trainer.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. # Copyright (c) Meta Platforms, Inc. and affiliates
  2. # All rights reserved.
  3. #
  4. # This source code is licensed under the license found in the
  5. # MIT_LICENSE file in the root directory of this source tree.
  6. import logging
  7. import time
  8. from contextlib import contextmanager
  9. from dataclasses import dataclass
  10. from enum import Enum
  11. from tqdm import tqdm
  12. from pathlib import Path
  13. from typing import List, Optional, Tuple, Union
  14. import torch
  15. import torch.distributed as dist
  16. import torch.nn as nn
  17. from fairseq2.data import VocabularyInfo
  18. from fairseq2.models.sequence import SequenceModelOutput
  19. from fairseq2.nn.padding import PaddingMask
  20. from fairseq2.optim.lr_scheduler import MyleLR
  21. from fairseq2.typing import Device
  22. from torch.optim import AdamW
  23. from seamless_communication.cli.m4t.finetune import dataloader, dist_utils
  24. from seamless_communication.models.unity import (
  25. UnitYModel,
  26. UnitYT2UModel,
  27. )
  28. logger = logging.getLogger(__name__)
  29. class FinetuneMode(Enum):
  30. SPEECH_TO_SPEECH = "SPEECH_TO_SPEECH"
  31. SPEECH_TO_TEXT = "SPEECH_TO_TEXT"
  32. TEXT_TO_SPEECH = "TEXT_TO_SPEECH"
  33. @dataclass
  34. class FinetuneParams:
  35. model_name: str
  36. """Model name of model being finetuned."""
  37. save_model_path: Path
  38. """Path were to save finetuned model."""
  39. finetune_mode: FinetuneMode = FinetuneMode.TEXT_TO_SPEECH
  40. """Allows to freeze S2T or T2U part of the model"""
  41. float_dtype: torch.dtype = torch.float16
  42. """Float Dtype"""
  43. max_epochs: int = 10
  44. """ Maximum number of trainign epochs"""
  45. label_smoothing: float = 0.2
  46. """ Label smoothing coefficient for nll_loss """
  47. warmup_steps: int = 100
  48. """ Number of steps with linearly increasing LR"""
  49. log_steps: int = 10
  50. """ Log inner loss after each `log_steps` training steps"""
  51. eval_steps: int = 50
  52. """ Get eval loss after each `eval_steps` training steps """
  53. patience: int = 3
  54. """ Terminate if eval loss did not improve
  55. over the last `patience * eval_steps` training steps"""
  56. learning_rate: float = 1e-5
  57. """ Optimizer learining rate """
  58. train_batch_size: int = 5
  59. """The batch size during train steps"""
  60. eval_batch_size: int = 5
  61. """The batch size during evaluation."""
  62. device: Device = torch.device("cuda")
  63. """ Where to run computation"""
  64. class UnitYFinetuneWrapper(nn.Module):
  65. """Convenience wrapper that does a forward pass
  66. and returns S2T and T2U logits"""
  67. def __init__(self, model: UnitYModel, mode: FinetuneMode, device: Device):
  68. super().__init__()
  69. self.model: UnitYModel = model
  70. self.freeze_s2t: bool = mode == FinetuneMode.TEXT_TO_SPEECH
  71. self.freeze_t2u: bool = mode == FinetuneMode.SPEECH_TO_TEXT
  72. logger.info(f"Freeze s2t: {self.freeze_s2t}, freeze t2u: {self.freeze_t2u}")
  73. self.device = device
  74. def forward(
  75. self, batch: dataloader.MultimodalSeqsBatch
  76. ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
  77. dummy_context = contextmanager(lambda: iter([None]))()
  78. with torch.no_grad() if self.freeze_s2t else dummy_context: # type:ignore
  79. assert batch.speech_to_text.src_tokens is not None
  80. seqs = batch.speech_to_text.src_tokens.to(self.device)
  81. assert batch.speech_to_text.src_lengths is not None
  82. seq_lens = batch.speech_to_text.src_lengths.to(self.device)
  83. speech_encoder_out, speech_encoder_padding_mask = self.model.encode_speech(
  84. seqs=seqs, padding_mask=PaddingMask(seq_lens, seqs.size(1))
  85. )
  86. assert batch.speech_to_text.prev_output_tokens is not None
  87. seqs = batch.speech_to_text.prev_output_tokens.to(self.device)
  88. assert batch.speech_to_text.target_lengths is not None
  89. seq_lens = batch.speech_to_text.target_lengths.to(self.device)
  90. text_decoder_out, text_decoder_padding_mask = self.model.decode(
  91. seqs=seqs,
  92. padding_mask=PaddingMask(seq_lens, seqs.size(1)),
  93. encoder_output=speech_encoder_out,
  94. encoder_padding_mask=speech_encoder_padding_mask,
  95. )
  96. assert self.model.final_proj is not None
  97. text_logits = self.model.final_proj(text_decoder_out)
  98. if self.freeze_t2u:
  99. return (text_logits, None)
  100. assert self.model.t2u_model is not None
  101. assert batch.text_to_units.prev_output_tokens is not None
  102. dummy_context = contextmanager(lambda: iter([None]))()
  103. with torch.no_grad() if self.freeze_t2u else dummy_context: # type:ignore
  104. if not isinstance(self.model.t2u_model, UnitYT2UModel):
  105. raise NotImplementedError(
  106. "T2U finetuning implemented only for UnitYT2UModel"
  107. )
  108. (
  109. unit_encoder_out,
  110. unit_encoder_padding_mask,
  111. ) = self.model.t2u_model.encode(
  112. seqs=text_decoder_out,
  113. padding_mask=text_decoder_padding_mask,
  114. )
  115. seqs = batch.text_to_units.prev_output_tokens.to(self.device)
  116. assert batch.text_to_units.target_lengths is not None
  117. seq_lens = batch.text_to_units.target_lengths.to(self.device)
  118. unit_decoder_out, _ = self.model.t2u_model.decode(
  119. seqs=seqs,
  120. padding_mask=PaddingMask(seq_lens, seqs.size(1)),
  121. encoder_output=unit_encoder_out,
  122. encoder_padding_mask=unit_encoder_padding_mask,
  123. )
  124. unit_logits = self.model.t2u_model.final_proj(unit_decoder_out)
  125. return (text_logits, unit_logits)
  126. class CalcLoss:
  127. """Calculates negative log likelihood loss for S2T and T2U"""
  128. def __init__(
  129. self,
  130. label_smoothing: float,
  131. s2t_vocab_info: VocabularyInfo,
  132. t2u_vocab_info: Optional[VocabularyInfo],
  133. ):
  134. self.label_smoothing = label_smoothing
  135. self.s2t_vocab_info = s2t_vocab_info
  136. self.t2u_vocab_info = t2u_vocab_info
  137. def __call__(
  138. self,
  139. batch: dataloader.MultimodalSeqsBatch,
  140. text_logits: torch.Tensor,
  141. unit_logits: Optional[torch.Tensor],
  142. ) -> torch.Tensor:
  143. assert batch.speech_to_text.target_lengths is not None
  144. prefix_skip_len = 1 # language tokens to skip
  145. s2t_numel = torch.sum(batch.speech_to_text.target_lengths - prefix_skip_len).to(
  146. text_logits.device
  147. )
  148. assert batch.speech_to_text.target_tokens is not None
  149. s2t_loss = SequenceModelOutput(
  150. logits=text_logits, vocab_info=self.s2t_vocab_info
  151. ).compute_loss(
  152. targets=batch.speech_to_text.target_tokens.to(text_logits.device),
  153. ignore_prefix_size=prefix_skip_len,
  154. label_smoothing=self.label_smoothing,
  155. )
  156. if unit_logits is None:
  157. return s2t_loss / s2t_numel
  158. assert batch.text_to_units.target_lengths is not None
  159. s2u_numel = torch.sum(batch.text_to_units.target_lengths - prefix_skip_len).to(
  160. unit_logits.device
  161. )
  162. assert batch.text_to_units.target_tokens is not None
  163. assert self.t2u_vocab_info is not None
  164. s2u_loss = SequenceModelOutput(
  165. logits=unit_logits, vocab_info=self.t2u_vocab_info
  166. ).compute_loss(
  167. targets=batch.text_to_units.target_tokens.to(unit_logits.device),
  168. ignore_prefix_size=prefix_skip_len,
  169. label_smoothing=self.label_smoothing,
  170. )
  171. return s2t_loss / s2t_numel + s2u_loss / s2u_numel
  172. class LossCollector:
  173. """Aggregrates loss history across nodes"""
  174. def __init__(self, device: Optional[Device] = None, reduce_op: str = "avg"):
  175. self.n_samples: float = 0
  176. self.val_sum: float = 0.0
  177. self.reduce_op = reduce_op
  178. self.device = device
  179. self.is_distributed = dist_utils.is_dist_initialized()
  180. def reset(self) -> None:
  181. self.n_samples = 0
  182. self.val_sum = 0.0
  183. def update(self, n_samples: int, batch_loss: float) -> None:
  184. self.n_samples += n_samples
  185. self.val_sum += batch_loss
  186. def reduce(self) -> float:
  187. n_samples, val_sum = self._collect()
  188. if self.reduce_op == "avg":
  189. return val_sum / (n_samples + 1)
  190. if self.reduce_op == "sum":
  191. return val_sum
  192. raise ValueError()
  193. def _collect(self) -> Tuple[float, float]:
  194. if not self.is_distributed:
  195. return self.n_samples, self.val_sum
  196. local_val = torch.tensor([[self.n_samples, self.val_sum]], device=self.device)
  197. all_vals = [
  198. torch.zeros((1, 2), device=self.device)
  199. for _ in range(dist_utils.get_world_size())
  200. ]
  201. dist.all_gather(all_vals, local_val)
  202. losses = torch.concat(all_vals, dim=0)
  203. reduced = torch.sum(losses, dim=0).reshape(2).cpu()
  204. return reduced[0].item(), reduced[1].item()
  205. class UnitYFinetune:
  206. def __init__(
  207. self,
  208. model: UnitYModel,
  209. params: FinetuneParams,
  210. train_data_loader: dataloader.UnitYDataLoader,
  211. eval_data_loader: Optional[dataloader.UnitYDataLoader] = None,
  212. freeze_modules: Optional[List[Union[str, torch.nn.Module]]] = None
  213. ):
  214. self.params = params
  215. self.calc_loss = CalcLoss(
  216. label_smoothing=self.params.label_smoothing,
  217. s2t_vocab_info=model.target_vocab_info,
  218. t2u_vocab_info=model.t2u_model.target_vocab_info
  219. if model.t2u_model is not None
  220. else None,
  221. )
  222. self.model = self._wrap_model_for_trainining(model=model)
  223. if freeze_modules:
  224. self._freeze_modules(freeze_modules)
  225. self.train_data_loader = train_data_loader
  226. self.eval_data_loader = eval_data_loader
  227. self.grad_scaler = torch.cuda.amp.GradScaler() # type: ignore
  228. self.optimizer = AdamW(
  229. params=self.model.parameters(),
  230. lr=self.params.learning_rate,
  231. betas=(0.9, 0.98),
  232. eps=1e-08,
  233. maximize=False,
  234. weight_decay=0.0,
  235. fused=(self.params.device.type == "cuda"),
  236. )
  237. self.lr_scheduler = MyleLR(
  238. optimizer=self.optimizer,
  239. num_warmup_steps=self.params.warmup_steps,
  240. start_lr=1e-9,
  241. )
  242. self.train_loss_hist = LossCollector(device=params.device)
  243. self.epoch_idx: int = 0
  244. self.update_idx: int = 0
  245. self.patience_left: int = self.params.patience
  246. self.best_eval_loss: Optional[float] = None
  247. self.is_best_state: bool = False
  248. torch.set_float32_matmul_precision("high")
  249. def _reset_stats(self) -> None:
  250. self.train_loss_hist.reset()
  251. self.epoch_idx = 0
  252. self.update_idx = 0
  253. self.patience_left = self.params.patience
  254. self.best_eval_loss = None
  255. self.is_best_state = False
  256. def _wrap_model_for_trainining(self, model: UnitYModel) -> nn.Module:
  257. wrapped_model = UnitYFinetuneWrapper(
  258. model=model, mode=self.params.finetune_mode, device=self.params.device
  259. )
  260. if not dist_utils.is_dist_initialized():
  261. return wrapped_model
  262. find_unused = self.params.finetune_mode == FinetuneMode.TEXT_TO_SPEECH
  263. return nn.parallel.DistributedDataParallel(
  264. wrapped_model,
  265. device_ids=[dist_utils.get_local_rank()],
  266. find_unused_parameters=find_unused,
  267. )
  268. def _freeze_modules(self, frozen_modules: List[str] = []) -> None:
  269. for icecube in frozen_modules:
  270. for (name, module) in self.model.named_modules():
  271. if name.startswith(icecube):
  272. logger.info(f"Freezing Module: {name}")
  273. for param in module.parameters():
  274. param.requires_grad = False
  275. def _update_eval_stats(self, eval_loss: float) -> None:
  276. self.is_best_state = (
  277. self.best_eval_loss is None or eval_loss < self.best_eval_loss
  278. )
  279. self.best_eval_loss = eval_loss if self.is_best_state else self.best_eval_loss
  280. self.patience_left = (
  281. self.params.patience if self.is_best_state else self.patience_left - 1
  282. )
  283. logger.info(
  284. f"Eval after {self.update_idx} updates: "
  285. f"loss={eval_loss:.4f} "
  286. f"best_loss={self.best_eval_loss:.4f} "
  287. f"patience_steps_left={self.patience_left}"
  288. )
  289. @torch.no_grad()
  290. def _eval_model(self, n_batches: int) -> None:
  291. """Calc avg loss on eval dataset and update evaluation stats"""
  292. if self.eval_data_loader is None:
  293. return
  294. logger.info(f"Evaluation Step {self.update_idx // self.params.eval_steps}...")
  295. loss_hist = LossCollector(device=self.params.device)
  296. self.model.eval()
  297. for batch in self.eval_data_loader.get_dataloader():
  298. if n_batches == 0:
  299. break
  300. assert batch.speech_to_text.src_tokens is not None
  301. with torch.autocast(device_type=self.params.device.type, dtype=self.params.float_dtype):
  302. loss = self.calc_loss(batch, *self.model(batch))
  303. if loss.isnan():
  304. logger.warning("Eval batch loss value is NaN, skipping")
  305. continue
  306. del batch # force memory release
  307. loss_hist.update(1, loss.item())
  308. n_batches -= 1
  309. eval_loss = loss_hist.reduce()
  310. self._update_eval_stats(eval_loss)
  311. def _train_step_log(self) -> None:
  312. """Log train stats"""
  313. if (self.update_idx + 1) % self.params.log_steps == 0:
  314. avg_loss = self.train_loss_hist.reduce()
  315. self.train_loss_hist.reset()
  316. logger.info(
  317. f"Epoch {str(self.epoch_idx + 1).zfill(3)} / "
  318. f"update {str(self.update_idx + 1).zfill(5)}: "
  319. f"train loss={avg_loss:.4f} "
  320. f"last lr={self.lr_scheduler.get_last_lr()[0]:.2E}"
  321. )
  322. def _train_step(self, batch: List[dataloader.MultimodalSeqsBatch]) -> None:
  323. """Run one train step"""
  324. self.model.train()
  325. self.optimizer.zero_grad()
  326. with torch.autocast(device_type=self.params.device.type, dtype=self.params.float_dtype):
  327. tokens, units = self.model(batch)
  328. loss = self.calc_loss(batch, tokens, units)
  329. if loss.isnan().any().item():
  330. logger.error(batch.speech_to_text)
  331. raise RuntimeError("Train loss is NaN! Something is wrong in the model!")
  332. self.grad_scaler.scale(loss).backward()
  333. self.grad_scaler.step(self.optimizer)
  334. self.grad_scaler.update()
  335. self.lr_scheduler.step()
  336. assert batch.speech_to_text.src_tokens is not None
  337. self.train_loss_hist.update(1, loss.item())
  338. self._train_step_log()
  339. self.update_idx += 1
  340. def _save_model(self) -> None:
  341. logger.info("Saving model")
  342. if dist_utils.is_main_process():
  343. torch.save({
  344. "model_name": self.params.model_name,
  345. "model": {
  346. key.replace("module.model.model.", ""): value
  347. for key, value in self.model.state_dict().items()
  348. }
  349. }, self.params.save_model_path)
  350. if dist_utils.is_dist_initialized():
  351. dist.barrier()
  352. def run(self) -> None:
  353. logger.info("Start Finetuning")
  354. self._reset_stats()
  355. self._eval_model()
  356. train_dataloader = self.train_data_loader.get_dataloader()
  357. while self.epoch_idx < self.params.max_epochs and self.patience_left:
  358. for train_batch in tqdm(train_dataloader, desc="Training Steps"):
  359. # Run batch through train step
  360. self._train_step(train_batch)
  361. # Perform eval if its time to eval
  362. if not self.update_idx or self.update_idx % self.params.eval_steps != 0:
  363. continue
  364. # Clear GPU memory for eval
  365. torch.cuda.empty_cache()
  366. self._eval_model(n_batches=100)
  367. # Save the current model if its the best we've ever had
  368. if self.is_best_state:
  369. self._save_model()
  370. elif not self.patience_left:
  371. no_improve_steps = self.params.eval_steps * self.params.patience
  372. logger.info(
  373. "Early termination, as eval loss did not improve "
  374. f"over last {no_improve_steps} updates"
  375. )
  376. break
  377. self.epoch_idx += 1