fairseq2.cpp 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860
  1. #include <algorithm>
  2. #include <fnmatch.h>
  3. #include <iostream>
  4. #include <math.h>
  5. #include <queue>
  6. #include <unordered_map>
  7. #include "kaldi-native-fbank/csrc/feature-fbank.h"
  8. #include "kaldi-native-fbank/csrc/feature-window.h"
  9. #include "fairseq2.h"
  10. #include "ggml.h"
  11. #include "ggml-alloc.h"
  12. #include <numeric>
  13. ggml_tensor* ggml_detach(ggml_tensor* a) {
  14. a->op = GGML_OP_NONE;
  15. std::fill(a->src, a->src + GGML_MAX_SRC, nullptr);
  16. return a;
  17. }
  18. // generate_sequence uses ggml_context and ggml_allocr to reuse memory buffers across steps.
  19. // This can lead to dangling pointers, which don't segfault, but instead read garbage data.
  20. // Enabling this flag allows to explictly reset memory buffers, making it more explicit
  21. // when we read garbage data.
  22. // It also prints memory usage information, which is useful to
  23. #define DEBUG_MEM_USAGE DEBUG
  24. size_t MB = 1024 * 1024;
  25. void printf_mem_usage(ggml_context* ctx, std::string name) {
  26. #if DEBUG_MEM_USAGE
  27. double mb = 1024.0 * 1024.0;
  28. printf(
  29. "%s: memory used = %8.2f MB, memory reserved = %8.2f Mb\n",
  30. name.c_str(),
  31. ggml_used_mem(ctx) / mb,
  32. ggml_get_mem_size(ctx) / mb
  33. );
  34. #endif
  35. }
  36. #define SWAP(x, y) \
  37. auto tmp_ ## x = x; x = y; y = tmp_ ## x;
  38. #define GGML_ASSERT_SHAPE(x, ne0, ne1, ne2, ne3) \
  39. GGML_ASSERT((ne0 == -1 || x->ne[0] == ne0) && (ne1 == -1 || x->ne[1] == ne1) && (ne2 == -1 || x->ne[2] == ne2) && (ne3 == -1 || x->ne[3] == ne3));
  40. /// allocate the fairseq2 model and hyperparameters
  41. extern "C" fairseq2_model* fairseq2_model_alloc() {
  42. // pre-allocate some memory to write hyperparameters and tensors pointers
  43. auto* model = new fairseq2_model;
  44. model->tensors_ctx = nullptr;
  45. return model;
  46. }
  47. extern "C" void fairseq2_kv_cache_alloc(fairseq2_model& model, ggml_context* kv_cache_ctx, int beam_size, int max_seq_len) {
  48. // Note: we only allocate the masks, proper kv cache allocation is delayed.
  49. GGML_ASSERT(kv_cache_ctx);
  50. GGML_ASSERT(!ggml_get_no_alloc(kv_cache_ctx)); // We need to be able to alloc the kv_cache buffers
  51. auto attn_glob = "text_decoder.*_attn.k_proj.weight";
  52. FORCE_ALLOC(self_attn_mask, kv_cache_ctx, ggml_new_tensor_2d(kv_cache_ctx, GGML_TYPE_F32, max_seq_len, max_seq_len));
  53. self_attn_mask = ggml_diag_mask_inf_inplace(kv_cache_ctx, self_attn_mask, 0);
  54. ggml_format_name(self_attn_mask, "self_attn_mask[%d]", max_seq_len);
  55. for (auto named_tensor : model.tensors) {
  56. const std::string& name = named_tensor.first;
  57. if (::fnmatch(attn_glob, name.c_str(), 0) == FNM_NOMATCH)
  58. continue;
  59. // create a cache entry without the ".k_proj.weight" suffix
  60. const std::string& shortname = name.substr(0, name.size() - 14);
  61. KeyValueTensor& kv = model.kv_cache[shortname];
  62. kv.step_nr = 0;
  63. kv.full_k = nullptr;
  64. kv.full_v = nullptr;
  65. kv.self_attn_mask = self_attn_mask;
  66. }
  67. }
  68. extern "C" void fairseq2_kv_cache_reset(const fairseq2_model& model) {
  69. // TODO: use a dedicated allocator, so that kv_cache.clear actually frees the memory
  70. model.kv_cache.clear();
  71. }
  72. bool has_kv_cache(const fairseq2_model& model) {
  73. return model.kv_cache.size() > 0;
  74. }
  75. inline ggml_tensor* ggml_squeeze(ggml_context* ctx, ggml_tensor* x, int dim) {
  76. int n_dims = x->n_dims;
  77. GGML_ASSERT(dim >= 0);
  78. GGML_ASSERT(dim < n_dims);
  79. GGML_ASSERT(x->ne[dim] == 1);
  80. return ggml_flatten_1d(ctx, x, dim);
  81. }
  82. inline ggml_tensor* ggml_unsqueeze(ggml_context* ctx, ggml_tensor* x, int dim) {
  83. return ggml_unflatten_1d(ctx, x, dim, 1);
  84. }
  85. // copy k and v to kv cache
  86. // kv.full_k[step_nr] = k;
  87. // kv.full_v[step_nr] = v;
  88. void append_to_prev_kv(const fairseq2_model& model, const std::string& prefix, ggml_tensor** k, ggml_tensor** v, ggml_tensor** self_attn_mask) {
  89. KeyValueTensor& kv = model.kv_cache[prefix];
  90. int step_nr = kv.step_nr;
  91. ggml_context* ctx = model.ctx;
  92. // We need to force allocation here, otherwise the kv_cache buffers can be reused
  93. bool no_alloc_save = ggml_get_no_alloc(ctx);
  94. ggml_set_no_alloc(ctx, false);
  95. int n_steps = (*k)->ne[1];
  96. int k_proj, batch_size;
  97. if (kv.full_k != nullptr) {
  98. // (N, S_kv, K_proj)
  99. k_proj = kv.full_k->ne[0];
  100. batch_size = kv.full_k->ne[2];
  101. ggml_detach(kv.full_k);
  102. ggml_detach(kv.full_v);
  103. kv.full_k = ggml_squeeze(ctx, ggml_concat(ctx, ggml_unsqueeze(ctx, kv.full_k, 1), ggml_unsqueeze(ctx, *k, 1)), 1);
  104. kv.full_v = ggml_squeeze(ctx, ggml_concat(ctx, ggml_unsqueeze(ctx, kv.full_v, 1), ggml_unsqueeze(ctx, *v, 1)), 1);
  105. } else {
  106. GGML_ASSERT(step_nr == 0);
  107. k_proj = (*k)->ne[0];
  108. batch_size = (*v)->ne[2];
  109. kv.full_k = ggml_dup(ctx, *k);
  110. kv.full_v = ggml_dup(ctx, *v);
  111. }
  112. *k = kv.full_k;
  113. *v = kv.full_v;
  114. ggml_format_name(kv.full_k, "%s.k (step=%d)", prefix.c_str(), step_nr);
  115. ggml_format_name(kv.full_v, "%s.v (step=%d)", prefix.c_str(), step_nr);
  116. step_nr += n_steps;
  117. GGML_ASSERT_SHAPE(kv.full_k, k_proj, step_nr, batch_size, 1);
  118. // qk is (B * H, Sq, Sk) == (B*H, 1, Sk) in incremental mode
  119. // we return the Sq slice of the (Sq, Sk) attention mask
  120. if (self_attn_mask != nullptr) {
  121. *self_attn_mask = ggml_slice(
  122. ctx, ggml_slice(ctx, kv.self_attn_mask, 0, 0, step_nr),
  123. 1, step_nr - 1, step_nr
  124. );
  125. }
  126. kv.step_nr = step_nr;
  127. ggml_set_no_alloc(ctx, no_alloc_save);
  128. }
  129. // variant of ggml_get_rows that allows for a with more than 2 dims.
  130. ggml_tensor* ggml_get_rows2(ggml_context* ctx, ggml_tensor* a, ggml_tensor* b) {
  131. int flattened = 0;
  132. GGML_ASSERT(a->n_dims <= 3);
  133. if (a->n_dims == 3) {
  134. flattened = a->ne[0];
  135. a = ggml_flatten_1d(ctx, a, 0);
  136. }
  137. a = ggml_get_rows(ctx, a, b);
  138. if (flattened) {
  139. a = ggml_unflatten_1d(ctx, a, 0, flattened);
  140. }
  141. return a;
  142. }
  143. void _reorder_kv_cache(ggml_context* ctx, ggml_cgraph* gf, KeyValueTensor& kv, ggml_tensor* new_order) {
  144. // GGML_ASSERT(ctx == kv.full_k->con);
  145. if (kv.full_k != nullptr) {
  146. ggml_detach(kv.full_k);
  147. const char* name = kv.full_k->name;
  148. kv.full_k = ggml_get_rows2(ctx, kv.full_k, new_order);
  149. ggml_build_forward_expand(gf, kv.full_k);
  150. ggml_format_name(kv.full_k, "%s (sorted)", name);
  151. }
  152. if (kv.full_v != nullptr) {
  153. ggml_detach(kv.full_v);
  154. const char* name = kv.full_v->name;
  155. kv.full_v = ggml_get_rows2(ctx, kv.full_v, new_order);
  156. ggml_build_forward_expand(gf, kv.full_v);
  157. ggml_format_name(kv.full_v, "%s (sorted)", name);
  158. }
  159. }
  160. void reorder_kv_cache(const fairseq2_model& model, ggml_context* ctx, ggml_cgraph* gf, ggml_tensor* new_order) {
  161. auto self_attn_glob = "*.self_attn";
  162. for (auto& named_kv : model.kv_cache) {
  163. if (::fnmatch(self_attn_glob, named_kv.first.c_str(), 0) == FNM_NOMATCH)
  164. continue;
  165. _reorder_kv_cache(ctx, gf, named_kv.second, new_order);
  166. }
  167. }
  168. inline double model_layer_config_d(const fairseq2_model& model, std::string name) {
  169. const std::int64_t* data = &model.layer_config.at(name);
  170. double val = *(const double*)data;
  171. return val;
  172. }
  173. extern "C" double fairseq2_model_layer_config_double(const fairseq2_model& model, const char* name) {
  174. return model_layer_config_d(model, std::string(name));
  175. }
  176. extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, const char* name) {
  177. return model.layer_config.at(std::string(name));
  178. }
  179. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  180. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  181. // delete model;
  182. }
  183. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  184. model->ctx = ctx;
  185. }
  186. extern "C" std::string* std_string_alloc(char* c_str) {
  187. return new std::string(c_str);
  188. }
  189. extern "C" void std_string_free(std::string* str) {
  190. delete str;
  191. }
  192. bool has_layer(fairseq2_model& model, const std::string& name) {
  193. return model.tensors.find(name) != model.tensors.end();
  194. }
  195. ggml_tensor* mul_mat(ggml_context* ctx, ggml_tensor* a, ggml_tensor* b) {
  196. if (b->ne[1] == 1 && b->ne[2] > 1 && a->n_dims == 2) {
  197. // `b` has shape (B, 1, D).
  198. // if `a` is (D_out, D), then we do one matmul for the full batch.
  199. b = ggml_flatten_1d(ctx, b, 1);
  200. return ggml_unflatten_1d(ctx, ggml_mul_mat(ctx, a, b), 1, 1);
  201. }
  202. // there is also the k * q matmul -> (D, 1, B) * (D, 1, B) -> (1, 1, B)
  203. // not sure what's the best way to compute this with BLAS
  204. return ggml_mul_mat(ctx, a, b); // (d_out)
  205. }
  206. extern "C" ggml_tensor* Linear_forward(
  207. fairseq2_model& model,
  208. const std::string &prefix,
  209. ggml_tensor* input // (d_in)
  210. ) {
  211. // Note: for now we assumed un-batched input
  212. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  213. GGML_ASSERT(weight != nullptr);
  214. ggml_tensor* out = mul_mat(model.ctx, weight, input); // (d_out)
  215. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  216. if (bias == nullptr) return out;
  217. return ggml_add(model.ctx, out, bias);
  218. }
  219. extern "C" ggml_tensor* LayerNorm_forward(
  220. fairseq2_model& model,
  221. const std::string &prefix,
  222. ggml_tensor* input
  223. ) {
  224. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  225. GGML_ASSERT(weight != nullptr);
  226. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  227. GGML_ASSERT(bias != nullptr);
  228. auto ctx = model.ctx;
  229. double eps = model_layer_config_d(model, prefix + ".eps");
  230. input = ggml_norm(ctx, input, /*eps*/eps);
  231. return ggml_add_inplace(
  232. ctx,
  233. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  234. ggml_repeat(ctx, bias, input)
  235. );
  236. }
  237. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  238. fairseq2_model& model,
  239. const std::string& prefix,
  240. ggml_tensor* seqs
  241. ) {
  242. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  243. // inner_activation = ReLu // TODO: allow other activation
  244. seqs = ggml_relu_inplace(model.ctx, seqs);
  245. if (has_layer(model, prefix + ".inner_layer_norm")) {
  246. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  247. }
  248. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  249. return seqs;
  250. }
  251. extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
  252. fairseq2_model& model,
  253. const std::string& prefix,
  254. ggml_tensor* seqs
  255. ) {
  256. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  257. seqs = ggml_silu(model.ctx, seqs);
  258. if (has_layer(model, prefix + ".inner_layer_norm")) {
  259. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  260. }
  261. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  262. return seqs;
  263. }
  264. ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
  265. int n_dims = x->n_dims;
  266. GGML_ASSERT(dim >= 0);
  267. GGML_ASSERT(dim < n_dims);
  268. GGML_ASSERT(ggml_is_contiguous(x));
  269. // Nothing to do
  270. if (dim == n_dims - 1) return x;
  271. if (n_dims == 2) {
  272. return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
  273. } else if (n_dims == 3) {
  274. if (dim == 0) {
  275. return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
  276. } else { // dim == 1
  277. return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
  278. }
  279. } else { // n_dims == 4
  280. if (dim == 0) {
  281. return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
  282. } else if (dim == 1) {
  283. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
  284. } else { // dim == 2
  285. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
  286. }
  287. }
  288. }
  289. ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
  290. int n_dims = x->n_dims;
  291. GGML_ASSERT(dim >= 0);
  292. GGML_ASSERT(dim < n_dims);
  293. GGML_ASSERT(n_dims < 4);
  294. GGML_ASSERT(x->ne[dim] % num_el == 0);
  295. GGML_ASSERT(x->nb[dim + 1] == x->nb[dim] * x->ne[dim]); // `x` isn't contiguous along `dim`
  296. if (n_dims == 1) {
  297. return ggml_view_2d(ctx, x, num_el, x->ne[0] / num_el, x->nb[0] * num_el, 0);
  298. } else if (n_dims == 2) {
  299. if (dim == 0) {
  300. return ggml_view_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->nb[0] * num_el, x->nb[1], 0);
  301. } else { // dim == 1
  302. return ggml_view_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->nb[1], num_el * x->nb[1], 0);
  303. }
  304. } else { // (n_dims == 3)
  305. if (dim == 0) {
  306. return ggml_view_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2], x->nb[0] * num_el, x->nb[1], x->nb[2], 0);
  307. } else if (dim == 1) {
  308. return ggml_view_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2], x->nb[1], num_el * x->nb[1], x->nb[2], 0);
  309. } else { // dim == 2
  310. return ggml_view_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el, x->nb[1], x->nb[2], num_el * x->nb[2], 0);
  311. }
  312. }
  313. }
  314. ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
  315. // (B, S, dim) -> (B, S, H, H_dim)
  316. x = ggml_unflatten_1d(ctx, x, 0, head_dim);
  317. x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
  318. x = ggml_cont(ctx, x);
  319. x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
  320. return x;
  321. }
  322. /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
  323. ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
  324. // (B, Sk, dim) -> (B, Sk, H, H_dim)
  325. v = ggml_unflatten_1d(ctx, v, 0, head_dim);
  326. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
  327. v = ggml_cont(ctx, v);
  328. v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
  329. return v;
  330. }
  331. // flash_attn doesn't work for cross attention because it assumes Q <= K
  332. // and it seems to yield slightly different scores than expected, and thus a different beam search
  333. # define UNITY_FLASH_ATTN 0
  334. extern "C" ggml_tensor* MultiheadAttention_forward(
  335. fairseq2_model& model,
  336. const std::string &prefix,
  337. ggml_tensor* queries, // (slen, d_in)
  338. ggml_tensor* keys, // (klen, d_in)
  339. ggml_tensor* values, // (klen, d_out)
  340. ggml_tensor* attn_mask // (klen, slen)
  341. ) {
  342. int model_dim = queries->ne[0];
  343. int num_heads = model.layer_config.at(prefix + ".num_heads");
  344. int head_dim = model_dim / num_heads;
  345. GGML_ASSERT(model_dim % num_heads == 0);
  346. ggml_context* ctx = model.ctx;
  347. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
  348. q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
  349. ggml_set_name(q, "q");
  350. ggml_tensor *k, *v;
  351. if (!has_kv_cache(model)) {
  352. k = Linear_forward(model, prefix + ".k_proj", keys);
  353. ggml_set_name(k, "k");
  354. v = Linear_forward(model, prefix + ".v_proj", values);
  355. ggml_set_name(v, "v");
  356. } else {
  357. bool encoder_decoder_attn = keys == values && keys != queries;
  358. if (encoder_decoder_attn) {
  359. // The K and V tensors of an encoder-decoder attention (i.e. the
  360. // projected encoder outputs) remain static during evaluation.
  361. KeyValueTensor& kv_cache = model.kv_cache[prefix];
  362. if (kv_cache.step_nr == 0) {
  363. // If possible we use the ctx dedicated to kv_cache here,
  364. // because the enc dec attention is typically long lived.
  365. if (model.enc_kv_cache_ctx) model.ctx = model.enc_kv_cache_ctx;
  366. k = Linear_forward(model, prefix + ".k_proj", keys);
  367. ggml_set_name(k, "k");
  368. v = Linear_forward(model, prefix + ".v_proj", values);
  369. ggml_set_name(v, "v");
  370. // Note we are only storing a pointer to the buffer, not the full graph
  371. kv_cache.full_k = ggml_detach(ggml_dup_inplace(model.ctx, k));
  372. ggml_format_name(kv_cache.full_k, "%s.k_cache", prefix.c_str());
  373. kv_cache.full_v = ggml_detach(ggml_dup_inplace(model.ctx, v));
  374. ggml_format_name(kv_cache.full_v, "%s.v_cache", prefix.c_str());
  375. kv_cache.step_nr = keys->ne[1];
  376. model.ctx = ctx;
  377. } else {
  378. k = kv_cache.full_k;
  379. v = kv_cache.full_v;
  380. GGML_ASSERT(keys->ne[1] == k->ne[1]); // cache content doesn't match the input sequence
  381. GGML_ASSERT(values->ne[1] == v->ne[1]); // cache content doesn't match the input sequence
  382. }
  383. } else { // self attention
  384. // (1, K) -> (N, 1, K_proj)
  385. k = Linear_forward(model, prefix + ".k_proj", keys);
  386. ggml_set_name(k, "k");
  387. // (1, V) -> (N, 1, V_proj)
  388. v = Linear_forward(model, prefix + ".v_proj", values);
  389. ggml_set_name(v, "v");
  390. append_to_prev_kv(model, prefix, &k, &v, &attn_mask);
  391. }
  392. }
  393. k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
  394. v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
  395. v = ggml_cont(ctx, v);
  396. #if UNITY_FLASH_ATTN
  397. // For flash_attn, we assume either no masks, or triangular masks.
  398. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
  399. ggml_set_name(attn, "attn");
  400. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  401. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
  402. #else
  403. // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
  404. ggml_tensor* qk = mul_mat(ctx, k, q);
  405. ggml_set_name(qk, "qk");
  406. FORCE_ALLOC(qk_scale, ctx, ggml_new_tensor_1d(ctx, qk->type, 1));
  407. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  408. qk = ggml_scale(ctx, qk, qk_scale);
  409. ggml_set_name(qk, "qk_scaled");
  410. if (attn_mask) qk = ggml_add_inplace(ctx, qk, attn_mask);
  411. // TODO: upgrade qk to float32 if needed
  412. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
  413. ggml_set_name(attn_weights, "attn_weights");
  414. // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
  415. ggml_tensor* attn = mul_mat(ctx, attn_weights, v);
  416. ggml_set_name(attn, "attn");
  417. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  418. attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
  419. #endif // UNITY_FLASH_ATTN
  420. attn = ggml_cont(ctx, attn);
  421. attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
  422. // out -> (B, S, d_out)
  423. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  424. ggml_set_name(out, "out");
  425. return out;
  426. }
  427. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  428. fairseq2_model& model,
  429. const std::string& prefix,
  430. ggml_tensor* seqs,
  431. ggml_tensor* padding_mask
  432. ) {
  433. ggml_context* ctx = model.ctx;
  434. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  435. // _forward_self_attn(seqs, padding_mask)
  436. auto residual = seqs;
  437. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  438. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  439. // TODO: add padding_mask to MultiheadAttention_forward
  440. GGML_ASSERT(padding_mask == nullptr);
  441. seqs = MultiheadAttention_forward(
  442. model,
  443. prefix + ".self_attn",
  444. seqs,
  445. seqs,
  446. seqs,
  447. /*attn_mask=*/nullptr
  448. );
  449. if (has_layer(model, prefix + ".self_attn_norm"))
  450. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  451. seqs = ggml_add_inplace(ctx, seqs, residual);
  452. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  453. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  454. // _forward_ffn(seqs)
  455. residual = seqs;
  456. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  457. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  458. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  459. // TODO: if self.residual_scale is not None:
  460. // residual = self.residual_scale * residual
  461. seqs = ggml_add_inplace(ctx, seqs, residual);
  462. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  463. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  464. return seqs;
  465. }
  466. extern "C" ggml_tensor* WaveformToFbank_forward(
  467. fairseq2_model& model,
  468. const std::string &prefix,
  469. ggml_tensor* waveform
  470. ) {
  471. // Hardcoding: num_bins 80, sample rate 16k, always standardize
  472. ggml_context* ctx = model.ctx;
  473. knf::MelBanksOptions mel_opts{};
  474. mel_opts.num_bins = 80;
  475. knf::FrameExtractionOptions frame_opts{};
  476. frame_opts.samp_freq = 16000;
  477. knf::FbankOptions opts{};
  478. opts.frame_opts = frame_opts;
  479. opts.mel_opts = mel_opts;
  480. std::vector<float_t> signal_frame{};
  481. std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
  482. FORCE_ALLOC(output, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames));
  483. knf::FbankComputer native_(opts);
  484. knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
  485. for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
  486. signal_frame.resize(0);
  487. // Extract the frame from the waveform tensor.
  488. knf::ExtractWindow(
  489. /*sample_offset=*/0,
  490. (float *)(waveform->data),
  491. waveform->ne[0],
  492. frame_nr,
  493. frame_opts,
  494. window_fn_,
  495. &signal_frame);
  496. native_.Compute(
  497. /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
  498. }
  499. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  500. output = ggml_norm(ctx, output, 1e-5);
  501. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  502. if (output->ne[1] % 2 == 1) {
  503. output = ggml_dup(ctx, ggml_slice(ctx, output, 1, 0, output->ne[1]-1));
  504. }
  505. output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
  506. return output;
  507. }
  508. // TODO: Check if it's possible to merge with standard MHA
  509. extern "C" ggml_tensor* RelativePositionMHA_forward(
  510. fairseq2_model& model,
  511. const std::string& prefix,
  512. ggml_tensor* seqs
  513. ) {
  514. ggml_context* ctx = model.ctx;
  515. ggml_tensor* residual = seqs;
  516. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  517. // self_attn: qkv
  518. ggml_tensor* Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
  519. ggml_tensor* Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
  520. ggml_tensor* Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
  521. // self_attn: rel_pos SDPA
  522. int32_t S = seqs->ne[1];
  523. int32_t H = 16; // TODO: Make this configurable
  524. int32_t n_ctx = 4096;
  525. int32_t K_h = seqs->ne[0] / H;
  526. int32_t start_index = n_ctx - S;
  527. int32_t end_index = n_ctx + S - 1;
  528. int num_indices = end_index - start_index;
  529. FORCE_ALLOC(rows, ctx, ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices));
  530. for (int i = 0; i < num_indices; i++) {
  531. ((int32_t *)rows->data)[i] = start_index + i;
  532. }
  533. // self_attn: load pos_enc weights & compute_r
  534. // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
  535. // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
  536. ggml_tensor* r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
  537. r = mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
  538. r = ggml_dup(ctx, ggml_permute(ctx, ggml_unflatten_1d(ctx, r, 0, K_h), 0, 2, 1, 3));
  539. ggml_tensor* u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
  540. ggml_tensor* v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
  541. // self_attn: Permute QKV
  542. // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  543. ggml_tensor* Q = ggml_cont(ctx, ggml_permute(ctx, ggml_unflatten_1d(ctx, Qcur, 0, K_h), 0, 2, 1, 3));
  544. // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  545. ggml_tensor* K = ggml_cont(ctx, ggml_permute(ctx, ggml_unflatten_1d(ctx, Kcur, 0, K_h), 0, 2, 1, 3));
  546. // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
  547. ggml_tensor* V = ggml_cont(ctx, ggml_permute(ctx, ggml_unflatten_1d(ctx, Vcur, 0, K_h), 1, 2, 0, 3));
  548. ggml_tensor* q_with_u_bias = ggml_add_inplace(ctx, ggml_dup(ctx, Q), u_bias); // (K_h, S, H)
  549. ggml_tensor* q_with_v_bias = ggml_add_inplace(ctx, Q, v_bias); // (K_h, S, H)
  550. ggml_tensor* ac = mul_mat(ctx, K, q_with_u_bias);
  551. ggml_tensor* bd = mul_mat(ctx, r, q_with_v_bias);
  552. // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
  553. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
  554. FORCE_ALLOC(pad, ctx, ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1));
  555. pad = ggml_set_f32(pad, 0.0);
  556. bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
  557. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
  558. bd = ggml_reshape_3d(ctx, bd, S, 2 * S, H); // (S, 2S, H)
  559. // discard the first set of positive positions
  560. bd = ggml_dup(ctx, ggml_slice(ctx, bd, 1, 1, 2 * S));
  561. // shifts each row by an extra step
  562. bd = ggml_reshape_3d(ctx, bd, 2 * S - 1, S, H);
  563. // Discard positions used for shift.
  564. bd = ggml_slice(ctx, bd, 0, 0, S);
  565. // self_attn: compute attn / weights
  566. ggml_tensor* attn_weights = ggml_add_inplace(ctx, ac, bd);
  567. FORCE_ALLOC(attn_scale, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1));
  568. ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
  569. attn_weights = ggml_mul_inplace(ctx, attn_weights, ggml_repeat(ctx, attn_scale, attn_weights));
  570. attn_weights = ggml_soft_max(ctx, attn_weights);
  571. ggml_tensor* attn = mul_mat(ctx, V, attn_weights); // K_h, S, H
  572. attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
  573. ggml_tensor* attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
  574. ggml_tensor* attn_out = mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
  575. attn_out = ggml_add_inplace(
  576. ctx,
  577. attn_out,
  578. ggml_repeat(ctx, model.tensors[prefix + ".output_proj.bias"], attn_out)
  579. );
  580. attn_out = ggml_add_inplace(ctx, attn_out, residual);
  581. return attn_out;
  582. }
  583. extern "C" ggml_tensor* ConvModule_forward(
  584. fairseq2_model& model,
  585. const std::string& prefix,
  586. ggml_tensor* seqs
  587. ) {
  588. ggml_context* ctx = model.ctx;
  589. ggml_tensor* residual = seqs;
  590. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  591. // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
  592. seqs = mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
  593. // conv: GLU
  594. seqs = ggml_glu(ctx, seqs);
  595. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  596. // S x C -> (S+K-1) x C -> K x S x C -> S x C
  597. int K = model.tensors[prefix + ".depthwise_conv.weight"]->ne[0];
  598. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, K / 2, 1, seqs->ne[1]);
  599. // conv: Custom implementation of batch norm
  600. seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
  601. // conv: SiLU actvation
  602. seqs = ggml_silu_inplace(ctx, seqs);
  603. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  604. // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
  605. seqs = mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
  606. // conv: + residual
  607. seqs = ggml_add_inplace(ctx, seqs, residual);
  608. return seqs;
  609. }
  610. extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
  611. fairseq2_model& model,
  612. const std::string& prefix,
  613. ggml_tensor* seqs,
  614. ggml_tensor* padding_mask
  615. ) {
  616. ggml_context* ctx = model.ctx;
  617. FORCE_ALLOC(ffn_scale, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1));
  618. ggml_set_f32(ffn_scale, 0.5f);
  619. ggml_tensor* residual = seqs;
  620. seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
  621. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
  622. seqs = ggml_mul_inplace(ctx, seqs, ggml_repeat(ctx, ffn_scale, seqs));
  623. seqs = ggml_add_inplace(ctx, seqs, residual);
  624. seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
  625. seqs = ConvModule_forward(model, prefix + ".conv", seqs);
  626. residual = seqs;
  627. seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
  628. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
  629. seqs = ggml_mul_inplace(ctx, seqs, ggml_repeat(ctx, ffn_scale, seqs));
  630. seqs = ggml_add_inplace(ctx, seqs, residual);
  631. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  632. return seqs;
  633. }
  634. extern "C" ggml_tensor* StandardConformerEncoder_forward(
  635. fairseq2_model& model,
  636. const std::string& prefix,
  637. ggml_tensor* seqs,
  638. ggml_tensor* padding_mask
  639. ) {
  640. ggml_context* ctx = model.ctx;
  641. seqs = WaveformToFbank_forward(model, prefix, seqs);
  642. seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
  643. seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
  644. int layer_idx = 0;
  645. std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  646. while (has_layer(model, layer_name)) {
  647. seqs = StandardConformerEncoderLayer_forward(
  648. model, layer_name, seqs, padding_mask
  649. );
  650. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  651. layer_idx += 1;
  652. layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  653. }
  654. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  655. ggml_tensor* residual = seqs;
  656. seqs = Linear_forward(model, prefix + ".proj1", seqs);
  657. seqs = ggml_relu_inplace(ctx, seqs);
  658. seqs = Linear_forward(model, prefix + ".proj2", seqs);
  659. FORCE_ALLOC(ffn_scale, ctx, ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1));
  660. ggml_set_f32(ffn_scale, 0.5f);
  661. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  662. seqs = ggml_add_inplace(ctx, seqs, residual);
  663. layer_idx = 0;
  664. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  665. while (has_layer(model, layer_name)) {
  666. seqs = StandardConformerEncoderAdaptorLayer_forward(
  667. model, layer_name, seqs, padding_mask
  668. );
  669. ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
  670. layer_idx += 1;
  671. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  672. }
  673. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  674. return seqs;
  675. }
  676. extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
  677. fairseq2_model& model,
  678. const std::string& prefix,
  679. ggml_tensor* seqs,
  680. ggml_tensor* padding_mask
  681. ) {
  682. ggml_context* ctx = model.ctx;
  683. ggml_tensor* residual = seqs;
  684. residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
  685. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  686. residual = ggml_conv_1d(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1, 1);
  687. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  688. residual = ggml_add_inplace(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
  689. residual = ggml_glu(ctx, residual);
  690. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  691. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  692. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1, 1);
  693. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  694. seqs = ggml_add_inplace(ctx, seqs, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs));
  695. seqs = ggml_glu(ctx, seqs);
  696. seqs = MultiheadAttention_forward(
  697. model,
  698. prefix + ".self_attn",
  699. seqs,
  700. seqs,
  701. seqs,
  702. /*attention masks=*/nullptr
  703. );
  704. seqs = ggml_add_inplace(ctx, seqs, residual);
  705. residual = seqs;
  706. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  707. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  708. seqs = ggml_add_inplace(ctx, seqs, residual);
  709. return seqs;
  710. }
  711. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  712. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  713. ggml_tensor* ggml_slice(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a,
  716. int axis,
  717. int64_t start,
  718. int64_t end
  719. ) {
  720. int64_t ne[4];
  721. std::copy(a->ne, a->ne + 4, ne);
  722. if (axis < 0) axis = a->n_dims + axis;
  723. if (start < 0) start = ne[axis] + start;
  724. if (end <= 0) end = ne[axis] + end;
  725. GGML_ASSERT(0 <= start);
  726. GGML_ASSERT(start < end);
  727. GGML_ASSERT(end <= ne[axis]);
  728. ne[axis] = end - start;
  729. size_t offset = a->nb[axis] * start;
  730. size_t* nb = a->nb;
  731. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  732. ggml_format_name(result, "%s [(%d)%ld:%ld]", a->name, axis, start, end);
  733. result->n_dims = a->n_dims;
  734. return result;
  735. }
  736. ggml_tensor* ggml_select(
  737. struct ggml_context * ctx,
  738. struct ggml_tensor * a,
  739. int axis,
  740. int64_t index
  741. ) {
  742. int64_t ne[GGML_MAX_DIMS];
  743. std::copy(a->ne, a->ne + GGML_MAX_DIMS, ne);
  744. if (axis < 0) axis = a->n_dims + axis;
  745. if (index < 0) index = ne[axis] + index;
  746. GGML_ASSERT(0 <= index);
  747. GGML_ASSERT(index < ne[axis]);
  748. std::copy(a->ne + axis + 1, a->ne + GGML_MAX_DIMS, ne + axis);
  749. size_t offset = a->nb[axis] * index;
  750. size_t* nb = a->nb;
  751. GGML_ASSERT(GGML_MAX_DIMS == 4);
  752. ggml_tensor* result = ggml_view_3d(ctx, a, ne[0], ne[1], ne[2], nb[1], nb[2], offset);
  753. ggml_format_name(result, "%s [(%d)%ld]", a->name, axis, index);
  754. result->n_dims = a->n_dims - 1;
  755. return result;
  756. }
  757. // Inplace computation of PositionalEmbedding
  758. extern "C" ggml_tensor* PositionalEmbedding_forward(
  759. fairseq2_model& model,
  760. const std::string& prefix,
  761. ggml_tensor* embeds
  762. ) {
  763. // This only work with the simple pos encoders
  764. int seq_len = embeds->ne[1];
  765. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  766. int start_step = 0;
  767. if (has_kv_cache(model)) {
  768. start_step = model.kv_cache[prefix].step_nr++;
  769. }
  770. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, start_step, seq_len + start_step);
  771. return ggml_add(model.ctx, embeds, pos_embeds);
  772. }
  773. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  774. fairseq2_model& model,
  775. const std::string& prefix,
  776. ggml_tensor* seqs
  777. ) {
  778. GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
  779. ggml_context* ctx = model.ctx;
  780. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  781. GGML_ASSERT(embed_weights != nullptr);
  782. ggml_tensor* embeds;
  783. if (seqs->n_dims == 1) {
  784. embeds = ggml_get_rows(ctx, embed_weights, seqs);
  785. } else {
  786. // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
  787. ggml_tensor* flat_seqs = seqs;
  788. if (!ggml_is_contiguous(seqs)) {
  789. flat_seqs = ggml_cont(ctx, flat_seqs);
  790. }
  791. flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
  792. embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
  793. embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
  794. embeds->n_dims = seqs->n_dims + 1;
  795. }
  796. // padding mask ?
  797. // padding_mask = to_padding_mask(embeds, seq_lens)
  798. if (has_layer(model, prefix + ".pos_encoder")) {
  799. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  800. }
  801. if (has_layer(model, prefix + ".layer_norm")) {
  802. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  803. }
  804. return embeds;
  805. }
  806. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  807. fairseq2_model& model,
  808. const std::string& prefix,
  809. ggml_tensor* seqs,
  810. ggml_tensor* padding_mask
  811. ) {
  812. int layer_idx = 0;
  813. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  814. while (has_layer(model, layer_name)) {
  815. seqs = StandardTransformerEncoderLayer_forward(
  816. model, layer_name, seqs, padding_mask
  817. );
  818. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  819. layer_idx += 1;
  820. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  821. }
  822. if (has_layer(model, prefix + ".layer_norm"))
  823. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  824. return seqs;
  825. }
  826. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  827. fairseq2_model& model,
  828. const std::string& prefix,
  829. ggml_tensor* seqs,
  830. ggml_tensor* self_attn_mask,
  831. ggml_tensor* encoder_output,
  832. ggml_tensor* encoder_padding_mask
  833. ) {
  834. ggml_context* ctx = model.ctx;
  835. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  836. // _forward_self_attn(seqs, padding_mask)
  837. auto residual = seqs;
  838. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  839. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  840. seqs = MultiheadAttention_forward(
  841. model,
  842. prefix + ".self_attn",
  843. seqs,
  844. seqs,
  845. seqs,
  846. /*attn_mask=*/self_attn_mask
  847. );
  848. if (has_layer(model, prefix + ".self_attn_norm"))
  849. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  850. seqs = ggml_add_inplace(ctx, seqs, residual);
  851. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  852. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  853. // _forward_encoder_decoder_attn
  854. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  855. // `encoder_output` must be `None` for decoder-only attention.
  856. GGML_ASSERT(encoder_output == nullptr);
  857. return seqs;
  858. }
  859. // `encoder_output` must not be `None` for encoder-decoder attention.
  860. GGML_ASSERT(encoder_output != nullptr);
  861. residual = seqs;
  862. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  863. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  864. seqs = MultiheadAttention_forward(
  865. model,
  866. prefix + ".encoder_decoder_attn",
  867. seqs,
  868. encoder_output,
  869. encoder_output,
  870. /*attention masks=*/encoder_padding_mask
  871. );
  872. seqs = ggml_add_inplace(ctx, seqs, residual);
  873. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  874. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  875. // _forward_ffn(seqs)
  876. residual = seqs;
  877. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  878. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  879. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  880. // TODO:
  881. // if self.residual_scale is not None:
  882. // residual = self.residual_scale * residual
  883. seqs = ggml_add_inplace(ctx, seqs, residual);
  884. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  885. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  886. return seqs;
  887. }
  888. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  889. auto seq_len = seqs->ne[1];
  890. // TODO: allow other ggml_type
  891. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  892. return ggml_diag_mask_inf(ctx, mask, 0);
  893. }
  894. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  895. fairseq2_model& model,
  896. const std::string& prefix,
  897. ggml_tensor* seqs,
  898. ggml_tensor* padding_mask,
  899. ggml_tensor* encoder_output,
  900. ggml_tensor* encoder_padding_mask
  901. ) {
  902. int layer_idx = 0;
  903. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  904. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  905. while (has_layer(model, layer_name)) {
  906. seqs = StandardTransformerDecoderLayer_forward(
  907. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  908. );
  909. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  910. layer_idx += 1;
  911. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  912. }
  913. if (has_layer(model, prefix + ".layer_norm"))
  914. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  915. return seqs;
  916. }
  917. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  918. auto opts = job.opts;
  919. int max_seq_len = -1;
  920. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  921. max_seq_len = opts.hard_max_seq_len;
  922. } else {
  923. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
  924. }
  925. if (opts.min_seq_len > max_seq_len) {
  926. printf(
  927. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  928. opts.min_seq_len,
  929. max_seq_len
  930. );
  931. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  932. }
  933. int prefix_seq_len = job.prefix_seq->ne[0];
  934. if (prefix_seq_len >= max_seq_len) {
  935. printf(
  936. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  937. prefix_seq_len,
  938. max_seq_len
  939. );
  940. GGML_ASSERT(prefix_seq_len < max_seq_len);
  941. }
  942. return max_seq_len;
  943. }
  944. void _fan_out_encoder_output(
  945. ggml_context* ctx,
  946. ggml_tensor** encoder_output_out,
  947. ggml_tensor** encoder_padding_mask_out,
  948. int beam_size
  949. ) {
  950. // (S_enc, M)
  951. ggml_tensor* encoder_output = *encoder_output_out;
  952. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  953. // (B, S_enc, M)
  954. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  955. // (S_enc, M) -> (B, S_enc, M)
  956. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  957. // (S_enc) -> (B, S_enc)
  958. if (encoder_padding_mask != nullptr) {
  959. ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
  960. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  961. }
  962. }
  963. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  964. // TODO: this isn't the most precise way of doing this
  965. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  966. }
  967. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  968. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  969. ggml_type true_type = x->type;
  970. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  971. y->type = true_type;
  972. return y;
  973. }
  974. void _bootstrap_seqs_and_scores(
  975. fairseq2_model& model,
  976. const SequenceGeneratorJob& job,
  977. ggml_tensor* full_seqs,
  978. ggml_tensor* scores,
  979. ggml_tensor* encoder_output,
  980. ggml_tensor* encoder_padding_mask,
  981. ggml_tensor* lid_scores,
  982. int n_threads,
  983. const std::vector<int>& lang_ids
  984. ) {
  985. // Returns LID score map
  986. int prefix_seq_len = job.prefix_seq->ne[0];
  987. int max_seq_len = scores->ne[0];
  988. int beam_size = scores->ne[1];
  989. GGML_ASSERT(prefix_seq_len > 0);
  990. ggml_context* ctx = model.ctx;
  991. if (prefix_seq_len == 1) {
  992. // We only have one token in prefix, we won't compute decoding scores,
  993. // we just need to copy the token to seqs.
  994. // Note: it also means the enc_kv_cache will be populated later.
  995. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  996. ggml_set_i32(seqs, ggml_get_i32_1d(job.prefix_seq, 0));
  997. return;
  998. }
  999. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  1000. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  1001. seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
  1002. // We have to bootstrap the model with the already fanned-out encoder
  1003. // output to correctly initialize its incremental state.
  1004. // Note: we don't start decoding the last prefix token just yet.
  1005. seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
  1006. // Bootstrap the model state with prefix sequence.
  1007. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  1008. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  1009. model,
  1010. "text_decoder",
  1011. seqs,
  1012. /*padding_mask*/ nullptr,
  1013. encoder_output,
  1014. encoder_padding_mask
  1015. );
  1016. // logits, lprobs: (N, S_pfx - 1, V)
  1017. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  1018. int vocab_size = logits->ne[0];
  1019. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  1020. struct ggml_cgraph * gf = ggml_new_graph(ctx);
  1021. ggml_build_forward_expand(gf, lprobs);
  1022. ggml_graph_compute_with_ctx(ctx, gf, n_threads);
  1023. full_seqs->type = GGML_TYPE_I32;
  1024. job.prefix_seq->type = GGML_TYPE_I32;
  1025. // For LID
  1026. for (size_t i = 0; i < lang_ids.size(); ++i) {
  1027. ggml_set_f32_1d(lid_scores, i, std::exp(ggml_get_f32_1d(lprobs, lang_ids[i])));
  1028. }
  1029. // Fetch scores of next steps from "lprobs"
  1030. float p_score = 0;
  1031. for (int i = 1; i < prefix_seq_len; ++i) {
  1032. int p = 0;
  1033. if (ggml_get_i32_1d(job.prefix_seq, i) == model.vocab.token_to_id["<unk>"]) {
  1034. // If tgt_lang is unk, use the most probable lang tag predicted by model
  1035. int max_value = std::numeric_limits<float>::min();
  1036. for (size_t j = 0; j < lang_ids.size(); j++) {
  1037. if(ggml_get_f32_1d(lprobs, lang_ids[j]) > max_value) {
  1038. max_value = ggml_get_f32_1d(lprobs, lang_ids[j]);
  1039. p = lang_ids[j];
  1040. }
  1041. }
  1042. } else {
  1043. p = ggml_get_i32_1d(job.prefix_seq, i);
  1044. }
  1045. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  1046. for (int b = 0; b < beam_size; ++b) {
  1047. // scores: (N, S)
  1048. // Note: First step (e.g. BOS)'s score is always 0.
  1049. ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
  1050. }
  1051. }
  1052. }
  1053. /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
  1054. int topk(
  1055. ggml_tensor* lprobs, // (B, V)
  1056. std::int64_t k,
  1057. ggml_tensor* candidate_indices
  1058. ) {
  1059. // Take the best 2 x `beam_size` predictions. We'll choose the first
  1060. // `beam_size` of these which don't predict EOS to continue with.
  1061. // (N, 2 x B)
  1062. // `vocab_size` - 1 to never select PAD.
  1063. std::int64_t K = std::min(k, ggml_nelements(lprobs));
  1064. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  1065. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  1066. };
  1067. GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
  1068. auto cand = (std::int32_t*)candidate_indices->data;
  1069. std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
  1070. return K;
  1071. }
  1072. void _tweak_lprobs(const SequenceGeneratorJob& job, ggml_tensor* lprobs, int step_nr, int max_seq_len, std::size_t vocab_size) {
  1073. std::size_t beam_size = job.opts.beam_size;
  1074. std::size_t eos_idx = job.eos_idx;
  1075. // Do not allow EOS before reaching the minimum sequence length.
  1076. if (step_nr < job.opts.min_seq_len) {
  1077. // lprobs[:, :, self.eos_idx] = -INFINITY;
  1078. for (size_t i = 0; i < beam_size; ++i)
  1079. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  1080. }
  1081. // If we have reached the maximum length, force the last step to be EOS.
  1082. if (step_nr == max_seq_len - 2) {
  1083. // lprobs[:, :, : self.eos_idx] = -torch.inf
  1084. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  1085. for (size_t b = 0; b < beam_size; ++b) {
  1086. size_t t = 0;
  1087. for (t = 0; t < eos_idx; ++t)
  1088. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1089. for (t = eos_idx + 1; t < vocab_size; ++t)
  1090. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1091. }
  1092. }
  1093. // Never allow PAD.
  1094. std::size_t pad_idx = job.pad_idx;
  1095. for (size_t i = 0; i < beam_size; ++i)
  1096. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  1097. // Apply UNK penalty.
  1098. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  1099. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  1100. auto lprobs_raw = ggml_get_data_f32(lprobs);
  1101. for (size_t i = 0; i < beam_size; ++i)
  1102. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  1103. }
  1104. }
  1105. /// Copies the sequence and scores of a given candidate beam.
  1106. void _finalize_hypothesis(
  1107. const SequenceGeneratorJob& job,
  1108. ggml_context* ctx,
  1109. int step_nr,
  1110. std::int32_t beam,
  1111. std::int32_t token,
  1112. float eos_score,
  1113. ggml_tensor* seqs, // (beam_size, seq_len)
  1114. ggml_tensor* scores, // (beam_size, seq_len)
  1115. ggml_tensor* lid_scores,
  1116. Hypothesis* hypothesis
  1117. ) {
  1118. ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  1119. hypothesis->seq = seq;
  1120. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  1121. hypothesis->step_scores = step_scores;
  1122. auto tok = (std::int32_t*)seq->data;
  1123. for (int i = 0; i < step_nr + 1; ++i) {
  1124. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  1125. }
  1126. tok[step_nr + 1] = token;
  1127. // Convert from cumulative to per-step scores.
  1128. auto sc = (float*)step_scores->data;
  1129. float last_score = eos_score;
  1130. for (int i = step_nr; i >= 0; --i) {
  1131. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  1132. sc[i + 1] = last_score - sc0;
  1133. last_score = sc0;
  1134. }
  1135. sc[0] = 0;
  1136. if (job.opts.normalize_scores)
  1137. // Skip first EOS since it is always 0 and skews normalization.
  1138. eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  1139. hypothesis->score = eos_score;
  1140. hypothesis->lid_scores = lid_scores;
  1141. }
  1142. // Uses ggml_context to store any object.
  1143. #define GGML_CTX_ALLOC(ctx, Type, n) \
  1144. (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
  1145. ggml_context* ctx_from_buffer(std::vector<uint8_t>& buffer) {
  1146. return ggml_init({
  1147. /*.mem_size =*/ static_cast<size_t>(buffer.capacity()),
  1148. /*.mem_buffer =*/ buffer.data(),
  1149. /*.no_alloc =*/ false,
  1150. });
  1151. }
  1152. ggml_allocr* new_arena_allocr(std::vector<uint8_t>& buffer) {
  1153. return ggml_allocr_new(buffer.data(), buffer.capacity(), 8);
  1154. }
  1155. /// Generates a translation for a single sequence
  1156. /// The results Hypothesis are written inside `result_ctx`.
  1157. extern "C" Hypothesis* generate_sequence(
  1158. fairseq2_model& model,
  1159. const SequenceGeneratorJob& job,
  1160. ggml_tensor* encoder_output,
  1161. ggml_tensor* encoder_padding_mask,
  1162. ggml_context* result_ctx,
  1163. int n_threads
  1164. ) {
  1165. // Pre allocate memory buffers.
  1166. // * step_ctx: contains metadata for the model graph, as well as some explicit
  1167. // buffers for the lprobs tweaking.
  1168. // * prev_step_ctx: is an additional buffer because we need some results from previous steps,
  1169. // to compute next step. Notably self attention kv cache.
  1170. // * search_ctx contains tensors that should live for the full search,
  1171. // like encoder kv cache.
  1172. // * step_alloc contains buffer for the forward pass of the model.
  1173. // Split mem_mb into the different context we need to use.
  1174. int mem_mb = job.opts.mem_mb;
  1175. std::vector<uint8_t> local_bufs[4] = {
  1176. std::vector<uint8_t>(mem_mb * MB * 3 / 10), // step_ctx
  1177. std::vector<uint8_t>(mem_mb * MB * 3 / 10), // prev_step_ctx
  1178. std::vector<uint8_t>(mem_mb * MB * 3 / 10), // search_ctx
  1179. std::vector<uint8_t>(mem_mb * MB * 1 / 10), // step_alloc
  1180. };
  1181. ggml_allocr* step_alloc = new_arena_allocr(local_bufs[3]);
  1182. std::vector<int> lang_ids;
  1183. if (job.prefix_seq->ne[0] > 1) {
  1184. for (const auto& kv : model.vocab.token_to_id) {
  1185. if (kv.first.substr(0, 2) == "__" && kv.first.substr(kv.first.size() - 2) == "__") {
  1186. lang_ids.push_back(kv.second);
  1187. }
  1188. }
  1189. std::sort(lang_ids.begin(), lang_ids.end());
  1190. }
  1191. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  1192. size_t vocab_size = embed->ne[1];
  1193. std::size_t beam_size = job.opts.beam_size;
  1194. ggml_detach(encoder_output);
  1195. int source_seq_len = encoder_output->ne[1];
  1196. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  1197. ggml_context* search_ctx = ctx_from_buffer(local_bufs[2]);
  1198. ggml_context* original_ctx = model.ctx;
  1199. fairseq2_kv_cache_alloc(model, search_ctx, beam_size, max_seq_len);
  1200. // (S_enc, M) -> (B, S_enc, M)
  1201. model.ctx = search_ctx;
  1202. _fan_out_encoder_output(search_ctx, &encoder_output, &encoder_padding_mask, beam_size);
  1203. // Allocate results in the context provided by the caller.
  1204. ggml_set_no_alloc(result_ctx, false);
  1205. Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
  1206. Hypothesis* finished_searches = finished_searches_begin;
  1207. for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
  1208. Hypothesis* finished_searches_end = finished_searches + beam_size;
  1209. // Initialize buffers. (B, S)
  1210. ggml_tensor* seqs = ggml_new_tensor_2d(search_ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  1211. ggml_set_i32(seqs, 0);
  1212. ggml_set_name(seqs, "seqs_0");
  1213. ggml_tensor* scores = ggml_new_tensor_2d(search_ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  1214. ggml_set_name(scores, "scores_0");
  1215. ggml_set_f32(scores, 0.0);
  1216. int prefix_seq_len = job.prefix_seq->ne[0];
  1217. int start_step = prefix_seq_len - 1;
  1218. ggml_context* prev_step_ctx = ctx_from_buffer(local_bufs[(start_step + 1) % 2]);
  1219. ggml_context* step_ctx = ctx_from_buffer(local_bufs[start_step % 2]);
  1220. GGML_ASSERT(step_ctx != search_ctx);
  1221. model.enc_kv_cache_ctx = search_ctx;
  1222. ggml_tensor* lid_scores = ggml_new_tensor_1d(result_ctx, GGML_TYPE_F32, 1); // Dummy initialization to get rid of warnings
  1223. if (lang_ids.size()) {
  1224. lid_scores = ggml_new_tensor_1d(result_ctx, GGML_TYPE_F32, lang_ids.size());
  1225. }
  1226. // Multilingual models: Bootstrap LID scores
  1227. _bootstrap_seqs_and_scores(
  1228. model, job, seqs, scores, encoder_output, encoder_padding_mask, lid_scores, n_threads, lang_ids
  1229. );
  1230. // Holds the indices of beams (a beam can occur more than once) that we
  1231. // should continue with in the next step.
  1232. ggml_tensor* beam_indices = ggml_new_tensor_1d(search_ctx, GGML_TYPE_I32, beam_size);
  1233. ggml_tensor* next_tokens = ggml_new_tensor_1d(search_ctx, GGML_TYPE_I32, beam_size);
  1234. ggml_tensor* next_scores = ggml_new_tensor_1d(search_ctx, GGML_TYPE_F32, beam_size);
  1235. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  1236. ggml_tensor* candidate_indices = ggml_new_tensor_1d(search_ctx, GGML_TYPE_I32, vocab_size * beam_size);
  1237. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  1238. ((int32_t *)(candidate_indices->data))[i] = i;
  1239. printf_mem_usage(search_ctx, "search_ctx");
  1240. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  1241. model.ctx = step_ctx;
  1242. ggml_set_no_alloc(step_ctx, true); // Use allocr for the model forward pass
  1243. int p = 0;
  1244. if (step_nr == start_step) {
  1245. // Find the most probable lang_tok and assign it to all beams, when prefix_seq[1] is <unk>
  1246. if (lang_ids.size() && ggml_get_i32_1d(job.prefix_seq, 1) == model.vocab.token_to_id["<unk>"]) {
  1247. float max_lprob = std::numeric_limits<float>::min();
  1248. for(size_t j = 0; j < lang_ids.size(); j++) {
  1249. auto val = ggml_get_f32_1d(lid_scores, j);
  1250. if (val > max_lprob) {
  1251. max_lprob = val;
  1252. p = lang_ids[j];
  1253. }
  1254. }
  1255. for (std::size_t k = 0; k < beam_size; k++) {
  1256. ggml_set_i32_1d(seqs, k * vocab_size + step_nr, p);
  1257. }
  1258. }
  1259. }
  1260. ggml_tensor* prev_token = ggml_slice(step_ctx, seqs, 0, step_nr, step_nr + 1);
  1261. ggml_tensor* decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", prev_token);
  1262. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  1263. model,
  1264. "text_decoder",
  1265. decoder_input,
  1266. nullptr, // We never generate PAD.
  1267. encoder_output,
  1268. encoder_padding_mask
  1269. ); // (B, 1, D)
  1270. decoder_output = ggml_flatten_1d(step_ctx, decoder_output, 0); // (B, model_dim)
  1271. // Force logits to be allocated in step_ctx, not in step_alloc.
  1272. ggml_set_no_alloc(step_ctx, false);
  1273. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
  1274. ggml_tensor* lprobs = ggml_log_softmax(step_ctx, logits);
  1275. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  1276. // TODO: use ggml properly compute the tweaks
  1277. struct ggml_cgraph * gf = ggml_new_graph(step_ctx);
  1278. ggml_build_forward_expand(gf, lprobs);
  1279. size_t fwd_mem = ggml_allocr_alloc_graph(step_alloc, gf);
  1280. GGML_UNUSED(fwd_mem);
  1281. ggml_graph_compute_with_ctx(step_ctx, gf, n_threads);
  1282. ggml_detach(lprobs);
  1283. ggml_allocr_reset(step_alloc);
  1284. #if DEBUG_MEM_USAGE
  1285. printf("beam search step %d. Graph.n_nodes: %d.\n", step_nr, gf.n_nodes);
  1286. printf(" Fwd mem: %.1fMB, reserved %.1fMb\n", fwd_mem/(double)MB, local_bufs[3].capacity()/(double)MB);
  1287. std::fill(local_bufs[3].begin(), local_bufs[3].end(), 0xAA);
  1288. #endif
  1289. _tweak_lprobs(job, lprobs, step_nr, max_seq_len, vocab_size);
  1290. ggml_tensor* last_scores = ggml_slice(step_ctx, scores, 0, step_nr, step_nr+1);
  1291. if (step_nr == start_step) {
  1292. // At the initial step, all hypotheses are equally likely, so we use
  1293. // only the first beam.
  1294. lprobs = ggml_slice(step_ctx, lprobs, 1, 0, 1);
  1295. lprobs = ggml_cont(step_ctx, lprobs);
  1296. // The first step always indicates the beginning of the sequence and has no score.
  1297. if (step_nr > 0) {
  1298. last_scores = ggml_slice(step_ctx, last_scores, 1, 0, 1);
  1299. lprobs = ggml_add_inplace(step_ctx, lprobs, ggml_repeat(step_ctx, last_scores, lprobs));
  1300. }
  1301. } else {
  1302. // Make probabilities contain cumulative scores for each hypothesis.
  1303. lprobs = ggml_add_inplace(step_ctx, lprobs, ggml_repeat(step_ctx, last_scores, lprobs));
  1304. }
  1305. ggml_build_forward_expand(gf, lprobs);
  1306. ggml_graph_compute_with_ctx(step_ctx, gf, n_threads);
  1307. // Determine (beam, token) candidates for the next step.
  1308. // (N, 2 x B)
  1309. std::int64_t K = topk(
  1310. lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
  1311. );
  1312. std::size_t ongoing_beams = 0;
  1313. for (std::int32_t i = 0; i < K; ++i) {
  1314. int c = ggml_get_f32_1d(candidate_indices, i);
  1315. std::int32_t beam = c / vocab_size;
  1316. std::int32_t token = c % vocab_size;
  1317. float tok_score = ggml_get_f32_1d(lprobs, c);
  1318. // Detect beams that reached the minimum length and that end with an EOS.
  1319. bool eos = token == job.eos_idx;
  1320. eos &= tok_score != -INFINITY;
  1321. if (eos) {
  1322. _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, lid_scores, finished_searches++);
  1323. if (finished_searches == finished_searches_end)
  1324. goto end_of_beam_search;
  1325. continue;
  1326. }
  1327. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  1328. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  1329. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  1330. ongoing_beams += 1;
  1331. if (ongoing_beams >= beam_size) break;
  1332. }
  1333. // Reorder beams in the `seq` and `score` buffers. The same beam can
  1334. // be selected more than once.
  1335. // (B, S), (B) -> (B, S)
  1336. // don't use allocr API, cause it might reuse a kv cache buffer several time.
  1337. ggml_set_no_alloc(step_ctx, false);
  1338. ggml_tensor* new_seqs = ggml_get_rows(step_ctx, seqs, beam_indices);
  1339. ggml_tensor* new_scores = ggml_get_rows(step_ctx, scores, beam_indices);
  1340. struct ggml_cgraph * gf_reorder = ggml_new_graph(step_ctx);
  1341. ggml_build_forward_expand(gf_reorder, new_seqs);
  1342. ggml_build_forward_expand(gf_reorder, new_scores);
  1343. reorder_kv_cache(model, step_ctx, gf_reorder, beam_indices);
  1344. ggml_graph_compute_with_ctx(step_ctx, gf_reorder, n_threads);
  1345. seqs = ggml_detach(new_seqs);
  1346. scores = ggml_detach(new_scores);
  1347. // seqs[:, step_nr + 1] = next_tokens
  1348. // scores[:, step_nr + 1] = next_scores
  1349. for (std::size_t i = 0; i < beam_size; ++i) {
  1350. ((std::int32_t*)seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
  1351. ((float*)scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
  1352. }
  1353. printf_mem_usage(step_ctx, "step_ctx");
  1354. ggml_free(prev_step_ctx);
  1355. prev_step_ctx = step_ctx;
  1356. #if DEBUG_MEM_USAGE
  1357. std::fill(local_bufs[(step_nr + 1) % 2].begin(), local_bufs[(step_nr + 1) % 2].end(), 0xAA);
  1358. #endif
  1359. step_ctx = ctx_from_buffer(local_bufs[(step_nr + 1) % 2]);
  1360. }
  1361. end_of_beam_search:
  1362. // Ensure that hypotheses are sorted by decreasing scores before returning.
  1363. std::sort(
  1364. finished_searches_begin,
  1365. finished_searches_end,
  1366. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  1367. );
  1368. printf_mem_usage(search_ctx, "search_ctx");
  1369. fairseq2_kv_cache_reset(model);
  1370. model.ctx = original_ctx;
  1371. return finished_searches_begin;
  1372. }
  1373. extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
  1374. Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
  1375. result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
  1376. ggml_set_i32_1d(result[0].seq, 0, 314);
  1377. result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
  1378. ggml_set_i32_1d(result[1].seq, 0, 421);
  1379. return result;
  1380. }
  1381. // SPM tokenizer
  1382. // original implementation:
  1383. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1384. struct llm_symbol {
  1385. using index = int;
  1386. index prev;
  1387. index next;
  1388. const char * text;
  1389. size_t n;
  1390. llama_vocab::id id;
  1391. };
  1392. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  1393. static size_t utf8_len(char src) {
  1394. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1395. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1396. return lookup[highbits];
  1397. }
  1398. struct llm_bigram_spm {
  1399. struct comparator {
  1400. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  1401. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1402. }
  1403. };
  1404. using queue_storage = std::vector<llm_bigram_spm>;
  1405. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  1406. llm_symbol::index left;
  1407. llm_symbol::index right;
  1408. float score;
  1409. size_t size;
  1410. llama_vocab::id id;
  1411. };
  1412. struct llm_tokenizer_spm {
  1413. llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
  1414. void tokenize(const std::string& input_text, ggml_tensor* output) {
  1415. llama_vocab::id unk_idx = vocab.token_to_id.at("<unk>");
  1416. // split string into utf8 chars
  1417. int index = 0;
  1418. size_t offs = 0;
  1419. // This is kind of annoying, but needed because with SPM,
  1420. // characters following a space have a special meaning.
  1421. // And the algorithm rely on substrings to do the lookups.
  1422. std::string text = input_text;
  1423. bool need_extra_space = text.size() > 0 && text[0] != ' ';
  1424. if (need_extra_space) text = " " + text;
  1425. while (offs < text.size()) {
  1426. size_t len = utf8_len(text[offs]);
  1427. size_t n = std::min(len, text.size() - offs);
  1428. auto token = vocab.token_to_id.find(std::string(text, offs, n));
  1429. llama_vocab::id id = token == vocab.token_to_id.end() ? unk_idx : token->second;
  1430. llm_symbol sym = {
  1431. /*prev*/ index - 1,
  1432. /*next*/ offs + n == text.size() ? -1 : index + 1,
  1433. /*text*/ text.c_str() + offs,
  1434. /*n*/ n,
  1435. /*id*/ id
  1436. };
  1437. offs += n;
  1438. index++;
  1439. symbols.emplace_back(sym);
  1440. }
  1441. // seed the work queue with all possible 2-character tokens.
  1442. for (size_t i = 1; i < symbols.size(); ++i) {
  1443. try_add_bigram(i - 1, i);
  1444. }
  1445. // keep substituting the highest frequency pairs for as long as we can.
  1446. while (!work_queue.empty()) {
  1447. auto bigram = work_queue.top();
  1448. work_queue.pop();
  1449. auto & left_sym = symbols[bigram.left];
  1450. auto & right_sym = symbols[bigram.right];
  1451. const std::string text = std::string(left_sym.text, left_sym.n + right_sym.n);
  1452. // if one of the symbols already got merged, skip it.
  1453. if (
  1454. left_sym.n == 0
  1455. || right_sym.n == 0
  1456. || left_sym.n + right_sym.n != bigram.size
  1457. ) continue;
  1458. // merge the right sym into the left one
  1459. left_sym.n += right_sym.n;
  1460. left_sym.id = bigram.id;
  1461. right_sym.n = 0;
  1462. // remove the right sym from the chain
  1463. left_sym.next = right_sym.next;
  1464. if (right_sym.next >= 0) {
  1465. symbols[right_sym.next].prev = bigram.left;
  1466. }
  1467. // find more substitutions
  1468. try_add_bigram(left_sym.prev, bigram.left);
  1469. try_add_bigram(bigram.left, left_sym.next);
  1470. }
  1471. llama_vocab::id* out = (llama_vocab::id*)output->data;
  1472. int out_step = sizeof(llama_vocab::id) / output->nb[0];
  1473. int num_tokens = 0;
  1474. for (int i = 0; i > -1; i = symbols[i].next) {
  1475. llm_symbol& symbol = symbols[i];
  1476. *(out + num_tokens * out_step) = symbol.id;
  1477. num_tokens += 1;
  1478. }
  1479. *(out + num_tokens * out_step) = vocab.token_to_id.at("</s>");
  1480. num_tokens += 1;
  1481. output->ne[0] = num_tokens;
  1482. }
  1483. private:
  1484. void try_add_bigram(int left, int right) {
  1485. if (left == -1 || right == -1) {
  1486. return;
  1487. }
  1488. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  1489. auto token = vocab.token_to_id.find(text);
  1490. if (token == vocab.token_to_id.end()) {
  1491. return;
  1492. }
  1493. llama_vocab::id id = token->second;
  1494. if (static_cast<size_t>(id) >= vocab.id_to_token.size()) {
  1495. return;
  1496. }
  1497. const auto& tok_data = vocab.id_to_token[id];
  1498. llm_bigram_spm bigram = {
  1499. /*left */ left,
  1500. /*right*/ right,
  1501. /*score*/ tok_data.score,
  1502. /*size */ text.size(),
  1503. /*id */ id
  1504. };
  1505. work_queue.push(bigram);
  1506. }
  1507. const llama_vocab& vocab;
  1508. std::vector<llm_symbol> symbols;
  1509. llm_bigram_spm::queue work_queue;
  1510. };
  1511. extern "C" void fairseq2_spm_tokenize(fairseq2_model* model, const char* text, ggml_tensor* out) {
  1512. llm_tokenizer_spm spm = {model->vocab};
  1513. spm.tokenize(std::string(text), out);
  1514. }
  1515. extern "C" std::size_t fairseq2_spm_detokenize(fairseq2_model* model, ggml_tensor* tokens, char* out) {
  1516. bool no_tgt_vocab = model->tgt_vocab.id_to_token.empty();
  1517. int eos_idx = no_tgt_vocab ? model->vocab.token_to_id["</s>"] : model->tgt_vocab.token_to_id["</s>"];
  1518. int sent_len = tokens->ne[0];
  1519. std::size_t written = 0;
  1520. std::vector<llama_vocab::token_data> id_to_token = no_tgt_vocab ? model->vocab.id_to_token : model->tgt_vocab.id_to_token;
  1521. for (int i = 0; i < sent_len; ++i) {
  1522. int id = ggml_get_i32_1d(tokens, i);
  1523. // Don't print the EOS token but only if it appear at the end.
  1524. if (i == sent_len - 1 && eos_idx == id) break;
  1525. std::string token = no_tgt_vocab ? model->vocab.id_to_token.at(id).text : model->tgt_vocab.id_to_token.at(id).text;
  1526. // Skip the first space outputted.
  1527. auto begin = token.begin();
  1528. if (i == 0 && token.size() > 0 && token[0] == ' ') begin += 1;
  1529. std::copy(begin, token.end(), out);
  1530. std::size_t n = token.end() - begin;
  1531. written += n;
  1532. out += n;
  1533. }
  1534. *out = '0';
  1535. return written;
  1536. }
  1537. // TODO: Unify with the above?
  1538. std::pair<std::vector<std::string>, std::vector<float>> fairseq2_spm_detokenize(
  1539. fairseq2_model* model,
  1540. ggml_tensor* tokens,
  1541. ggml_tensor* scores,
  1542. char* out) {
  1543. bool no_tgt_vocab = model->tgt_vocab.id_to_token.empty();
  1544. int eos_idx = no_tgt_vocab ? model->vocab.token_to_id["</s>"] : model->tgt_vocab.token_to_id["</s>"];
  1545. int sent_len = tokens->ne[0];
  1546. std::size_t written = 0;
  1547. std::vector<float> word_scores;
  1548. std::vector<float> subword_scores;
  1549. std::vector<std::string> result_text;
  1550. std::string curr_token = "";
  1551. for (int i = 0; i < sent_len; ++i) {
  1552. int id = ggml_get_i32_1d(tokens, i);
  1553. // Don't print the EOS token but only if it appear at the end.
  1554. if (i == sent_len - 1 && eos_idx == id) break;
  1555. std::string token = no_tgt_vocab ? model->vocab.id_to_token.at(id).text : model->tgt_vocab.id_to_token.at(id).text;
  1556. float score = ggml_get_f32_1d(scores, i+2); // 2 is prefix size
  1557. if(token[0] == ' ') {
  1558. // reset word score
  1559. if(subword_scores.size() > 0) {
  1560. float avg = std::accumulate(subword_scores.begin(), subword_scores.end(), 0.0f) / subword_scores.size();
  1561. word_scores.push_back(avg);
  1562. subword_scores.clear();
  1563. result_text.push_back(curr_token);
  1564. }
  1565. curr_token = token.substr(1);
  1566. } else {
  1567. curr_token += token;
  1568. }
  1569. subword_scores.push_back(score);
  1570. // Skip the first space outputted.
  1571. auto begin = token.begin();
  1572. if (i == 0 && token.size() > 0 && token[0] == ' ') begin += 1;
  1573. std::copy(begin, token.end(), out);
  1574. std::size_t n = token.end() - begin;
  1575. written += n;
  1576. out += n;
  1577. }
  1578. if(subword_scores.size() > 0) {
  1579. word_scores.push_back(*std::min_element(subword_scores.begin(), subword_scores.end()));
  1580. subword_scores.clear();
  1581. result_text.push_back(curr_token);
  1582. }
  1583. *out = '0';
  1584. return std::make_pair(result_text, word_scores);
  1585. }