123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- const std = @import("std");
- const Thread = std.Thread;
- const c = @cImport({
- @cInclude("stdlib.h");
- @cInclude("ggml/ggml.h");
- });
- fn is_close(a: f32, b: f32, epsilon: f32) bool {
- return std.math.fabs(a - b) < epsilon;
- }
- pub fn main() !void {
- const params = .{
- .mem_size = 128*1024*1024,
- .mem_buffer = null,
- .no_alloc = false,
- };
- var opt_params = c.ggml_opt_default_params(c.GGML_OPT_LBFGS);
-
- const nthreads = try Thread.getCpuCount();
- opt_params.n_threads = @intCast(nthreads);
- const NP = 1 << 12;
- const NF = 1 << 8;
- const ctx0 = c.ggml_init(params);
- defer c.ggml_free(ctx0);
- const F = c.ggml_new_tensor_2d(ctx0, c.GGML_TYPE_F32, NF, NP);
- const l = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, NP);
- // regularization weight
- const lambda = c.ggml_new_f32(ctx0, 1e-5);
- c.srand(0);
- const l_data_pointer: [*]f32 = @ptrCast(@alignCast(l.*.data));
- const f_data_pointer: [*]f32 = @ptrCast(@alignCast(F.*.data));
- for (0..NP) |j| {
- const ll = if (j < NP/2) @as(f32, 1.0) else @as(f32, -1.0);
- l_data_pointer[j] = ll;
-
- for (0..NF) |i| {
- const c_rand: f32 = @floatFromInt(c.rand());
- f_data_pointer[j*NF + i] =
- ((if (ll > 0 and i < NF/2) @as(f32, 1.0) else
- if (ll < 0 and i >= NF/2) @as(f32, 1.0) else @as(f32, 0.0)) +
- (c_rand/c.RAND_MAX - 0.5) * 0.1) / (0.5 * NF);
- }
- }
- {
- // initial guess
- const x = c.ggml_set_f32(c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, NF), 0.0);
- c.ggml_set_param(ctx0, x);
- // f = sum[(fj*x - l)^2]/n + lambda*|x^2|
- const f =
- c.ggml_add(ctx0,
- c.ggml_div(ctx0,
- c.ggml_sum(ctx0,
- c.ggml_sqr(ctx0,
- c.ggml_sub(ctx0,
- c.ggml_mul_mat(ctx0, F, x),
- l)
- )
- ),
- c.ggml_new_f32(ctx0, @as(f32, NP))
- ),
- c.ggml_mul(ctx0,
- c.ggml_sum(ctx0, c.ggml_sqr(ctx0, x)),
- lambda)
- );
- const res = c.ggml_opt(null, opt_params, f);
- try std.testing.expect(res == c.GGML_OPT_OK);
- const x_data_pointer: [*]f32 = @ptrCast(@alignCast(x.*.data));
- // print results
- for (0..16) |i| {
- std.debug.print("x[{d:3}] = {d:.6}\n", .{i, x_data_pointer[i]});
- }
- std.debug.print("...\n", .{});
- for (NF - 16..NF) |i| {
- std.debug.print("x[{d:3}] = {d:.6}\n", .{i, x_data_pointer[i]});
- }
- std.debug.print("\n", .{});
- for (0..NF) |i| {
- if (i < NF/2) {
- try std.testing.expect(is_close(x_data_pointer[i], 1.0, 1e-2));
- } else {
- try std.testing.expect(is_close(x_data_pointer[i], -1.0, 1e-2));
- }
- }
- }
- _ = try std.io.getStdIn().reader().readByte();
- }
|