ggml_tensor * attn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  520. attn_scale->data = malloc(ggml_nbytes(attn_scale));
  521. ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
  522. attn_weights = ggml_mul(ctx, ggml_repeat(ctx, attn_scale, attn_weights), attn_weights);
  523. attn_weights = ggml_soft_max(ctx, attn_weights);
  524. struct ggml_tensor * attn = ggml_mul_mat(ctx, V, attn_weights); // K_h, S, H
  525. attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
  526. struct ggml_tensor * attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
  527. struct ggml_tensor * attn_out = ggml_mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
  528. attn_out = ggml_add(ctx,
  529. ggml_repeat(ctx,
  530. model.tensors[prefix + ".output_proj.bias"],
  531. attn_out),
  532. attn_out);
  533. attn_out = ggml_add(ctx, residual, attn_out);
  534. return attn_out;
  535. }
  536. extern "C" ggml_tensor* ConvModule_forward(
  537. fairseq2_model& model,
  538. const std::string& prefix,
  539. ggml_tensor* seqs
  540. ) {
  541. ggml_context* ctx = model.ctx;
  542. ggml_tensor* residual = seqs;
  543. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  544. // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
  545. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
  546. // conv: GLU
  547. seqs = ggml_glu(ctx, seqs);
  548. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  549. // S x C -> (S+K-1) x C -> K x S x C -> S x C
  550. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);
  551. // conv: Custom implementation of batch norm
  552. seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
  553. // conv: SiLU actvation
  554. seqs = ggml_silu(ctx, seqs);
  555. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  556. // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
  557. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
  558. // conv: + residual
  559. seqs = ggml_add(ctx, seqs, residual);
  560. return seqs;
  561. }
  562. extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
  563. fairseq2_model& model,
  564. const std::string& prefix,
  565. ggml_tensor* seqs,
  566. ggml_tensor* padding_mask
  567. ) {
  568. ggml_context* ctx = model.ctx;
  569. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  570. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  571. ggml_set_f32(ffn_scale, 0.5f);
  572. struct ggml_tensor * residual = seqs;
  573. seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
  574. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
  575. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  576. seqs = ggml_add(ctx, seqs, residual);
  577. seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
  578. seqs = ConvModule_forward(model, prefix + ".conv", seqs);
  579. residual = seqs;
  580. seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
  581. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
  582. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  583. seqs = ggml_add(ctx, seqs, residual);
  584. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  585. return seqs;
  586. }
  587. extern "C" ggml_tensor* StandardConformerEncoder_forward(
  588. fairseq2_model& model,
  589. const std::string& prefix,
  590. ggml_tensor* seqs,
  591. ggml_tensor* padding_mask
  592. ) { // TODO: Implement this!
  593. ggml_context* ctx = model.ctx;
  594. seqs = WaveformToFbank_forward(model, prefix, seqs);
  595. seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
  596. seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
  597. int layer_idx = 0;
  598. std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  599. while (has_layer(model, layer_name)) {
  600. seqs = StandardConformerEncoderLayer_forward(
  601. model, layer_name, seqs, padding_mask
  602. );
  603. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  604. layer_idx += 1;
  605. layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  606. }
  607. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  608. ggml_tensor* residual = seqs;
  609. seqs = Linear_forward(model, prefix + ".proj1", seqs);
  610. seqs = ggml_relu_inplace(ctx, seqs);
  611. seqs = Linear_forward(model, prefix + ".proj2", seqs);
  612. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  613. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  614. ggml_set_f32(ffn_scale, 0.5f);
  615. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  616. seqs = ggml_add(ctx, seqs, residual);
  617. layer_idx = 0;
  618. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  619. while (has_layer(model, layer_name)) {
  620. seqs = StandardConformerEncoderAdaptorLayer_forward(
  621. model, layer_name, seqs, padding_mask
  622. );
  623. ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
  624. layer_idx += 1;
  625. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  626. }
  627. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  628. return seqs;
  629. }
  630. extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
  631. fairseq2_model& model,
  632. const std::string& prefix,
  633. ggml_tensor* seqs,
  634. ggml_tensor* padding_mask
  635. ) {
  636. ggml_context* ctx = model.ctx;
  637. struct ggml_tensor * residual = seqs;
  638. residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
  639. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  640. residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);
  641. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  642. residual = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
  643. residual = ggml_glu(ctx, residual);
  644. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  645. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  646. seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);
  647. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  648. seqs = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs), seqs);
  649. seqs = ggml_glu(ctx, seqs);
  650. seqs = MultiheadAttention_forward(
  651. model,
  652. prefix + ".self_attn",
  653. seqs,
  654. seqs,
  655. seqs,
  656. /*attention masks=*/nullptr
  657. );
  658. seqs = ggml_add(ctx, seqs, residual);
  659. residual = seqs;
  660. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  661. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  662. seqs = ggml_add(ctx, seqs, residual);
  663. return seqs;
  664. }
  665. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  666. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  667. struct ggml_tensor * ggml_slice(
  668. struct ggml_context * ctx,
  669. struct ggml_tensor * a,
  670. int axis,
  671. int64_t start,
  672. int64_t end
  673. ) {
  674. int64_t ne[4];
  675. std::copy(a->ne, a->ne + 4, ne);
  676. if (axis < 0) axis = a->n_dims + axis;
  677. if (start < 0) start = ne[axis] + start;
  678. if (end < 0) end = ne[axis] + end;
  679. GGML_ASSERT(0 <= start);
  680. GGML_ASSERT(start <= end);
  681. GGML_ASSERT(end <= ne[axis]);
  682. ne[axis] = end - start;
  683. size_t offset = a->nb[axis] * start;
  684. size_t* nb = a->nb;
  685. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  686. ggml_format_name(result, "%s [(%d)%ld:%ld]", a->name, axis, start, end);
  687. result->n_dims = a->n_dims;
  688. return result;
  689. }
  690. extern "C" ggml_tensor* PositionalEmbedding_forward(
  691. fairseq2_model& model,
  692. const std::string& prefix,
  693. ggml_tensor* embeds
  694. ) {
  695. // This only work with the simple pos encoders
  696. int seq_len = embeds->ne[1];
  697. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  698. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
  699. return ggml_add(model.ctx, embeds, pos_embeds);
  700. }
  701. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  702. fairseq2_model& model,
  703. const std::string& prefix,
  704. ggml_tensor* seqs
  705. // TODO: state_bag
  706. ) {
  707. GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
  708. ggml_context* ctx = model.ctx;
  709. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  710. GGML_ASSERT(embed_weights != nullptr);
  711. ggml_tensor* embeds;
  712. if (seqs->n_dims == 1) {
  713. embeds = ggml_get_rows(ctx, embed_weights, seqs);
  714. } else {
  715. // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
  716. ggml_tensor* flat_seqs = seqs;
  717. if (!ggml_is_contiguous(seqs)) {
  718. flat_seqs->type = GGML_TYPE_F32;
  719. flat_seqs = ggml_cont(ctx, flat_seqs);
  720. }
  721. flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
  722. flat_seqs->type = GGML_TYPE_I32;
  723. embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
  724. embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
  725. embeds->n_dims = seqs->n_dims + 1;
  726. }
  727. // padding mask ?
  728. // padding_mask = to_padding_mask(embeds, seq_lens)
  729. if (has_layer(model, prefix + ".pos_encoder")) {
  730. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  731. }
  732. if (has_layer(model, prefix + ".layer_norm")) {
  733. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  734. }
  735. return embeds;
  736. }
  737. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  738. fairseq2_model& model,
  739. const std::string& prefix,
  740. ggml_tensor* seqs,
  741. ggml_tensor* padding_mask
  742. ) {
  743. int layer_idx = 0;
  744. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  745. while (has_layer(model, layer_name)) {
  746. seqs = StandardTransformerEncoderLayer_forward(
  747. model, layer_name, seqs, padding_mask
  748. );
  749. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  750. layer_idx += 1;
  751. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  752. }
  753. if (has_layer(model, prefix + ".layer_norm"))
  754. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  755. return seqs;
  756. }
  757. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  758. fairseq2_model& model,
  759. const std::string& prefix,
  760. ggml_tensor* seqs,
  761. ggml_tensor* self_attn_mask,
  762. ggml_tensor* encoder_output,
  763. ggml_tensor* encoder_padding_mask
  764. ) {
  765. ggml_context* ctx = model.ctx;
  766. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  767. // _forward_self_attn(seqs, padding_mask)
  768. auto residual = seqs;
  769. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  770. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  771. seqs = MultiheadAttention_forward(
  772. model,
  773. prefix + ".self_attn",
  774. seqs,
  775. seqs,
  776. seqs,
  777. /*attn_mask=*/self_attn_mask
  778. );
  779. if (has_layer(model, prefix + ".self_attn_norm"))
  780. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  781. seqs = ggml_add(ctx, seqs, residual);
  782. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  783. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  784. // _forward_encoder_decoder_attn
  785. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  786. // `encoder_output` must be `None` for decoder-only attention.
  787. GGML_ASSERT(encoder_output == nullptr);
  788. return seqs;
  789. }
  790. // `encoder_output` must not be `None` for encoder-decoder attention.
  791. GGML_ASSERT(encoder_output != nullptr);
  792. residual = seqs;
  793. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  794. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  795. seqs = MultiheadAttention_forward(
  796. model,
  797. prefix + ".encoder_decoder_attn",
  798. seqs,
  799. encoder_output,
  800. encoder_output,
  801. /*attention masks=*/encoder_padding_mask
  802. );
  803. seqs = ggml_add(ctx, seqs, residual);
  804. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  805. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  806. // _forward_ffn(seqs)
  807. residual = seqs;
  808. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  809. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  810. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  811. // TODO:
  812. // if self.residual_scale is not None:
  813. // residual = self.residual_scale * residual
  814. seqs = ggml_add(ctx, seqs, residual);
  815. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  816. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  817. return seqs;
  818. }
  819. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  820. auto seq_len = seqs->ne[1];
  821. // TODO: allow other ggml_type
  822. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  823. return ggml_diag_mask_inf(ctx, mask, 0);
  824. }
  825. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  826. fairseq2_model& model,
  827. const std::string& prefix,
  828. ggml_tensor* seqs,
  829. ggml_tensor* padding_mask,
  830. ggml_tensor* encoder_output,
  831. ggml_tensor* encoder_padding_mask
  832. ) {
  833. int layer_idx = 0;
  834. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  835. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  836. while (has_layer(model, layer_name)) {
  837. seqs = StandardTransformerDecoderLayer_forward(
  838. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  839. );
  840. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  841. layer_idx += 1;
  842. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  843. }
  844. if (has_layer(model, prefix + ".layer_norm"))
  845. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  846. return seqs;
  847. }
  848. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  849. auto opts = job.opts;
  850. int max_seq_len = -1;
  851. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  852. max_seq_len = opts.hard_max_seq_len;
  853. } else {
  854. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
  855. }
  856. if (opts.min_seq_len > max_seq_len) {
  857. printf(
  858. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  859. opts.min_seq_len,
  860. max_seq_len
  861. );
  862. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  863. }
  864. int prefix_seq_len = job.prefix_seq->ne[0];
  865. if (prefix_seq_len >= max_seq_len) {
  866. printf(
  867. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  868. prefix_seq_len,
  869. max_seq_len
  870. );
  871. GGML_ASSERT(prefix_seq_len < max_seq_len);
  872. }
  873. return max_seq_len;
  874. }
  875. void _fan_out_encoder_output(
  876. ggml_context* ctx,
  877. ggml_tensor** encoder_output_out,
  878. ggml_tensor** encoder_padding_mask_out,
  879. int beam_size
  880. ) {
  881. // (S_enc, M)
  882. ggml_tensor* encoder_output = *encoder_output_out;
  883. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  884. // (B, S_enc, M)
  885. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  886. // (S_enc, M) -> (B, S_enc, M)
  887. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  888. // (S_enc) -> (B, S_enc)
  889. if (encoder_padding_mask != nullptr) {
  890. ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
  891. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  892. }
  893. }
  894. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  895. // TODO: this isn't the most precise way of doing this
  896. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  897. }
  898. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  899. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  900. ggml_type true_type = x->type;
  901. x->type = GGML_TYPE_F32;
  902. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  903. y->type = true_type;
  904. return y;
  905. }
  906. extern "C" void _bootstrap_seqs_and_scores(
  907. fairseq2_model& model,
  908. const SequenceGeneratorJob& job,
  909. ggml_tensor* full_seqs,
  910. ggml_tensor* scores,
  911. ggml_tensor* encoder_output,
  912. ggml_tensor* encoder_padding_mask
  913. ) {
  914. int prefix_seq_len = job.prefix_seq->ne[0];
  915. int max_seq_len = scores->ne[0];
  916. int beam_size = scores->ne[1];
  917. GGML_ASSERT(prefix_seq_len > 0);
  918. if (prefix_seq_len == 1)
  919. return;
  920. ggml_context* ctx = model.ctx;
  921. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  922. full_seqs->type = GGML_TYPE_F32;
  923. job.prefix_seq->type = GGML_TYPE_F32;
  924. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  925. seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
  926. // We have to bootstrap the model with the already fanned-out encoder
  927. // output to correctly initialize its incremental state.
  928. // Note: we don't start decoding the last prefix token just yet.
  929. seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
  930. seqs->type = GGML_TYPE_I32;
  931. // Bootstrap the model state with prefix sequence.
  932. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  933. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  934. model,
  935. "text_decoder",
  936. seqs,
  937. /*padding_mask*/ nullptr,
  938. encoder_output,
  939. encoder_padding_mask
  940. );
  941. // TODO state_bag.increment_step(prefix_seq_len - 1)
  942. // logits, lprobs: (N, S_pfx - 1, V)
  943. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  944. int vocab_size = logits->ne[0];
  945. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  946. ggml_cgraph gf = ggml_build_forward(lprobs);
  947. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  948. full_seqs->type = GGML_TYPE_I32;
  949. job.prefix_seq->type = GGML_TYPE_I32;
  950. // Fetch scores of next steps from "lprobs"
  951. float p_score = 0;
  952. for (int i = 1; i < prefix_seq_len; ++i) {
  953. int p = ggml_get_i32_1d(job.prefix_seq, i);
  954. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  955. for (int b = 0; b < beam_size; ++b) {
  956. // scores: (N, S)
  957. // Note: First step (e.g. BOS)'s score is always 0.
  958. ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
  959. }
  960. }
  961. }
  962. /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
  963. int topk(
  964. ggml_tensor* lprobs, // (B, V)
  965. std::int64_t k,
  966. ggml_tensor* candidate_indices
  967. ) {
  968. // Take the best 2 x `beam_size` predictions. We'll choose the first
  969. // `beam_size` of these which don't predict EOS to continue with.
  970. // (N, 2 x B)
  971. // `vocab_size` - 1 to never select PAD.
  972. std::int64_t K = std::min(k, ggml_nelements(lprobs));
  973. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  974. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  975. };
  976. GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
  977. auto cand = (std::int32_t*)candidate_indices->data;
  978. std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
  979. return K;
  980. }
  981. /// Copies the sequence and scores of a given candidate beam.
  982. void _finalize_hypothesis(
  983. const SequenceGeneratorJob& job,
  984. ggml_context* ctx,
  985. int step_nr,
  986. std::int32_t beam,
  987. std::int32_t token,
  988. float eos_score,
  989. ggml_tensor* seqs, // (beam_size, seq_len)
  990. ggml_tensor* scores, // (beam_size, seq_len)
  991. Hypothesis* hypothesis
  992. ) {
  993. ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  994. hypothesis->seq = seq;
  995. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  996. hypothesis->step_scores = step_scores;
  997. auto tok = (std::int32_t*)seq->data;
  998. for (int i = 0; i < step_nr + 1; ++i) {
  999. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  1000. }
  1001. tok[step_nr + 1] = token;
  1002. // Convert from cumulative to per-step scores.
  1003. auto sc = (float*)step_scores->data;
  1004. float last_score = eos_score;
  1005. for (int i = step_nr; i >= 0; --i) {
  1006. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  1007. sc[i + 1] = last_score - sc0;
  1008. last_score = sc0;
  1009. }
  1010. sc[0] = 0;
  1011. if (job.opts.normalize_scores)
  1012. // Skip first EOS since it is always 0 and skews normalization.
  1013. eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  1014. hypothesis->score = eos_score;
  1015. }
  1016. // Uses ggml_context to store any object.
  1017. #define GGML_CTX_ALLOC(ctx, Type, n) \
  1018. (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
  1019. /// Generates a translation for a single sequence
  1020. // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
  1021. // TODO: clean ups
  1022. // * replace manual tensor tweaking with ggml_set_*d (a ggml_set_slice could be useful)
  1023. extern "C" Hypothesis* generate_sequence(
  1024. fairseq2_model& model,
  1025. const SequenceGeneratorJob& job,
  1026. ggml_tensor* encoder_output,
  1027. ggml_tensor* encoder_padding_mask,
  1028. ggml_context* result_ctx
  1029. ) {
  1030. ggml_context* ctx = model.ctx;
  1031. size_t eos_idx = job.eos_idx;
  1032. auto pad_idx = job.pad_idx;
  1033. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  1034. size_t vocab_size = embed->ne[1];
  1035. std::size_t beam_size = job.opts.beam_size;
  1036. int source_seq_len = encoder_output->ne[1];
  1037. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  1038. fairseq2_kv_cache_alloc(model, beam_size, max_seq_len);
  1039. // (S_enc, M) -> (B, S_enc, M)
  1040. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  1041. // Allocate results in the context provided by the caller.
  1042. Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
  1043. Hypothesis* finished_searches = finished_searches_begin;
  1044. for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
  1045. Hypothesis* finished_searches_end = finished_searches + beam_size;
  1046. // Initialize buffers. (B, S)
  1047. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  1048. ggml_set_i32(seqs, 0);
  1049. ggml_set_name(seqs, "seqs_0");
  1050. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  1051. ggml_set_name(scores, "scores_0");
  1052. ggml_set_f32(scores, 0.0);
  1053. _bootstrap_seqs_and_scores(
  1054. model, job, seqs, scores, encoder_output, encoder_padding_mask
  1055. );
  1056. int prefix_seq_len = job.prefix_seq->ne[0];
  1057. int start_step = prefix_seq_len - 1;
  1058. // Holds the indices of beams (a beam can occur more than once) that we
  1059. // should continue with in the next step.
  1060. ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  1061. ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  1062. ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
  1063. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  1064. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  1065. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  1066. ((int32_t *)(candidate_indices->data))[i] = i;
  1067. // TODO: memory management, there should be a per-step ggml_context for intermediary results
  1068. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  1069. ggml_tensor* decoder_input = ggml_slice(ctx, seqs, 0, step_nr, step_nr + 1);
  1070. decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", decoder_input);
  1071. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  1072. model,
  1073. "text_decoder",
  1074. decoder_input,
  1075. nullptr, // We never generate PAD.
  1076. encoder_output,
  1077. encoder_padding_mask
  1078. ); // (B, 1, D)
  1079. // Just look at the last token.
  1080. decoder_output = ggml_flatten_1d(ctx, decoder_output, 0); // (B, model_dim)
  1081. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
  1082. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  1083. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  1084. // TODO: use ggml properly compute the tweaks
  1085. ggml_cgraph gf = ggml_build_forward(lprobs);
  1086. printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
  1087. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1088. ggml_detach(lprobs);
  1089. // // Do not allow EOS before reaching the minimum sequence length.
  1090. if (step_nr < job.opts.min_seq_len) {
  1091. // lprobs[:, :, self.eos_idx] = -INFINITY;
  1092. for (size_t i = 0; i < beam_size; ++i)
  1093. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  1094. }
  1095. // If we have reached the maximum length, force the last step to be EOS.
  1096. if (step_nr == max_seq_len - 2) {
  1097. // lprobs[:, :, : self.eos_idx] = -torch.inf
  1098. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  1099. for (size_t b = 0; b < beam_size; ++b) {
  1100. size_t t = 0;
  1101. for (t = 0; t < eos_idx; ++t)
  1102. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1103. for (t = eos_idx + 1; t < vocab_size; ++t)
  1104. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1105. }
  1106. }
  1107. // Never allow PAD.
  1108. for (size_t i = 0; i < beam_size; ++i)
  1109. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  1110. // Apply UNK penalty.
  1111. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  1112. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  1113. auto lprobs_raw = ggml_get_data_f32(lprobs);
  1114. for (size_t i = 0; i < beam_size; ++i)
  1115. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  1116. }
  1117. ggml_tensor* last_scores = ggml_slice(ctx, scores, 0, step_nr, step_nr+1);
  1118. if (step_nr == start_step) {
  1119. // At the initial step, all hypotheses are equally likely, so we use
  1120. // only the first beam.
  1121. lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
  1122. lprobs = ggml_cont(ctx, lprobs);
  1123. // The first step always indicates the beginning of the sequence and has no score.
  1124. if (step_nr > 0) {
  1125. last_scores = ggml_slice(ctx, last_scores, 1, 0, 1);
  1126. lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1127. }
  1128. } else {
  1129. // Make probabilities contain cumulative scores for each hypothesis.
  1130. lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1131. }
  1132. gf = ggml_build_forward(lprobs);
  1133. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1134. // Determine (beam, token) candidates for the next step.
  1135. // (N, 2 x B)
  1136. std::int64_t K = topk(
  1137. lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
  1138. );
  1139. std::size_t ongoing_beams = 0;
  1140. for (std::int32_t i = 0; i < K; ++i) {
  1141. int c = ggml_get_f32_1d(candidate_indices, i);
  1142. std::int32_t beam = c / vocab_size;
  1143. std::int32_t token = c % vocab_size;
  1144. float tok_score = ggml_get_f32_1d(lprobs, c);
  1145. // Detect beams that reached the minimum length and that end with an EOS.
  1146. bool eos = token == job.eos_idx;
  1147. eos &= tok_score != -INFINITY;
  1148. if (eos) {
  1149. _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);
  1150. if (finished_searches == finished_searches_end)
  1151. goto end_of_beam_search;
  1152. continue;
  1153. }
  1154. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  1155. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  1156. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  1157. ongoing_beams += 1;
  1158. if (ongoing_beams >= beam_size) break;
  1159. }
  1160. // Reorder beams in the `seq` and `score` buffers. The same beam can
  1161. // be selected more than once.
  1162. ggml_tensor* new_seqs = seqs;
  1163. ggml_tensor* new_scores = scores;
  1164. if (step_nr > start_step) {
  1165. // (B, S), (B) -> (B, S)
  1166. // ggml_get_rows and ggml_set only work with floats ...
  1167. new_seqs->type = GGML_TYPE_F32;
  1168. new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
  1169. new_scores = ggml_get_rows(ctx, scores, beam_indices);
  1170. ggml_cgraph gf_reorder = ggml_build_forward(new_seqs);
  1171. ggml_build_forward_expand(&gf_reorder, new_scores);
  1172. reorder_kv_cache(model, &gf_reorder, beam_indices);
  1173. ggml_graph_compute_with_ctx(ctx, &gf_reorder, 1);
  1174. ggml_detach(new_seqs);
  1175. ggml_detach(new_scores);
  1176. new_seqs->type = GGML_TYPE_I32;
  1177. }
  1178. // new_seqs[:, step_nr + 1] = next_tokens
  1179. // new_scores[:, step_nr + 1] = next_scores
  1180. for (std::size_t i = 0; i < beam_size; ++i) {
  1181. ((std::int32_t*)new_seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
  1182. ((float*)new_scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
  1183. }
  1184. // TODO the old seqs and score buffers could be reused for next step
  1185. seqs = new_seqs;
  1186. scores = new_scores;
  1187. }
  1188. end_of_beam_search:
  1189. // Ensure that hypotheses are sorted by decreasing scores before returning.
  1190. std::sort(
  1191. finished_searches_begin,
  1192. finished_searches_end,
  1193. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  1194. );
  1195. return finished_searches_begin;
  1196. }
  1197. extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
  1198. Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
  1199. result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
  1200. ggml_set_i32_1d(result[0].seq, 0, 314);
  1201. result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
  1202. ggml_set_i32_1d(result[1].seq, 0, 421);
  1203. return result;
  1204. }