| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 | # Copyright (c) Meta Platforms, Inc. and affiliates# All rights reserved.## This source code is licensed under the license found in the# LICENSE file in the root directory of this source tree.from typing import Finalimport torchfrom torch import tensorfrom fairseq2.data.audio import AudioDecoderOutputfrom seamless_communication.models.aligner.alignment_extractor import AlignmentExtractorfrom tests.common import assert_equal, device, get_default_dtypeREF_TEXT = "the examination and testimony of the experts enabled the commision to conclude that five shots may have been fired"# fmt: offREF_DURATIONS_FP16: Final = [[ 1,  1,  2,  1,  1,  5,  5,  6,  4,  3,  2,  3,  4,  4,  2,  2,  2,  1,          1,  1,  3,  3,  3,  4,  3,  3,  3,  4,  4,  3,  2,  2,  1,  1,  1,  1,          2,  4,  6,  5,  4,  3,  4,  5,  5, 16,  6,  3,  5,  5,  3,  3,  1,  2,          1,  1,  1,  2,  3,  2,  3,  1,  3,  3,  3,  2,  2,  4,  2,  2,  2,  3,          2,  4,  5,  4,  5,  8,  3, 17,  2,  2,  3,  2,  5,  4,  6,  3,  1,  1,          4,  4,  3,  5,  3,  3,  2,  2,  2,  2,  2,  2,  2,  1,  2,  2,  1,  1,          2,  6,  4,  5,  9,  5,  1, 12]]# fmt: on# fmt: offREF_DURATIONS_FP32: Final = [[ 1,  1,  2,  1,  1,  5,  5,  6,  4,  3,  2,  3,  4,  4,  2,  2,  2,  1,           1,  1,  3,  3,  3,  4,  3,  3,  4,  3,  4,  3,  2,  2,  1,  1,  1,  1,           2,  4,  6,  5,  4,  3,  4,  5,  5, 16,  6,  3,  5,  5,  3,  3,  1,  2,           1,  1,  1,  2,  3,  2,  3,  1,  3,  3,  3,  2,  2,  4,  2,  2,  2,  3,           2,  4,  5,  4,  5,  8,  3, 17,  2,  2,  3,  2,  5,  4,  6,  3,  1,  1,           4,  4,  3,  5,  3,  3,  2,  2,  2,  2,  2,  2,  2,  1,  2,  2,  1,  1,           2,  6,  4,  5,  9,  5,  1, 12]]# fmt: ondef test_aligner(example_rate16k_audio: AudioDecoderOutput) -> None:    aligner_name = "nar_t2u_aligner"    unit_extractor_name = "xlsr2_1b_v2"    unit_extractor_output_layer_n = 35    unit_extractor_kmeans_uri = "https://dl.fbaipublicfiles.com/seamlessM4T/models/unit_extraction/kmeans_10k.npy"    dtype = get_default_dtype()    if dtype == torch.float32:        ref_tensor = REF_DURATIONS_FP32    else:        ref_tensor = REF_DURATIONS_FP16    audio = example_rate16k_audio["waveform"].mean(        1    )  # averaging mono to get [Time] shape required by aligner    extractor = AlignmentExtractor(        aligner_name,        unit_extractor_name,        unit_extractor_output_layer_n,        unit_extractor_kmeans_uri,        device=device,        dtype=dtype,    )    alignment_durations, _, _ = extractor.extract_alignment(        audio, REF_TEXT, plot=False, add_trailing_silence=True    )    assert_equal(        alignment_durations, tensor(ref_tensor, device=device, dtype=torch.int64)    )
 |