| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812 |
- #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
- #include "ggml.h"
- #ifdef GGML_USE_K_QUANTS
- #include "k_quants.h"
- #endif
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #include <malloc.h> // using malloc.h with MSC/MINGW
- #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
- #include <alloca.h>
- #endif
- #include <assert.h>
- #include <errno.h>
- #include <time.h>
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdint.h>
- #include <inttypes.h>
- #include <stdio.h>
- #include <float.h>
- #include <limits.h>
- #include <stdarg.h>
- #include <signal.h>
- #ifdef GGML_USE_METAL
- #include <unistd.h>
- #endif
- // static_assert should be a #define, but if it's not,
- // fall back to the _Static_assert C11 keyword.
- // if C99 - static_assert is noop
- // ref: https://stackoverflow.com/a/53923785/4039976
- #ifndef static_assert
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
- #define static_assert(cond, msg) _Static_assert(cond, msg)
- #else
- #define static_assert(cond, msg) struct global_scope_noop_trick
- #endif
- #endif
- #if defined(_MSC_VER)
- // disable "possible loss of data" to avoid hundreds of casts
- // we should just be careful :)
- #pragma warning(disable: 4244 4267)
- // disable POSIX deprecation warnigns
- // these functions are never going away, anyway
- #pragma warning(disable: 4996)
- #endif
- #if defined(_WIN32)
- #include <windows.h>
- typedef volatile LONG atomic_int;
- typedef atomic_int atomic_bool;
- static void atomic_store(atomic_int * ptr, LONG val) {
- InterlockedExchange(ptr, val);
- }
- static LONG atomic_load(atomic_int * ptr) {
- return InterlockedCompareExchange(ptr, 0, 0);
- }
- static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
- return InterlockedExchangeAdd(ptr, inc);
- }
- static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
- return atomic_fetch_add(ptr, -(dec));
- }
- typedef HANDLE pthread_t;
- typedef DWORD thread_ret_t;
- static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
- (void) unused;
- HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
- if (handle == NULL)
- {
- return EAGAIN;
- }
- *out = handle;
- return 0;
- }
- static int pthread_join(pthread_t thread, void * unused) {
- (void) unused;
- return (int) WaitForSingleObject(thread, INFINITE);
- }
- static int sched_yield (void) {
- Sleep (0);
- return 0;
- }
- #else
- #include <pthread.h>
- #include <stdatomic.h>
- typedef void * thread_ret_t;
- #include <sys/types.h>
- #include <sys/stat.h>
- #include <unistd.h>
- #endif
- #ifdef GGML_USE_CPU_HBM
- #include <hbwmalloc.h>
- #endif
- // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
- #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
- #ifndef __FMA__
- #define __FMA__
- #endif
- #ifndef __F16C__
- #define __F16C__
- #endif
- #ifndef __SSE3__
- #define __SSE3__
- #endif
- #endif
- /*#define GGML_PERF*/
- #define GGML_DEBUG 0
- #define GGML_GELU_FP16
- #define GGML_GELU_QUICK_FP16
- #define GGML_SILU_FP16
- // #define GGML_CROSS_ENTROPY_EXP_FP16
- // #define GGML_FLASH_ATTN_EXP_FP16
- #define GGML_SOFT_MAX_UNROLL 4
- #define GGML_VEC_DOT_UNROLL 2
- //
- // logging
- //
- #if (GGML_DEBUG >= 1)
- #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG(...)
- #endif
- #if (GGML_DEBUG >= 5)
- #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_5(...)
- #endif
- #if (GGML_DEBUG >= 10)
- #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_10(...)
- #endif
- #define GGML_PRINT(...) printf(__VA_ARGS__)
- #ifdef GGML_USE_ACCELERATE
- // uncomment to use vDSP for soft max computation
- // note: not sure if it is actually faster
- //#define GGML_SOFT_MAX_ACCELERATE
- #endif
- //
- // logging
- //
- #if (GGML_DEBUG >= 1)
- #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG(...)
- #endif
- #if (GGML_DEBUG >= 5)
- #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_5(...)
- #endif
- #if (GGML_DEBUG >= 10)
- #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_10(...)
- #endif
- #define GGML_PRINT(...) printf(__VA_ARGS__)
- //
- // end of logging block
- //
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
- #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
- #else
- inline static void * ggml_aligned_malloc(size_t size) {
- if (size == 0) {
- GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
- return NULL;
- }
- void * aligned_memory = NULL;
- #ifdef GGML_USE_CPU_HBM
- int result = hbw_posix_memalign(&aligned_memory, 16, size);
- #elif GGML_USE_METAL
- int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
- #else
- int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
- #endif
- if (result != 0) {
- // Handle allocation failure
- const char *error_desc = "unknown allocation error";
- switch (result) {
- case EINVAL:
- error_desc = "invalid alignment value";
- break;
- case ENOMEM:
- error_desc = "insufficient memory";
- break;
- }
- GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
- return NULL;
- }
- return aligned_memory;
- }
- #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
- #ifdef GGML_USE_CPU_HBM
- #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
- #else
- #define GGML_ALIGNED_FREE(ptr) free(ptr)
- #endif
- #endif
- #define UNUSED GGML_UNUSED
- #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
- //
- // tensor access macros
- //
- #define GGML_TENSOR_UNARY_OP_LOCALS \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
- #define GGML_TENSOR_BINARY_OP_LOCALS \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
- #if defined(GGML_USE_ACCELERATE)
- #include <Accelerate/Accelerate.h>
- #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
- #include "ggml-opencl.h"
- #endif
- #elif defined(GGML_USE_OPENBLAS)
- #if defined(GGML_BLAS_USE_MKL)
- #include <mkl.h>
- #else
- #include <cblas.h>
- #endif
- #elif defined(GGML_USE_CUBLAS)
- #include "ggml-cuda.h"
- #elif defined(GGML_USE_CLBLAST)
- #include "ggml-opencl.h"
- #endif
- #undef MIN
- #undef MAX
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- // floating point type used to accumulate sums
- typedef double ggml_float;
- // 16-bit float
- // on Arm, we use __fp16
- // on x86, we use uint16_t
- #ifdef __ARM_NEON
- // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
- //
- // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
- //
- #include <arm_neon.h>
- #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
- #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
- #define GGML_FP16_TO_FP32(x) ((float) (x))
- #define GGML_FP32_TO_FP16(x) (x)
- #else
- #ifdef __wasm_simd128__
- #include <wasm_simd128.h>
- #else
- #ifdef __POWER9_VECTOR__
- #include <altivec.h>
- #undef bool
- #define bool _Bool
- #else
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #include <intrin.h>
- #else
- #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
- #if !defined(__riscv)
- #include <immintrin.h>
- #endif
- #endif
- #endif
- #endif
- #endif
- #ifdef __riscv_v_intrinsic
- #include <riscv_vector.h>
- #endif
- #ifdef __F16C__
- #ifdef _MSC_VER
- #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
- #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
- #else
- #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
- #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
- #endif
- #elif defined(__POWER9_VECTOR__)
- #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
- #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
- /* the inline asm below is about 12% faster than the lookup method */
- #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
- #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
- static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
- register float f;
- register double d;
- __asm__(
- "mtfprd %0,%2\n"
- "xscvhpdp %0,%0\n"
- "frsp %1,%0\n" :
- /* temp */ "=d"(d),
- /* out */ "=f"(f):
- /* in */ "r"(h));
- return f;
- }
- static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
- register double d;
- register ggml_fp16_t r;
- __asm__( /* xscvdphp can work on double or single precision */
- "xscvdphp %0,%2\n"
- "mffprd %1,%0\n" :
- /* temp */ "=d"(d),
- /* out */ "=r"(r):
- /* in */ "f"(f));
- return r;
- }
- #else
- // FP16 <-> FP32
- // ref: https://github.com/Maratyszcza/FP16
- static inline float fp32_from_bits(uint32_t w) {
- union {
- uint32_t as_bits;
- float as_value;
- } fp32;
- fp32.as_bits = w;
- return fp32.as_value;
- }
- static inline uint32_t fp32_to_bits(float f) {
- union {
- float as_value;
- uint32_t as_bits;
- } fp32;
- fp32.as_value = f;
- return fp32.as_bits;
- }
- static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
- const uint32_t w = (uint32_t) h << 16;
- const uint32_t sign = w & UINT32_C(0x80000000);
- const uint32_t two_w = w + w;
- const uint32_t exp_offset = UINT32_C(0xE0) << 23;
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
- const float exp_scale = 0x1.0p-112f;
- #else
- const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
- #endif
- const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
- const uint32_t magic_mask = UINT32_C(126) << 23;
- const float magic_bias = 0.5f;
- const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
- const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
- const uint32_t result = sign |
- (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
- return fp32_from_bits(result);
- }
- static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
- const float scale_to_inf = 0x1.0p+112f;
- const float scale_to_zero = 0x1.0p-110f;
- #else
- const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
- const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
- #endif
- float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
- const uint32_t w = fp32_to_bits(f);
- const uint32_t shl1_w = w + w;
- const uint32_t sign = w & UINT32_C(0x80000000);
- uint32_t bias = shl1_w & UINT32_C(0xFF000000);
- if (bias < UINT32_C(0x71000000)) {
- bias = UINT32_C(0x71000000);
- }
- base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
- const uint32_t bits = fp32_to_bits(base);
- const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
- const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
- const uint32_t nonsign = exp_bits + mantissa_bits;
- return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
- }
- #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
- #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
- #endif // __F16C__
- #endif // __ARM_NEON
- //
- // global data
- //
- // precomputed gelu table for f16 (128 KB)
- static ggml_fp16_t table_gelu_f16[1 << 16];
- // precomputed quick gelu table for f16 (128 KB)
- static ggml_fp16_t table_gelu_quick_f16[1 << 16];
- // precomputed silu table for f16 (128 KB)
- static ggml_fp16_t table_silu_f16[1 << 16];
- // precomputed exp table for f16 (128 KB)
- static ggml_fp16_t table_exp_f16[1 << 16];
- // precomputed f32 table for f16 (256 KB)
- static float table_f32_f16[1 << 16];
- #if defined(__ARM_NEON) || defined(__wasm_simd128__)
- #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
- #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
- #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
- #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
- #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
- #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
- #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
- #define B8(c,s ) B7(c,s, c), B7(c,s, s)
- // precomputed tables for expanding 8bits to 8 bytes:
- static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
- static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
- #endif
- // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
- // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
- // This is also true for POWER9.
- #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
- inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
- uint16_t s;
- memcpy(&s, &f, sizeof(uint16_t));
- return table_f32_f16[s];
- }
- #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
- #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
- #endif
- // note: do not use these inside ggml.c
- // these are meant to be used via the ggml.h API
- float ggml_fp16_to_fp32(ggml_fp16_t x) {
- return (float) GGML_FP16_TO_FP32(x);
- }
- ggml_fp16_t ggml_fp32_to_fp16(float x) {
- return GGML_FP32_TO_FP16(x);
- }
- void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
- for (int i = 0; i < n; i++) {
- y[i] = GGML_FP16_TO_FP32(x[i]);
- }
- }
- void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
- int i = 0;
- #if defined(__F16C__)
- for (; i + 7 < n; i += 8) {
- __m256 x_vec = _mm256_loadu_ps(x + i);
- __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
- _mm_storeu_si128((__m128i *)(y + i), y_vec);
- }
- for(; i + 3 < n; i += 4) {
- __m128 x_vec = _mm_loadu_ps(x + i);
- __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
- _mm_storel_epi64((__m128i *)(y + i), y_vec);
- }
- #endif
- for (; i < n; i++) {
- y[i] = GGML_FP32_TO_FP16(x[i]);
- }
- }
- //
- // timing
- //
- #if defined(_MSC_VER) || defined(__MINGW32__)
- static int64_t timer_freq, timer_start;
- void ggml_time_init(void) {
- LARGE_INTEGER t;
- QueryPerformanceFrequency(&t);
- timer_freq = t.QuadPart;
- // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
- // and the uptime is high enough.
- // We subtract the program start time to reduce the likelihood of that happening.
- QueryPerformanceCounter(&t);
- timer_start = t.QuadPart;
- }
- int64_t ggml_time_ms(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return ((t.QuadPart-timer_start) * 1000) / timer_freq;
- }
- int64_t ggml_time_us(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
- }
- #else
- void ggml_time_init(void) {}
- int64_t ggml_time_ms(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
- }
- int64_t ggml_time_us(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
- }
- #endif
- int64_t ggml_cycles(void) {
- return clock();
- }
- int64_t ggml_cycles_per_ms(void) {
- return CLOCKS_PER_SEC/1000;
- }
- #ifdef GGML_PERF
- #define ggml_perf_time_ms() ggml_time_ms()
- #define ggml_perf_time_us() ggml_time_us()
- #define ggml_perf_cycles() ggml_cycles()
- #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
- #else
- #define ggml_perf_time_ms() 0
- #define ggml_perf_time_us() 0
- #define ggml_perf_cycles() 0
- #define ggml_perf_cycles_per_ms() 0
- #endif
- //
- // cache line
- //
- #if defined(__cpp_lib_hardware_interference_size)
- #define CACHE_LINE_SIZE hardware_destructive_interference_size
- #else
- #if defined(__POWER9_VECTOR__)
- #define CACHE_LINE_SIZE 128
- #else
- #define CACHE_LINE_SIZE 64
- #endif
- #endif
- static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
- //
- // quantization
- //
- #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
- #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
- // multiply int8_t, add results pairwise twice
- static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
- // Get absolute values of x vectors
- const __m128i ax = _mm_sign_epi8(x, x);
- // Sign the values of the y vectors
- const __m128i sy = _mm_sign_epi8(y, x);
- // Perform multiplication and create 16-bit values
- const __m128i dot = _mm_maddubs_epi16(ax, sy);
- const __m128i ones = _mm_set1_epi16(1);
- return _mm_madd_epi16(ones, dot);
- }
- #if __AVX__ || __AVX2__ || __AVX512F__
- // horizontally add 8 floats
- static inline float hsum_float_8(const __m256 x) {
- __m128 res = _mm256_extractf128_ps(x, 1);
- res = _mm_add_ps(res, _mm256_castps256_ps128(x));
- res = _mm_add_ps(res, _mm_movehl_ps(res, res));
- res = _mm_add_ss(res, _mm_movehdup_ps(res));
- return _mm_cvtss_f32(res);
- }
- // horizontally add 8 int32_t
- static inline int hsum_i32_8(const __m256i a) {
- const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
- const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
- const __m128i sum64 = _mm_add_epi32(hi64, sum128);
- const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
- return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
- }
- // horizontally add 4 int32_t
- static inline int hsum_i32_4(const __m128i a) {
- const __m128i hi64 = _mm_unpackhi_epi64(a, a);
- const __m128i sum64 = _mm_add_epi32(hi64, a);
- const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
- return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
- }
- #if defined(__AVX2__) || defined(__AVX512F__)
- // spread 32 bits to 32 bytes { 0x00, 0xFF }
- static inline __m256i bytes_from_bits_32(const uint8_t * x) {
- uint32_t x32;
- memcpy(&x32, x, sizeof(uint32_t));
- const __m256i shuf_mask = _mm256_set_epi64x(
- 0x0303030303030303, 0x0202020202020202,
- 0x0101010101010101, 0x0000000000000000);
- __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
- const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
- bytes = _mm256_or_si256(bytes, bit_mask);
- return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
- }
- // Unpack 32 4-bit fields into 32 bytes
- // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
- static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
- {
- const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
- const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
- const __m256i lowMask = _mm256_set1_epi8( 0xF );
- return _mm256_and_si256(lowMask, bytes);
- }
- // add int16_t pairwise and return as float vector
- static inline __m256 sum_i16_pairs_float(const __m256i x) {
- const __m256i ones = _mm256_set1_epi16(1);
- const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
- return _mm256_cvtepi32_ps(summed_pairs);
- }
- static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
- #if __AVXVNNI__
- const __m256i zero = _mm256_setzero_si256();
- const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
- return _mm256_cvtepi32_ps(summed_pairs);
- #else
- // Perform multiplication and create 16-bit values
- const __m256i dot = _mm256_maddubs_epi16(ax, sy);
- return sum_i16_pairs_float(dot);
- #endif
- }
- // multiply int8_t, add results pairwise twice and return as float vector
- static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
- #if __AVXVNNIINT8__
- const __m256i zero = _mm256_setzero_si256();
- const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
- return _mm256_cvtepi32_ps(summed_pairs);
- #else
- // Get absolute values of x vectors
- const __m256i ax = _mm256_sign_epi8(x, x);
- // Sign the values of the y vectors
- const __m256i sy = _mm256_sign_epi8(y, x);
- return mul_sum_us8_pairs_float(ax, sy);
- #endif
- }
- static inline __m128i packNibbles( __m256i bytes )
- {
- // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
- #if __AVX512F__
- const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
- bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
- return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
- #else
- const __m256i lowByte = _mm256_set1_epi16( 0xFF );
- __m256i high = _mm256_andnot_si256( lowByte, bytes );
- __m256i low = _mm256_and_si256( lowByte, bytes );
- high = _mm256_srli_epi16( high, 4 );
- bytes = _mm256_or_si256( low, high );
- // Compress uint16_t lanes into bytes
- __m128i r0 = _mm256_castsi256_si128( bytes );
- __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
- return _mm_packus_epi16( r0, r1 );
- #endif
- }
- #elif defined(__AVX__)
- // spread 32 bits to 32 bytes { 0x00, 0xFF }
- static inline __m256i bytes_from_bits_32(const uint8_t * x) {
- uint32_t x32;
- memcpy(&x32, x, sizeof(uint32_t));
- const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
- const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
- __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
- __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
- const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
- bytesl = _mm_or_si128(bytesl, bit_mask);
- bytesh = _mm_or_si128(bytesh, bit_mask);
- bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
- bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
- return MM256_SET_M128I(bytesh, bytesl);
- }
- // Unpack 32 4-bit fields into 32 bytes
- // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
- static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
- {
- // Load 16 bytes from memory
- __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
- __m128i tmph = _mm_srli_epi16(tmpl, 4);
- const __m128i lowMask = _mm_set1_epi8(0xF);
- tmpl = _mm_and_si128(lowMask, tmpl);
- tmph = _mm_and_si128(lowMask, tmph);
- return MM256_SET_M128I(tmph, tmpl);
- }
- // add int16_t pairwise and return as float vector
- static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
- const __m128i ones = _mm_set1_epi16(1);
- const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
- const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
- const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
- return _mm256_cvtepi32_ps(summed_pairs);
- }
- static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
- const __m128i axl = _mm256_castsi256_si128(ax);
- const __m128i axh = _mm256_extractf128_si256(ax, 1);
- const __m128i syl = _mm256_castsi256_si128(sy);
- const __m128i syh = _mm256_extractf128_si256(sy, 1);
- // Perform multiplication and create 16-bit values
- const __m128i dotl = _mm_maddubs_epi16(axl, syl);
- const __m128i doth = _mm_maddubs_epi16(axh, syh);
- return sum_i16_pairs_float(doth, dotl);
- }
- // multiply int8_t, add results pairwise twice and return as float vector
- static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
- const __m128i xl = _mm256_castsi256_si128(x);
- const __m128i xh = _mm256_extractf128_si256(x, 1);
- const __m128i yl = _mm256_castsi256_si128(y);
- const __m128i yh = _mm256_extractf128_si256(y, 1);
- // Get absolute values of x vectors
- const __m128i axl = _mm_sign_epi8(xl, xl);
- const __m128i axh = _mm_sign_epi8(xh, xh);
- // Sign the values of the y vectors
- const __m128i syl = _mm_sign_epi8(yl, xl);
- const __m128i syh = _mm_sign_epi8(yh, xh);
- // Perform multiplication and create 16-bit values
- const __m128i dotl = _mm_maddubs_epi16(axl, syl);
- const __m128i doth = _mm_maddubs_epi16(axh, syh);
- return sum_i16_pairs_float(doth, dotl);
- }
- static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
- {
- // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
- const __m128i lowByte = _mm_set1_epi16( 0xFF );
- __m128i high = _mm_andnot_si128( lowByte, bytes1 );
- __m128i low = _mm_and_si128( lowByte, bytes1 );
- high = _mm_srli_epi16( high, 4 );
- bytes1 = _mm_or_si128( low, high );
- high = _mm_andnot_si128( lowByte, bytes2 );
- low = _mm_and_si128( lowByte, bytes2 );
- high = _mm_srli_epi16( high, 4 );
- bytes2 = _mm_or_si128( low, high );
- return _mm_packus_epi16( bytes1, bytes2);
- }
- #endif
- #elif defined(__SSSE3__)
- // horizontally add 4x4 floats
- static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
- __m128 res_0 =_mm_hadd_ps(a, b);
- __m128 res_1 =_mm_hadd_ps(c, d);
- __m128 res =_mm_hadd_ps(res_0, res_1);
- res =_mm_hadd_ps(res, res);
- res =_mm_hadd_ps(res, res);
- return _mm_cvtss_f32(res);
- }
- #endif // __AVX__ || __AVX2__ || __AVX512F__
- #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
- #if defined(__ARM_NEON)
- #if !defined(__aarch64__)
- inline static int32_t vaddvq_s32(int32x4_t v) {
- return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
- }
- inline static float vaddvq_f32(float32x4_t v) {
- return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
- }
- inline static float vmaxvq_f32(float32x4_t v) {
- return
- MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
- MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
- }
- inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
- int32x4_t res;
- res[0] = roundf(vgetq_lane_f32(v, 0));
- res[1] = roundf(vgetq_lane_f32(v, 1));
- res[2] = roundf(vgetq_lane_f32(v, 2));
- res[3] = roundf(vgetq_lane_f32(v, 3));
- return res;
- }
- #endif
- #endif
- #define QK4_0 32
- typedef struct {
- ggml_fp16_t d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- typedef struct {
- ggml_fp16_t d; // delta
- ggml_fp16_t m; // min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
- #define QK5_0 32
- typedef struct {
- ggml_fp16_t d; // delta
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_0 / 2]; // nibbles / quants
- } block_q5_0;
- static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
- #define QK5_1 32
- typedef struct {
- ggml_fp16_t d; // delta
- ggml_fp16_t m; // min
- uint8_t qh[4]; // 5-th bit of quants
- uint8_t qs[QK5_1 / 2]; // nibbles / quants
- } block_q5_1;
- static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
- #define QK8_0 32
- typedef struct {
- ggml_fp16_t d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
- #define QK8_1 32
- typedef struct {
- float d; // delta
- float s; // d * sum(qs[i])
- int8_t qs[QK8_1]; // quants
- } block_q8_1;
- static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
- // reference implementation for deterministic creation of model files
- static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
- static const int qk = QK4_0;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- float max = 0.0f;
- for (int j = 0; j < qk; j++) {
- const float v = x[i*qk + j];
- if (amax < fabsf(v)) {
- amax = fabsf(v);
- max = v;
- }
- }
- const float d = max / -8;
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- for (int j = 0; j < qk/2; ++j) {
- const float x0 = x[i*qk + 0 + j]*id;
- const float x1 = x[i*qk + qk/2 + j]*id;
- const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
- const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
- y[i].qs[j] = xi0;
- y[i].qs[j] |= xi1 << 4;
- }
- }
- }
- static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
- quantize_row_q4_0_reference(x, y, k);
- }
- static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
- const int qk = QK4_1;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- float min = FLT_MAX;
- float max = -FLT_MAX;
- for (int j = 0; j < qk; j++) {
- const float v = x[i*qk + j];
- if (v < min) min = v;
- if (v > max) max = v;
- }
- const float d = (max - min) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- y[i].m = GGML_FP32_TO_FP16(min);
- for (int j = 0; j < qk/2; ++j) {
- const float x0 = (x[i*qk + 0 + j] - min)*id;
- const float x1 = (x[i*qk + qk/2 + j] - min)*id;
- const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
- const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
- y[i].qs[j] = xi0;
- y[i].qs[j] |= xi1 << 4;
- }
- }
- }
- static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
- quantize_row_q4_1_reference(x, y, k);
- }
- static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
- static const int qk = QK5_0;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- float max = 0.0f;
- for (int j = 0; j < qk; j++) {
- const float v = x[i*qk + j];
- if (amax < fabsf(v)) {
- amax = fabsf(v);
- max = v;
- }
- }
- const float d = max / -16;
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- uint32_t qh = 0;
- for (int j = 0; j < qk/2; ++j) {
- const float x0 = x[i*qk + 0 + j]*id;
- const float x1 = x[i*qk + qk/2 + j]*id;
- const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
- const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
- y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
- // get the 5-th bit and store it in qh at the right position
- qh |= ((xi0 & 0x10) >> 4) << (j + 0);
- qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
- }
- memcpy(&y[i].qh, &qh, sizeof(qh));
- }
- }
- static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
- quantize_row_q5_0_reference(x, y, k);
- }
- static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
- const int qk = QK5_1;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- float min = FLT_MAX;
- float max = -FLT_MAX;
- for (int j = 0; j < qk; j++) {
- const float v = x[i*qk + j];
- if (v < min) min = v;
- if (v > max) max = v;
- }
- const float d = (max - min) / ((1 << 5) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- y[i].m = GGML_FP32_TO_FP16(min);
- uint32_t qh = 0;
- for (int j = 0; j < qk/2; ++j) {
- const float x0 = (x[i*qk + 0 + j] - min)*id;
- const float x1 = (x[i*qk + qk/2 + j] - min)*id;
- const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
- const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
- y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
- // get the 5-th bit and store it in qh at the right position
- qh |= ((xi0 & 0x10) >> 4) << (j + 0);
- qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
- }
- memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
- }
- }
- static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
- quantize_row_q5_1_reference(x, y, k);
- }
- // reference implementation for deterministic creation of model files
- static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
- assert(k % QK8_0 == 0);
- const int nb = k / QK8_0;
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- for (int j = 0; j < QK8_0; j++) {
- const float v = x[i*QK8_0 + j];
- amax = MAX(amax, fabsf(v));
- }
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- for (int j = 0; j < QK8_0; ++j) {
- const float x0 = x[i*QK8_0 + j]*id;
- y[i].qs[j] = roundf(x0);
- }
- }
- }
- static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
- assert(QK8_0 == 32);
- assert(k % QK8_0 == 0);
- const int nb = k / QK8_0;
- block_q8_0 * restrict y = vy;
- #if defined(__ARM_NEON)
- for (int i = 0; i < nb; i++) {
- float32x4_t srcv [8];
- float32x4_t asrcv[8];
- float32x4_t amaxv[8];
- for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
- for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
- for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
- for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
- for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
- const float amax = vmaxvq_f32(amaxv[0]);
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- for (int j = 0; j < 8; j++) {
- const float32x4_t v = vmulq_n_f32(srcv[j], id);
- const int32x4_t vi = vcvtnq_s32_f32(v);
- y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
- y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
- y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
- y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
- }
- }
- #elif defined(__wasm_simd128__)
- for (int i = 0; i < nb; i++) {
- v128_t srcv [8];
- v128_t asrcv[8];
- v128_t amaxv[8];
- for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
- for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
- for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
- for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
- for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
- const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
- wasm_f32x4_extract_lane(amaxv[0], 1)),
- MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
- wasm_f32x4_extract_lane(amaxv[0], 3)));
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = GGML_FP32_TO_FP16(d);
- for (int j = 0; j < 8; j++) {
- const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
- const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
- y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
- y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
- y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
- y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
- }
- }
- #elif defined(__AVX2__) || defined(__AVX__)
- for (int i = 0; i < nb; i++) {
- // Load elements into 4 AVX vectors
- __m256 v0 = _mm256_loadu_ps( x );
- __m256 v1 = _mm256_loadu_ps( x + 8 );
- __m256 v2 = _mm256_loadu_ps( x + 16 );
- __m256 v3 = _mm256_loadu_ps( x + 24 );
- x += 32;
- // Compute max(abs(e)) for the block
- const __m256 signBit = _mm256_set1_ps( -0.0f );
- __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
- __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
- max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
- max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
- const float maxScalar = _mm_cvtss_f32( max4 );
- // Quantize these floats
- const float d = maxScalar / 127.f;
- y[i].d = GGML_FP32_TO_FP16(d);
- const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
- const __m256 mul = _mm256_set1_ps( id );
- // Apply the multiplier
- v0 = _mm256_mul_ps( v0, mul );
- v1 = _mm256_mul_ps( v1, mul );
- v2 = _mm256_mul_ps( v2, mul );
- v3 = _mm256_mul_ps( v3, mul );
- // Round to nearest integer
- v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
- v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
- v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
- v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
- // Convert floats to integers
- __m256i i0 = _mm256_cvtps_epi32( v0 );
- __m256i i1 = _mm256_cvtps_epi32( v1 );
- __m256i i2 = _mm256_cvtps_epi32( v2 );
- __m256i i3 = _mm256_cvtps_epi32( v3 );
- #if defined(__AVX2__)
- // Convert int32 to int16
- i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
- i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
- // Convert int16 to int8
- i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
- // We got our precious signed bytes, but the order is now wrong
- // These AVX2 pack instructions process 16-byte pieces independently
- // The following instruction is fixing the order
- const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
- i0 = _mm256_permutevar8x32_epi32( i0, perm );
- _mm256_storeu_si256((__m256i *)y[i].qs, i0);
- #else
- // Since we don't have in AVX some necessary functions,
- // we split the registers in half and call AVX2 analogs from SSE
- __m128i ni0 = _mm256_castsi256_si128( i0 );
- __m128i ni1 = _mm256_extractf128_si256( i0, 1);
- __m128i ni2 = _mm256_castsi256_si128( i1 );
- __m128i ni3 = _mm256_extractf128_si256( i1, 1);
- __m128i ni4 = _mm256_castsi256_si128( i2 );
- __m128i ni5 = _mm256_extractf128_si256( i2, 1);
- __m128i ni6 = _mm256_castsi256_si128( i3 );
- __m128i ni7 = _mm256_extractf128_si256( i3, 1);
- // Convert int32 to int16
- ni0 = _mm_packs_epi32( ni0, ni1 );
- ni2 = _mm_packs_epi32( ni2, ni3 );
- ni4 = _mm_packs_epi32( ni4, ni5 );
- ni6 = _mm_packs_epi32( ni6, ni7 );
- // Convert int16 to int8
- ni0 = _mm_packs_epi16( ni0, ni2 );
- ni4 = _mm_packs_epi16( ni4, ni6 );
- _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
- _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
- #endif
- }
- #else
- // scalar
- quantize_row_q8_0_reference(x, y, k);
- #endif
- }
- // reference implementation for deterministic creation of model files
- static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
- assert(QK8_1 == 32);
- assert(k % QK8_1 == 0);
- const int nb = k / QK8_1;
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- for (int j = 0; j < QK8_1; j++) {
- const float v = x[i*QK8_1 + j];
- amax = MAX(amax, fabsf(v));
- }
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- int sum = 0;
- for (int j = 0; j < QK8_1/2; ++j) {
- const float v0 = x[i*QK8_1 + j]*id;
- const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
- y[i].qs[ j] = roundf(v0);
- y[i].qs[QK8_1/2 + j] = roundf(v1);
- sum += y[i].qs[ j];
- sum += y[i].qs[QK8_1/2 + j];
- }
- y[i].s = sum*d;
- }
- }
- static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
- assert(k % QK8_1 == 0);
- const int nb = k / QK8_1;
- block_q8_1 * restrict y = vy;
- #if defined(__ARM_NEON)
- for (int i = 0; i < nb; i++) {
- float32x4_t srcv [8];
- float32x4_t asrcv[8];
- float32x4_t amaxv[8];
- for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
- for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
- for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
- for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
- for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
- const float amax = vmaxvq_f32(amaxv[0]);
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- int32x4_t accv = vdupq_n_s32(0);
- for (int j = 0; j < 8; j++) {
- const float32x4_t v = vmulq_n_f32(srcv[j], id);
- const int32x4_t vi = vcvtnq_s32_f32(v);
- y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
- y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
- y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
- y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
- accv = vaddq_s32(accv, vi);
- }
- y[i].s = d * vaddvq_s32(accv);
- }
- #elif defined(__wasm_simd128__)
- for (int i = 0; i < nb; i++) {
- v128_t srcv [8];
- v128_t asrcv[8];
- v128_t amaxv[8];
- for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
- for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
- for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
- for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
- for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
- const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
- wasm_f32x4_extract_lane(amaxv[0], 1)),
- MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
- wasm_f32x4_extract_lane(amaxv[0], 3)));
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- v128_t accv = wasm_i32x4_splat(0);
- for (int j = 0; j < 8; j++) {
- const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
- const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
- y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
- y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
- y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
- y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
- accv = wasm_i32x4_add(accv, vi);
- }
- y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
- wasm_i32x4_extract_lane(accv, 1) +
- wasm_i32x4_extract_lane(accv, 2) +
- wasm_i32x4_extract_lane(accv, 3));
- }
- #elif defined(__AVX2__) || defined(__AVX__)
- for (int i = 0; i < nb; i++) {
- // Load elements into 4 AVX vectors
- __m256 v0 = _mm256_loadu_ps( x );
- __m256 v1 = _mm256_loadu_ps( x + 8 );
- __m256 v2 = _mm256_loadu_ps( x + 16 );
- __m256 v3 = _mm256_loadu_ps( x + 24 );
- x += 32;
- // Compute max(abs(e)) for the block
- const __m256 signBit = _mm256_set1_ps( -0.0f );
- __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
- maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
- __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
- max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
- max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
- const float maxScalar = _mm_cvtss_f32( max4 );
- // Quantize these floats
- const float d = maxScalar / 127.f;
- y[i].d = d;
- const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
- const __m256 mul = _mm256_set1_ps( id );
- // Apply the multiplier
- v0 = _mm256_mul_ps( v0, mul );
- v1 = _mm256_mul_ps( v1, mul );
- v2 = _mm256_mul_ps( v2, mul );
- v3 = _mm256_mul_ps( v3, mul );
- // Round to nearest integer
- v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
- v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
- v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
- v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
- // Convert floats to integers
- __m256i i0 = _mm256_cvtps_epi32( v0 );
- __m256i i1 = _mm256_cvtps_epi32( v1 );
- __m256i i2 = _mm256_cvtps_epi32( v2 );
- __m256i i3 = _mm256_cvtps_epi32( v3 );
- #if defined(__AVX2__)
- // Compute the sum of the quants and set y[i].s
- y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
- // Convert int32 to int16
- i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
- i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
- // Convert int16 to int8
- i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
- // We got our precious signed bytes, but the order is now wrong
- // These AVX2 pack instructions process 16-byte pieces independently
- // The following instruction is fixing the order
- const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
- i0 = _mm256_permutevar8x32_epi32( i0, perm );
- _mm256_storeu_si256((__m256i *)y[i].qs, i0);
- #else
- // Since we don't have in AVX some necessary functions,
- // we split the registers in half and call AVX2 analogs from SSE
- __m128i ni0 = _mm256_castsi256_si128( i0 );
- __m128i ni1 = _mm256_extractf128_si256( i0, 1);
- __m128i ni2 = _mm256_castsi256_si128( i1 );
- __m128i ni3 = _mm256_extractf128_si256( i1, 1);
- __m128i ni4 = _mm256_castsi256_si128( i2 );
- __m128i ni5 = _mm256_extractf128_si256( i2, 1);
- __m128i ni6 = _mm256_castsi256_si128( i3 );
- __m128i ni7 = _mm256_extractf128_si256( i3, 1);
- // Compute the sum of the quants and set y[i].s
- const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
- const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
- y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
- // Convert int32 to int16
- ni0 = _mm_packs_epi32( ni0, ni1 );
- ni2 = _mm_packs_epi32( ni2, ni3 );
- ni4 = _mm_packs_epi32( ni4, ni5 );
- ni6 = _mm_packs_epi32( ni6, ni7 );
- // Convert int16 to int8
- ni0 = _mm_packs_epi16( ni0, ni2 );
- ni4 = _mm_packs_epi16( ni4, ni6 );
- _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
- _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
- #endif
- }
- #else
- // scalar
- quantize_row_q8_1_reference(x, y, k);
- #endif
- }
- static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
- static const int qk = QK4_0;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- for (int j = 0; j < qk/2; ++j) {
- const int x0 = (x[i].qs[j] & 0x0F) - 8;
- const int x1 = (x[i].qs[j] >> 4) - 8;
- y[i*qk + j + 0 ] = x0*d;
- y[i*qk + j + qk/2] = x1*d;
- }
- }
- }
- static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
- static const int qk = QK4_1;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- const float m = GGML_FP16_TO_FP32(x[i].m);
- for (int j = 0; j < qk/2; ++j) {
- const int x0 = (x[i].qs[j] & 0x0F);
- const int x1 = (x[i].qs[j] >> 4);
- y[i*qk + j + 0 ] = x0*d + m;
- y[i*qk + j + qk/2] = x1*d + m;
- }
- }
- }
- static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
- static const int qk = QK5_0;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- uint32_t qh;
- memcpy(&qh, x[i].qh, sizeof(qh));
- for (int j = 0; j < qk/2; ++j) {
- const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
- const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
- const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
- y[i*qk + j + 0 ] = x0*d;
- y[i*qk + j + qk/2] = x1*d;
- }
- }
- }
- static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
- static const int qk = QK5_1;
- assert(k % qk == 0);
- const int nb = k / qk;
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- const float m = GGML_FP16_TO_FP32(x[i].m);
- uint32_t qh;
- memcpy(&qh, x[i].qh, sizeof(qh));
- for (int j = 0; j < qk/2; ++j) {
- const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
- const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
- const int x1 = (x[i].qs[j] >> 4) | xh_1;
- y[i*qk + j + 0 ] = x0*d + m;
- y[i*qk + j + qk/2] = x1*d + m;
- }
- }
- }
- static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
- static const int qk = QK8_0;
- assert(k % qk == 0);
- const int nb = k / qk;
- const block_q8_0 * restrict x = vx;
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- for (int j = 0; j < qk; ++j) {
- y[i*qk + j] = x[i].qs[j]*d;
- }
- }
- }
- static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
- static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
- static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
- static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
- [GGML_TYPE_I8] = {
- .type_name = "i8",
- .blck_size = 1,
- .type_size = sizeof(int8_t),
- .is_quantized = false,
- },
- [GGML_TYPE_I16] = {
- .type_name = "i16",
- .blck_size = 1,
- .type_size = sizeof(int16_t),
- .is_quantized = false,
- },
- [GGML_TYPE_I32] = {
- .type_name = "i32",
- .blck_size = 1,
- .type_size = sizeof(int32_t),
- .is_quantized = false,
- },
- [GGML_TYPE_F32] = {
- .type_name = "f32",
- .blck_size = 1,
- .type_size = sizeof(float),
- .is_quantized = false,
- .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
- .vec_dot_type = GGML_TYPE_F32,
- },
- [GGML_TYPE_F16] = {
- .type_name = "f16",
- .blck_size = 1,
- .type_size = sizeof(ggml_fp16_t),
- .is_quantized = false,
- .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
- .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
- .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
- .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
- .vec_dot_type = GGML_TYPE_F16,
- },
- [GGML_TYPE_Q4_0] = {
- .type_name = "q4_0",
- .blck_size = QK4_0,
- .type_size = sizeof(block_q4_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_0,
- .from_float = quantize_row_q4_0,
- .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
- .vec_dot = ggml_vec_dot_q4_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- },
- [GGML_TYPE_Q4_1] = {
- .type_name = "q4_1",
- .blck_size = QK4_1,
- .type_size = sizeof(block_q4_1),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_1,
- .from_float = quantize_row_q4_1,
- .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
- .vec_dot = ggml_vec_dot_q4_1_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- },
- [GGML_TYPE_Q5_0] = {
- .type_name = "q5_0",
- .blck_size = QK5_0,
- .type_size = sizeof(block_q5_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_0,
- .from_float = quantize_row_q5_0,
- .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
- .vec_dot = ggml_vec_dot_q5_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- },
- [GGML_TYPE_Q5_1] = {
- .type_name = "q5_1",
- .blck_size = QK5_1,
- .type_size = sizeof(block_q5_1),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_1,
- .from_float = quantize_row_q5_1,
- .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
- .vec_dot = ggml_vec_dot_q5_1_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- },
- [GGML_TYPE_Q8_0] = {
- .type_name = "q8_0",
- .blck_size = QK8_0,
- .type_size = sizeof(block_q8_0),
- .is_quantized = true,
- .to_float = dequantize_row_q8_0,
- .from_float = quantize_row_q8_0,
- .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
- .vec_dot = ggml_vec_dot_q8_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- },
- [GGML_TYPE_Q8_1] = {
- .type_name = "q8_1",
- .blck_size = QK8_1,
- .type_size = sizeof(block_q8_1),
- .is_quantized = true,
- .from_float = quantize_row_q8_1,
- .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
- .vec_dot_type = GGML_TYPE_Q8_1,
- },
- #ifdef GGML_USE_K_QUANTS
- [GGML_TYPE_Q2_K] = {
- .type_name = "q2_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q2_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q2_K,
- .from_float = quantize_row_q2_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
- .vec_dot = ggml_vec_dot_q2_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- },
- [GGML_TYPE_Q3_K] = {
- .type_name = "q3_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q3_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q3_K,
- .from_float = quantize_row_q3_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
- .vec_dot = ggml_vec_dot_q3_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- },
- [GGML_TYPE_Q4_K] = {
- .type_name = "q4_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q4_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_K,
- .from_float = quantize_row_q4_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
- .vec_dot = ggml_vec_dot_q4_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- },
- [GGML_TYPE_Q5_K] = {
- .type_name = "q5_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q5_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_K,
- .from_float = quantize_row_q5_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
- .vec_dot = ggml_vec_dot_q5_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- },
- [GGML_TYPE_Q6_K] = {
- .type_name = "q6_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q6_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q6_K,
- .from_float = quantize_row_q6_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
- .vec_dot = ggml_vec_dot_q6_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- },
- [GGML_TYPE_Q8_K] = {
- .type_name = "q8_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q8_K),
- .is_quantized = true,
- .from_float = quantize_row_q8_K,
- }
- #endif
- };
- // For internal test use
- ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
- GGML_ASSERT(type < GGML_TYPE_COUNT);
- return type_traits[type];
- }
- //
- // simd mappings
- //
- // we define a common set of C macros which map to specific intrinsics based on the current architecture
- // we then implement the fundamental computation operations below using only these macros
- // adding support for new architectures requires to define the corresponding SIMD macros
- //
- // GGML_F32_STEP / GGML_F16_STEP
- // number of elements to process in a single step
- //
- // GGML_F32_EPR / GGML_F16_EPR
- // number of elements to fit in a single register
- //
- #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
- #define GGML_SIMD
- // F32 NEON
- #define GGML_F32_STEP 16
- #define GGML_F32_EPR 4
- #define GGML_F32x4 float32x4_t
- #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
- #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
- #define GGML_F32x4_LOAD vld1q_f32
- #define GGML_F32x4_STORE vst1q_f32
- #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
- #define GGML_F32x4_ADD vaddq_f32
- #define GGML_F32x4_MUL vmulq_f32
- #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f32(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f32(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f32(x[i], x[offset+i]); \
- } \
- res = GGML_F32x4_REDUCE_ONE(x[0]); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 NEON
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 8
- #define GGML_F16x8 float16x8_t
- #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
- #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
- #define GGML_F16x8_LOAD vld1q_f16
- #define GGML_F16x8_STORE vst1q_f16
- #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
- #define GGML_F16x8_ADD vaddq_f16
- #define GGML_F16x8_MUL vmulq_f16
- #define GGML_F16x8_REDUCE(res, x) \
- { \
- int offset = GGML_F16_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f16(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f16(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f16(x[i], x[offset+i]); \
- } \
- const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
- const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
- res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
- }
- #define GGML_F16_VEC GGML_F16x8
- #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
- #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F16x8_FMA
- #define GGML_F16_VEC_ADD GGML_F16x8_ADD
- #define GGML_F16_VEC_MUL GGML_F16x8_MUL
- #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
- #else
- // if FP16 vector arithmetic is not supported, we use FP32 instead
- // and take advantage of the vcvt_ functions to convert to/from FP16
- #define GGML_F16_STEP 16
- #define GGML_F16_EPR 4
- #define GGML_F32Cx4 float32x4_t
- #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
- #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
- #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
- #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
- #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
- #define GGML_F32Cx4_ADD vaddq_f32
- #define GGML_F32Cx4_MUL vmulq_f32
- #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
- #define GGML_F16_VEC GGML_F32Cx4
- #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
- #endif
- #elif defined(__AVX__)
- #define GGML_SIMD
- // F32 AVX
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 8
- #define GGML_F32x8 __m256
- #define GGML_F32x8_ZERO _mm256_setzero_ps()
- #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
- #define GGML_F32x8_LOAD _mm256_loadu_ps
- #define GGML_F32x8_STORE _mm256_storeu_ps
- #if defined(__FMA__)
- #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
- #else
- #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
- #endif
- #define GGML_F32x8_ADD _mm256_add_ps
- #define GGML_F32x8_MUL _mm256_mul_ps
- #define GGML_F32x8_REDUCE(res, x) \
- { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
- _mm256_extractf128_ps(x[0], 1)); \
- const __m128 t1 = _mm_hadd_ps(t0, t0); \
- res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
- }
- // TODO: is this optimal ?
- #define GGML_F32_VEC GGML_F32x8
- #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x8_STORE
- #define GGML_F32_VEC_FMA GGML_F32x8_FMA
- #define GGML_F32_VEC_ADD GGML_F32x8_ADD
- #define GGML_F32_VEC_MUL GGML_F32x8_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
- // F16 AVX
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 8
- // F16 arithmetic is not supported by AVX, so we use F32 instead
- #define GGML_F32Cx8 __m256
- #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
- #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
- #if defined(__F16C__)
- // the _mm256_cvt intrinsics require F16C
- #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
- #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
- #else
- static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
- float tmp[8];
- for (int i = 0; i < 8; i++) {
- tmp[i] = GGML_FP16_TO_FP32(x[i]);
- }
- return _mm256_loadu_ps(tmp);
- }
- static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
- float arr[8];
- _mm256_storeu_ps(arr, y);
- for (int i = 0; i < 8; i++)
- x[i] = GGML_FP32_TO_FP16(arr[i]);
- }
- #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
- #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
- #endif
- #define GGML_F32Cx8_FMA GGML_F32x8_FMA
- #define GGML_F32Cx8_ADD _mm256_add_ps
- #define GGML_F32Cx8_MUL _mm256_mul_ps
- #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
- #define GGML_F16_VEC GGML_F32Cx8
- #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
- #elif defined(__POWER9_VECTOR__)
- #define GGML_SIMD
- // F32 POWER9
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 4
- #define GGML_F32x4 vector float
- #define GGML_F32x4_ZERO 0.0f
- #define GGML_F32x4_SET1 vec_splats
- #define GGML_F32x4_LOAD(p) vec_xl(0, p)
- #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
- #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
- #define GGML_F32x4_ADD vec_add
- #define GGML_F32x4_MUL vec_mul
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- res = vec_extract(x[0], 0) + \
- vec_extract(x[0], 1) + \
- vec_extract(x[0], 2) + \
- vec_extract(x[0], 3); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 POWER9
- #define GGML_F16_STEP GGML_F32_STEP
- #define GGML_F16_EPR GGML_F32_EPR
- #define GGML_F16_VEC GGML_F32x4
- #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F16_VEC_FMA GGML_F32x4_FMA
- #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
- // Use vec_xl, not vec_ld, in case the load address is not aligned.
- #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
- vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
- vec_extract_fp32_from_shortl(vec_xl(0, p))
- #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
- #define GGML_F16_VEC_STORE(p, r, i) \
- if (i & 0x1) \
- vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
- r[i - GGML_ENDIAN_BYTE(0)]), \
- 0, p - GGML_F16_EPR)
- #elif defined(__wasm_simd128__)
- #define GGML_SIMD
- // F32 WASM
- #define GGML_F32_STEP 16
- #define GGML_F32_EPR 4
- #define GGML_F32x4 v128_t
- #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
- #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
- #define GGML_F32x4_LOAD wasm_v128_load
- #define GGML_F32x4_STORE wasm_v128_store
- #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
- #define GGML_F32x4_ADD wasm_f32x4_add
- #define GGML_F32x4_MUL wasm_f32x4_mul
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 WASM
- #define GGML_F16_STEP 16
- #define GGML_F16_EPR 4
- inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
- float tmp[4];
- tmp[0] = GGML_FP16_TO_FP32(p[0]);
- tmp[1] = GGML_FP16_TO_FP32(p[1]);
- tmp[2] = GGML_FP16_TO_FP32(p[2]);
- tmp[3] = GGML_FP16_TO_FP32(p[3]);
- return wasm_v128_load(tmp);
- }
- inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
- float tmp[4];
- wasm_v128_store(tmp, x);
- p[0] = GGML_FP32_TO_FP16(tmp[0]);
- p[1] = GGML_FP32_TO_FP16(tmp[1]);
- p[2] = GGML_FP32_TO_FP16(tmp[2]);
- p[3] = GGML_FP32_TO_FP16(tmp[3]);
- }
- #define GGML_F16x4 v128_t
- #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
- #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
- #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
- #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
- #define GGML_F16x4_FMA GGML_F32x4_FMA
- #define GGML_F16x4_ADD wasm_f32x4_add
- #define GGML_F16x4_MUL wasm_f32x4_mul
- #define GGML_F16x4_REDUCE(res, x) \
- { \
- int offset = GGML_F16_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
- }
- #define GGML_F16_VEC GGML_F16x4
- #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F16x4_FMA
- #define GGML_F16_VEC_ADD GGML_F16x4_ADD
- #define GGML_F16_VEC_MUL GGML_F16x4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
- #elif defined(__SSE3__)
- #define GGML_SIMD
- // F32 SSE
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 4
- #define GGML_F32x4 __m128
- #define GGML_F32x4_ZERO _mm_setzero_ps()
- #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
- #define GGML_F32x4_LOAD _mm_loadu_ps
- #define GGML_F32x4_STORE _mm_storeu_ps
- #if defined(__FMA__)
- // TODO: Does this work?
- #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
- #else
- #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
- #endif
- #define GGML_F32x4_ADD _mm_add_ps
- #define GGML_F32x4_MUL _mm_mul_ps
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
- res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
- }
- // TODO: is this optimal ?
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 SSE
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 4
- static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
- float tmp[4];
- tmp[0] = GGML_FP16_TO_FP32(x[0]);
- tmp[1] = GGML_FP16_TO_FP32(x[1]);
- tmp[2] = GGML_FP16_TO_FP32(x[2]);
- tmp[3] = GGML_FP16_TO_FP32(x[3]);
- return _mm_loadu_ps(tmp);
- }
- static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
- float arr[4];
- _mm_storeu_ps(arr, y);
- x[0] = GGML_FP32_TO_FP16(arr[0]);
- x[1] = GGML_FP32_TO_FP16(arr[1]);
- x[2] = GGML_FP32_TO_FP16(arr[2]);
- x[3] = GGML_FP32_TO_FP16(arr[3]);
- }
- #define GGML_F32Cx4 __m128
- #define GGML_F32Cx4_ZERO _mm_setzero_ps()
- #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
- #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
- #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
- #define GGML_F32Cx4_FMA GGML_F32x4_FMA
- #define GGML_F32Cx4_ADD _mm_add_ps
- #define GGML_F32Cx4_MUL _mm_mul_ps
- #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
- #define GGML_F16_VEC GGML_F32Cx4
- #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
- #endif
- // GGML_F32_ARR / GGML_F16_ARR
- // number of registers to use per step
- #ifdef GGML_SIMD
- #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
- #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
- #endif
- //
- // fundamental operations
- //
- inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
- inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
- inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
- inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
- inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
- inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
- inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
- inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
- inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
- static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
- #ifdef GGML_SIMD
- float sumf = 0.0f;
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F32_VEC_REDUCE(sumf, sum);
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += x[i]*y[i];
- }
- #else
- // scalar
- ggml_float sumf = 0.0;
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(x[i]*y[i]);
- }
- #endif
- *s = sumf;
- }
- static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
- ggml_float sumf = 0.0;
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
- GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F16_VEC_REDUCE(sumf, sum);
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
- #else
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
- #endif
- *s = sumf;
- }
- static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int qk = QK8_0;
- const int nb = n / qk;
- assert(n % qk == 0);
- const block_q4_0 * restrict x = vx;
- const block_q8_0 * restrict y = vy;
- #if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
- GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
- for (int i = 0; i < nb; i += 2) {
- const block_q4_0 * restrict x0 = &x[i + 0];
- const block_q4_0 * restrict x1 = &x[i + 1];
- const block_q8_0 * restrict y0 = &y[i + 0];
- const block_q8_0 * restrict y1 = &y[i + 1];
- const uint8x16_t m4b = vdupq_n_u8(0x0F);
- const int8x16_t s8b = vdupq_n_s8(0x8);
- const uint8x16_t v0_0 = vld1q_u8(x0->qs);
- const uint8x16_t v0_1 = vld1q_u8(x1->qs);
- // 4-bit -> 8-bit
- const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
- const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
- const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
- const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
- // sub 8
- const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
- const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
- const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
- const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
- // load y
- const int8x16_t v1_0l = vld1q_s8(y0->qs);
- const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
- const int8x16_t v1_1l = vld1q_s8(y1->qs);
- const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
- #if defined(__ARM_FEATURE_DOTPROD)
- // dot product into int32x4_t
- const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
- const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #else
- const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
- const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
- const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
- const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
- const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
- const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
- const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
- const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
- const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
- const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
- const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
- const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #endif
- }
- *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
- #elif defined(__AVX2__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- // Main loop
- for (int i = 0; i < nb; ++i) {
- /* Compute combined scale for the block */
- const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
- __m256i bx = bytes_from_nibbles_32(x[i].qs);
- // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
- const __m256i off = _mm256_set1_epi8( 8 );
- bx = _mm256_sub_epi8( bx, off );
- __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
- /* Multiply q with scale and accumulate */
- acc = _mm256_fmadd_ps( d, q, acc );
- }
- *s = hsum_float_8(acc);
- #elif defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- // Main loop
- for (int i = 0; i < nb; ++i) {
- // Compute combined scale for the block
- const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
- const __m128i lowMask = _mm_set1_epi8(0xF);
- const __m128i off = _mm_set1_epi8(8);
- const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
- __m128i bx = _mm_and_si128(lowMask, tmp);
- __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
- bx = _mm_sub_epi8(bx, off);
- const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
- bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
- by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
- bx = _mm_sub_epi8(bx, off);
- const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
- // Convert int32_t to float
- __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
- // Apply the scale, and accumulate
- acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
- }
- *s = hsum_float_8(acc);
- #elif defined(__SSSE3__)
- // set constants
- const __m128i lowMask = _mm_set1_epi8(0xF);
- const __m128i off = _mm_set1_epi8(8);
- // Initialize accumulator with zeros
- __m128 acc_0 = _mm_setzero_ps();
- __m128 acc_1 = _mm_setzero_ps();
- __m128 acc_2 = _mm_setzero_ps();
- __m128 acc_3 = _mm_setzero_ps();
- // First round without accumulation
- {
- _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
- _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
- // Compute combined scale for the block 0 and 1
- const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
- const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
- __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
- __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
- bx_0 = _mm_sub_epi8(bx_0, off);
- const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
- __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
- __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
- bx_1 = _mm_sub_epi8(bx_1, off);
- const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
- _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
- _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
- // Compute combined scale for the block 2 and 3
- const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
- const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
- __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
- __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
- bx_2 = _mm_sub_epi8(bx_2, off);
- const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
- __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
- __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
- bx_3 = _mm_sub_epi8(bx_3, off);
- const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
- // Convert int32_t to float
- __m128 p0 = _mm_cvtepi32_ps(i32_0);
- __m128 p1 = _mm_cvtepi32_ps(i32_1);
- __m128 p2 = _mm_cvtepi32_ps(i32_2);
- __m128 p3 = _mm_cvtepi32_ps(i32_3);
- // Apply the scale
- acc_0 = _mm_mul_ps( d_0_1, p0 );
- acc_1 = _mm_mul_ps( d_0_1, p1 );
- acc_2 = _mm_mul_ps( d_2_3, p2 );
- acc_3 = _mm_mul_ps( d_2_3, p3 );
- }
- // Main loop
- GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
- for (int i = 2; i < nb; i+=2) {
- _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
- _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
- // Compute combined scale for the block 0 and 1
- const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
- const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
- __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
- __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
- bx_0 = _mm_sub_epi8(bx_0, off);
- const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
- __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
- __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
- bx_1 = _mm_sub_epi8(bx_1, off);
- const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
- _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
- _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
- // Compute combined scale for the block 2 and 3
- const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
- const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
- __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
- __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
- bx_2 = _mm_sub_epi8(bx_2, off);
- const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
- __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
- __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
- bx_3 = _mm_sub_epi8(bx_3, off);
- const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
- // Convert int32_t to float
- __m128 p0 = _mm_cvtepi32_ps(i32_0);
- __m128 p1 = _mm_cvtepi32_ps(i32_1);
- __m128 p2 = _mm_cvtepi32_ps(i32_2);
- __m128 p3 = _mm_cvtepi32_ps(i32_3);
- // Apply the scale
- __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
- __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
- __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
- __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
- // Acummulate
- acc_0 = _mm_add_ps(p0_d, acc_0);
- acc_1 = _mm_add_ps(p1_d, acc_1);
- acc_2 = _mm_add_ps(p2_d, acc_2);
- acc_3 = _mm_add_ps(p3_d, acc_3);
- }
- *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
- #elif defined(__riscv_v_intrinsic)
- float sumf = 0.0;
- size_t vl = __riscv_vsetvl_e8m1(qk/2);
- for (int i = 0; i < nb; i++) {
- vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
- vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
- vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
- vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
- vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
- vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
- vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
- vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
- vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
- vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
- vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
- vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
- vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
- vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
- int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
- sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
- sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
- }
- *s = sumf;
- #else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- int sumi = 0;
- for (int j = 0; j < qk/2; ++j) {
- const int v0 = (x[i].qs[j] & 0x0F) - 8;
- const int v1 = (x[i].qs[j] >> 4) - 8;
- sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
- }
- sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
- }
- *s = sumf;
- #endif
- }
- static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int qk = QK8_1;
- const int nb = n / qk;
- assert(n % qk == 0);
- const block_q4_1 * restrict x = vx;
- const block_q8_1 * restrict y = vy;
- // TODO: add WASM SIMD
- #if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
- float summs = 0;
- GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
- for (int i = 0; i < nb; i += 2) {
- const block_q4_1 * restrict x0 = &x[i + 0];
- const block_q4_1 * restrict x1 = &x[i + 1];
- const block_q8_1 * restrict y0 = &y[i + 0];
- const block_q8_1 * restrict y1 = &y[i + 1];
- summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
- const uint8x16_t m4b = vdupq_n_u8(0x0F);
- const uint8x16_t v0_0 = vld1q_u8(x0->qs);
- const uint8x16_t v0_1 = vld1q_u8(x1->qs);
- // 4-bit -> 8-bit
- const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
- const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
- const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
- const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
- // load y
- const int8x16_t v1_0l = vld1q_s8(y0->qs);
- const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
- const int8x16_t v1_1l = vld1q_s8(y1->qs);
- const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
- #if defined(__ARM_FEATURE_DOTPROD)
- // dot product into int32x4_t
- const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
- const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
- #else
- const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
- const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
- const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
- const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
- const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
- const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
- const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
- const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
- const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
- const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
- const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
- const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
- #endif
- }
- *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
- #elif defined(__AVX2__) || defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- float summs = 0;
- // Main loop
- for (int i = 0; i < nb; ++i) {
- const float d0 = GGML_FP16_TO_FP32(x[i].d);
- const float d1 = y[i].d;
- summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
- const __m256 d0v = _mm256_set1_ps( d0 );
- const __m256 d1v = _mm256_set1_ps( d1 );
- // Compute combined scales
- const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
- // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
- const __m256i bx = bytes_from_nibbles_32(x[i].qs);
- const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
- const __m256 xy = mul_sum_us8_pairs_float(bx, by);
- // Accumulate d0*d1*x*y
- #if defined(__AVX2__)
- acc = _mm256_fmadd_ps( d0d1, xy, acc );
- #else
- acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
- #endif
- }
- *s = hsum_float_8(acc) + summs;
- #elif defined(__riscv_v_intrinsic)
- float sumf = 0.0;
- size_t vl = __riscv_vsetvl_e8m1(qk/2);
- for (int i = 0; i < nb; i++) {
- vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
- vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
- vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
- vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
- vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
- vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
- vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
- vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
- vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
- vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
- vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
- vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
- int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
- sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
- sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
- }
- *s = sumf;
- #else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- int sumi = 0;
- for (int j = 0; j < qk/2; ++j) {
- const int v0 = (x[i].qs[j] & 0x0F);
- const int v1 = (x[i].qs[j] >> 4);
- sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
- }
- sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
- }
- *s = sumf;
- #endif
- }
- static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int qk = QK8_0;
- const int nb = n / qk;
- assert(n % qk == 0);
- assert(qk == QK5_0);
- const block_q5_0 * restrict x = vx;
- const block_q8_0 * restrict y = vy;
- #if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
- uint32_t qh0;
- uint32_t qh1;
- uint64_t tmp0[4];
- uint64_t tmp1[4];
- GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
- for (int i = 0; i < nb; i += 2) {
- const block_q5_0 * restrict x0 = &x[i];
- const block_q5_0 * restrict x1 = &x[i + 1];
- const block_q8_0 * restrict y0 = &y[i];
- const block_q8_0 * restrict y1 = &y[i + 1];
- const uint8x16_t m4b = vdupq_n_u8(0x0F);
- // extract the 5th bit via lookup table ((!b) << 4)
- memcpy(&qh0, x0->qh, sizeof(qh0));
- memcpy(&qh1, x1->qh, sizeof(qh1));
- tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
- tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
- tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
- tmp0[3] = table_b2b_1[(qh0 >> 24) ];
- tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
- tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
- tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
- tmp1[3] = table_b2b_1[(qh1 >> 24) ];
- const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
- const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
- const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
- const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
- const uint8x16_t v0_0 = vld1q_u8(x0->qs);
- const uint8x16_t v0_1 = vld1q_u8(x1->qs);
- // 4-bit -> 8-bit
- int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
- int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
- int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
- int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
- // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
- const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
- const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
- const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
- const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
- // load y
- const int8x16_t v1_0l = vld1q_s8(y0->qs);
- const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
- const int8x16_t v1_1l = vld1q_s8(y1->qs);
- const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
- #if defined(__ARM_FEATURE_DOTPROD)
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
- vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
- vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #else
- const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
- const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
- const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
- const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
- const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
- const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
- const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
- const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
- const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
- const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
- const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
- const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #endif
- }
- *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
- #elif defined(__wasm_simd128__)
- v128_t sumv = wasm_f32x4_splat(0.0f);
- uint32_t qh;
- uint64_t tmp[4];
- // TODO: check if unrolling this is better
- for (int i = 0; i < nb; ++i) {
- const block_q5_0 * restrict x0 = &x[i];
- const block_q8_0 * restrict y0 = &y[i];
- const v128_t m4b = wasm_i8x16_splat(0x0F);
- // extract the 5th bit
- memcpy(&qh, x0->qh, sizeof(qh));
- tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
- tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
- tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
- tmp[3] = table_b2b_1[(qh >> 24) ];
- const v128_t qhl = wasm_v128_load(tmp + 0);
- const v128_t qhh = wasm_v128_load(tmp + 2);
- const v128_t v0 = wasm_v128_load(x0->qs);
- // 4-bit -> 8-bit
- const v128_t v0l = wasm_v128_and (v0, m4b);
- const v128_t v0h = wasm_u8x16_shr(v0, 4);
- // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
- const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
- const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
- // load y
- const v128_t v1l = wasm_v128_load(y0->qs);
- const v128_t v1h = wasm_v128_load(y0->qs + 16);
- // int8x16 -> int16x8
- const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
- const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
- const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
- const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
- const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
- const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
- const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
- const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
- // dot product
- sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
- wasm_i32x4_add(
- wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
- wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
- wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
- wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
- wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
- }
- *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
- wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
- #elif defined(__AVX2__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- // Main loop
- for (int i = 0; i < nb; i++) {
- /* Compute combined scale for the block */
- const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
- __m256i bx = bytes_from_nibbles_32(x[i].qs);
- __m256i bxhi = bytes_from_bits_32(x[i].qh);
- bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
- bx = _mm256_or_si256(bx, bxhi);
- __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
- /* Multiply q with scale and accumulate */
- acc = _mm256_fmadd_ps(d, q, acc);
- }
- *s = hsum_float_8(acc);
- #elif defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- __m128i mask = _mm_set1_epi8((char)0xF0);
- // Main loop
- for (int i = 0; i < nb; i++) {
- /* Compute combined scale for the block */
- const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
- __m256i bx = bytes_from_nibbles_32(x[i].qs);
- const __m256i bxhi = bytes_from_bits_32(x[i].qh);
- __m128i bxhil = _mm256_castsi256_si128(bxhi);
- __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
- bxhil = _mm_andnot_si128(bxhil, mask);
- bxhih = _mm_andnot_si128(bxhih, mask);
- __m128i bxl = _mm256_castsi256_si128(bx);
- __m128i bxh = _mm256_extractf128_si256(bx, 1);
- bxl = _mm_or_si128(bxl, bxhil);
- bxh = _mm_or_si128(bxh, bxhih);
- bx = MM256_SET_M128I(bxh, bxl);
- const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
- /* Multiply q with scale and accumulate */
- acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
- }
- *s = hsum_float_8(acc);
- #elif defined(__riscv_v_intrinsic)
- float sumf = 0.0;
- uint32_t qh;
- // These temp values are for masking and shift operations
- uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
- uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
- 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
- size_t vl = __riscv_vsetvl_e8m1(qk/2);
- for (int i = 0; i < nb; i++) {
- memcpy(&qh, x[i].qh, sizeof(uint32_t));
- // temporary registers
- vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
- vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
- vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
- vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
- // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
- vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
- vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
- vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
- // ((qh & (1u << (j + 16))) >> (j + 12));
- vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
- vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
- // narrowing
- vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
- vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
- vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
- vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
- // load
- vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
- vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
- vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
- vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
- vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
- vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
- vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
- vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
- vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
- vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
- vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
- vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
- vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
- vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
- vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
- vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
- int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
- sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
- sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
- }
- *s = sumf;
- #else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- uint32_t qh;
- memcpy(&qh, x[i].qh, sizeof(qh));
- int sumi = 0;
- for (int j = 0; j < qk/2; ++j) {
- const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
- const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
- const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
- const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
- sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
- }
- sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
- }
- *s = sumf;
- #endif
- }
- static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int qk = QK8_1;
- const int nb = n / qk;
- assert(n % qk == 0);
- assert(qk == QK5_1);
- const block_q5_1 * restrict x = vx;
- const block_q8_1 * restrict y = vy;
- #if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
- float summs0 = 0.0f;
- float summs1 = 0.0f;
- uint32_t qh0;
- uint32_t qh1;
- uint64_t tmp0[4];
- uint64_t tmp1[4];
- GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
- for (int i = 0; i < nb; i += 2) {
- const block_q5_1 * restrict x0 = &x[i];
- const block_q5_1 * restrict x1 = &x[i + 1];
- const block_q8_1 * restrict y0 = &y[i];
- const block_q8_1 * restrict y1 = &y[i + 1];
- const uint8x16_t m4b = vdupq_n_u8(0x0F);
- summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
- summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
- // extract the 5th bit via lookup table ((b) << 4)
- memcpy(&qh0, x0->qh, sizeof(qh0));
- memcpy(&qh1, x1->qh, sizeof(qh1));
- tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
- tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
- tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
- tmp0[3] = table_b2b_0[(qh0 >> 24) ];
- tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
- tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
- tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
- tmp1[3] = table_b2b_0[(qh1 >> 24) ];
- const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
- const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
- const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
- const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
- const uint8x16_t v0_0 = vld1q_u8(x0->qs);
- const uint8x16_t v0_1 = vld1q_u8(x1->qs);
- // 4-bit -> 8-bit
- const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
- const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
- const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
- const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
- // add high bit
- const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
- const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
- const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
- const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
- // load y
- const int8x16_t v1_0l = vld1q_s8(y0->qs);
- const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
- const int8x16_t v1_1l = vld1q_s8(y1->qs);
- const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
- #if defined(__ARM_FEATURE_DOTPROD)
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
- vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
- vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
- #else
- const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
- const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
- const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
- const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
- const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
- const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
- const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
- const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
- const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
- const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
- const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
- const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
- #endif
- }
- *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
- #elif defined(__wasm_simd128__)
- v128_t sumv = wasm_f32x4_splat(0.0f);
- float summs = 0.0f;
- uint32_t qh;
- uint64_t tmp[4];
- // TODO: check if unrolling this is better
- for (int i = 0; i < nb; ++i) {
- const block_q5_1 * restrict x0 = &x[i];
- const block_q8_1 * restrict y0 = &y[i];
- summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
- const v128_t m4b = wasm_i8x16_splat(0x0F);
- // extract the 5th bit
- memcpy(&qh, x0->qh, sizeof(qh));
- tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
- tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
- tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
- tmp[3] = table_b2b_0[(qh >> 24) ];
- const v128_t qhl = wasm_v128_load(tmp + 0);
- const v128_t qhh = wasm_v128_load(tmp + 2);
- const v128_t v0 = wasm_v128_load(x0->qs);
- // 4-bit -> 8-bit
- const v128_t v0l = wasm_v128_and (v0, m4b);
- const v128_t v0h = wasm_u8x16_shr(v0, 4);
- // add high bit
- const v128_t v0lf = wasm_v128_or(v0l, qhl);
- const v128_t v0hf = wasm_v128_or(v0h, qhh);
- // load y
- const v128_t v1l = wasm_v128_load(y0->qs);
- const v128_t v1h = wasm_v128_load(y0->qs + 16);
- // int8x16 -> int16x8
- const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
- const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
- const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
- const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
- const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
- const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
- const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
- const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
- // dot product
- sumv = wasm_f32x4_add(sumv,
- wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
- wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
- wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
- wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
- wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
- wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
- }
- *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
- wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
- #elif defined(__AVX2__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- float summs = 0.0f;
- // Main loop
- for (int i = 0; i < nb; i++) {
- const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
- summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
- __m256i bx = bytes_from_nibbles_32(x[i].qs);
- __m256i bxhi = bytes_from_bits_32(x[i].qh);
- bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
- bx = _mm256_or_si256(bx, bxhi);
- const __m256 dy = _mm256_set1_ps(y[i].d);
- const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_us8_pairs_float(bx, by);
- acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
- }
- *s = hsum_float_8(acc) + summs;
- #elif defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- __m128i mask = _mm_set1_epi8(0x10);
- float summs = 0.0f;
- // Main loop
- for (int i = 0; i < nb; i++) {
- const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
- summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
- __m256i bx = bytes_from_nibbles_32(x[i].qs);
- const __m256i bxhi = bytes_from_bits_32(x[i].qh);
- __m128i bxhil = _mm256_castsi256_si128(bxhi);
- __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
- bxhil = _mm_and_si128(bxhil, mask);
- bxhih = _mm_and_si128(bxhih, mask);
- __m128i bxl = _mm256_castsi256_si128(bx);
- __m128i bxh = _mm256_extractf128_si256(bx, 1);
- bxl = _mm_or_si128(bxl, bxhil);
- bxh = _mm_or_si128(bxh, bxhih);
- bx = MM256_SET_M128I(bxh, bxl);
- const __m256 dy = _mm256_set1_ps(y[i].d);
- const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_us8_pairs_float(bx, by);
- acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
- }
- *s = hsum_float_8(acc) + summs;
- #elif defined(__riscv_v_intrinsic)
- float sumf = 0.0;
- uint32_t qh;
- // These temp values are for shift operations
- uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
- size_t vl = __riscv_vsetvl_e8m1(qk/2);
- for (int i = 0; i < nb; i++) {
- memcpy(&qh, x[i].qh, sizeof(uint32_t));
- // temporary registers
- vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
- vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
- // load qh
- vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
- // ((qh >> (j + 0)) << 4) & 0x10;
- vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
- vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
- vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
- // ((qh >> (j + 12)) ) & 0x10;
- vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
- vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
- // narrowing
- vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
- vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
- vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
- vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
- // load
- vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
- vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
- vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
- vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
- vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
- vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
- vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
- vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
- vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
- vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
- vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
- vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
- vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
- vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
- int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
- sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
- sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
- }
- *s = sumf;
- #else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- uint32_t qh;
- memcpy(&qh, x[i].qh, sizeof(qh));
- int sumi = 0;
- for (int j = 0; j < qk/2; ++j) {
- const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
- const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
- const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
- const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
- sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
- }
- sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
- }
- *s = sumf;
- #endif
- }
- static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int qk = QK8_0;
- const int nb = n / qk;
- assert(n % qk == 0);
- const block_q8_0 * restrict x = vx;
- const block_q8_0 * restrict y = vy;
- #if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
- GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
- for (int i = 0; i < nb; i += 2) {
- const block_q8_0 * restrict x0 = &x[i + 0];
- const block_q8_0 * restrict x1 = &x[i + 1];
- const block_q8_0 * restrict y0 = &y[i + 0];
- const block_q8_0 * restrict y1 = &y[i + 1];
- const int8x16_t x0_0 = vld1q_s8(x0->qs);
- const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
- const int8x16_t x1_0 = vld1q_s8(x1->qs);
- const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
- // load y
- const int8x16_t y0_0 = vld1q_s8(y0->qs);
- const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
- const int8x16_t y1_0 = vld1q_s8(y1->qs);
- const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
- #if defined(__ARM_FEATURE_DOTPROD)
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
- vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
- vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
- vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #else
- const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
- const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
- const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
- const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
- const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
- const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
- const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
- const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
- const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
- const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
- const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
- const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
- #endif
- }
- *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
- #elif defined(__AVX2__) || defined(__AVX__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- // Main loop
- for (int i = 0; i < nb; ++i) {
- // Compute combined scale for the block
- const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
- __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
- __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
- // Multiply q with scale and accumulate
- #if defined(__AVX2__)
- acc = _mm256_fmadd_ps( d, q, acc );
- #else
- acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
- #endif
- }
- *s = hsum_float_8(acc);
- #elif defined(__riscv_v_intrinsic)
- float sumf = 0.0;
- size_t vl = __riscv_vsetvl_e8m1(qk);
- for (int i = 0; i < nb; i++) {
- // load elements
- vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
- vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
- vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
- vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
- vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
- int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
- sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
- }
- *s = sumf;
- #else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- int sumi = 0;
- for (int j = 0; j < qk; j++) {
- sumi += x[i].qs[j]*y[i].qs[j];
- }
- sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
- }
- *s = sumf;
- #endif
- }
- // compute GGML_VEC_DOT_UNROLL dot products at once
- // xs - x row stride in bytes
- inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
- ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
- ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
- }
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
- GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
- sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
- }
- }
- }
- // reduce sum0..sum3 to sum0
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
- #else
- for (int i = 0; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
- #endif
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- s[i] = sumf[i];
- }
- }
- inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] += x[i]*v;
- }
- #else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] += x[i]*v;
- }
- #endif
- }
- //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
- inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
- #if defined(GGML_USE_ACCELERATE)
- vDSP_vsmul(y, 1, &v, y, 1, n);
- #elif defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] *= v;
- }
- #else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] *= v;
- }
- #endif
- }
- inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
- inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
- inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
- inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
- inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
- inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
- inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
- inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
- inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
- inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
- static const float GELU_COEF_A = 0.044715f;
- static const float GELU_QUICK_COEF = -1.702f;
- static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- inline static float ggml_gelu_f32(float x) {
- return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
- }
- inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- const uint16_t * i16 = (const uint16_t *) x;
- for (int i = 0; i < n; ++i) {
- y[i] = table_gelu_f16[i16[i]];
- }
- }
- #ifdef GGML_GELU_FP16
- inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
- }
- }
- #else
- inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_gelu_f32(x[i]);
- }
- }
- #endif
- inline static float ggml_gelu_quick_f32(float x) {
- return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
- }
- //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- // const uint16_t * i16 = (const uint16_t *) x;
- // for (int i = 0; i < n; ++i) {
- // y[i] = table_gelu_quick_f16[i16[i]];
- // }
- //}
- #ifdef GGML_GELU_QUICK_FP16
- inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
- }
- }
- #else
- inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_gelu_quick_f32(x[i]);
- }
- }
- #endif
- // Sigmoid Linear Unit (SiLU) function
- inline static float ggml_silu_f32(float x) {
- return x/(1.0f + expf(-x));
- }
- //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- // const uint16_t * i16 = (const uint16_t *) x;
- // for (int i = 0; i < n; ++i) {
- // y[i] = table_silu_f16[i16[i]];
- // }
- //}
- #ifdef GGML_SILU_FP16
- inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
- }
- }
- #else
- inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_silu_f32(x[i]);
- }
- }
- #endif
- inline static float ggml_silu_backward_f32(float x, float dy) {
- const float s = 1.0f/(1.0f + expf(-x));
- return dy*s*(1.0f + x*(1.0f - s));
- }
- #ifdef GGML_SILU_FP16
- inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
- for (int i = 0; i < n; ++i) {
- // we did not use x[i] to compute forward silu but its f16 equivalent
- // take derivative at f16 of x[i]:
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- float usedx = GGML_FP16_TO_FP32(fp16);
- dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
- }
- }
- #else
- inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
- for (int i = 0; i < n; ++i) {
- dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
- }
- }
- #endif
- inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
- #ifndef GGML_USE_ACCELERATE
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
- #else
- vDSP_sve(x, 1, s, n);
- #endif
- }
- inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
- }
- inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
- float sum = 0.0f;
- for (int i = 0; i < n; ++i) {
- sum += GGML_FP16_TO_FP32(x[i]);
- }
- *s = sum;
- }
- inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
- #ifndef GGML_USE_ACCELERATE
- float max = -INFINITY;
- for (int i = 0; i < n; ++i) {
- max = MAX(max, x[i]);
- }
- *s = max;
- #else
- vDSP_maxv(x, 1, s, n);
- #endif
- }
- inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
- ggml_vec_norm_f32(n, s, x);
- *s = 1.f/(*s);
- }
- inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
- float max = -INFINITY;
- int idx = 0;
- for (int i = 0; i < n; ++i) {
- max = MAX(max, x[i]);
- if (max == x[i]) { idx = i; }
- }
- *s = idx;
- }
- //
- // data types
- //
- static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
- "NONE",
- "DUP",
- "ADD",
- "ADD1",
- "ACC",
- "SUB",
- "MUL",
- "DIV",
- "SQR",
- "SQRT",
- "LOG",
- "SUM",
- "SUM_ROWS",
- "MEAN",
- "ARGMAX",
- "REPEAT",
- "REPEAT_BACK",
- "CONCAT",
- "SILU_BACK",
- "NORM",
- "RMS_NORM",
- "RMS_NORM_BACK",
- "GROUP_NORM",
- "MUL_MAT",
- "OUT_PROD",
- "SCALE",
- "SET",
- "CPY",
- "CONT",
- "RESHAPE",
- "VIEW",
- "PERMUTE",
- "TRANSPOSE",
- "GET_ROWS",
- "GET_ROWS_BACK",
- "DIAG",
- "DIAG_MASK_INF",
- "DIAG_MASK_ZERO",
- "SOFT_MAX",
- "SOFT_MAX_BACK",
- "ROPE",
- "ROPE_BACK",
- "ALIBI",
- "CLAMP",
- "CONV_1D",
- "CONV_2D",
- "CONV_TRANSPOSE_2D",
- "POOL_1D",
- "POOL_2D",
- "UPSCALE",
- "FLASH_ATTN",
- "FLASH_FF",
- "FLASH_ATTN_BACK",
- "WIN_PART",
- "WIN_UNPART",
- "GET_REL_POS",
- "ADD_REL_POS",
- "UNARY",
- "MAP_UNARY",
- "MAP_BINARY",
- "MAP_CUSTOM1_F32",
- "MAP_CUSTOM2_F32",
- "MAP_CUSTOM3_F32",
- "MAP_CUSTOM1",
- "MAP_CUSTOM2",
- "MAP_CUSTOM3",
- "CROSS_ENTROPY_LOSS",
- "CROSS_ENTROPY_LOSS_BACK",
- };
- static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
- static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
- "none",
- "x",
- "x+y",
- "x+y",
- "view(x,nb,offset)+=y->x",
- "x-y",
- "x*y",
- "x/y",
- "x^2",
- "√x",
- "log(x)",
- "Σx",
- "Σx_k",
- "Σx/n",
- "argmax(x)",
- "repeat(x)",
- "repeat_back(x)",
- "concat(x, y)",
- "silu_back(x)",
- "norm(x)",
- "rms_norm(x)",
- "rms_norm_back(x)",
- "group_norm(x)",
- "X*Y",
- "X*Y",
- "x*v",
- "y-\\>view(x)",
- "x-\\>y",
- "cont(x)",
- "reshape(x)",
- "view(x)",
- "permute(x)",
- "transpose(x)",
- "get_rows(x)",
- "get_rows_back(x)",
- "diag(x)",
- "diag_mask_inf(x)",
- "diag_mask_zero(x)",
- "soft_max(x)",
- "soft_max_back(x)",
- "rope(x)",
- "rope_back(x)",
- "alibi(x)",
- "clamp(x)",
- "conv_1d(x)",
- "conv_2d(x)",
- "conv_transpose_2d(x)",
- "pool_1d(x)",
- "pool_2d(x)",
- "upscale(x)",
- "flash_attn(x)",
- "flash_ff(x)",
- "flash_attn_back(x)",
- "win_part(x)",
- "win_unpart(x)",
- "get_rel_pos(x)",
- "add_rel_pos(x)",
- "unary(x)",
- "f(x)",
- "f(x,y)",
- "custom_f32(x)",
- "custom_f32(x,y)",
- "custom_f32(x,y,z)",
- "custom(x)",
- "custom(x,y)",
- "custom(x,y,z)",
- "cross_entropy_loss(x,y)",
- "cross_entropy_loss_back(x,y)",
- };
- static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
- static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
- static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
- static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
- // WARN:
- // Mis-confguration can lead to problem that's hard to reason about:
- // * At best it crash or talks nosense.
- // * At worst it talks slightly difference but hard to perceive.
- //
- // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
- // Take care about compile options (e.g., GGML_USE_xxx).
- static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
- static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
- static void ggml_setup_op_has_task_pass(void) {
- { // INIT
- bool * p = GGML_OP_HAS_INIT;
- p[GGML_OP_ACC ] = true;
- p[GGML_OP_MUL_MAT ] = true;
- p[GGML_OP_OUT_PROD ] = true;
- p[GGML_OP_SET ] = true;
- p[GGML_OP_GET_ROWS_BACK ] = true;
- p[GGML_OP_DIAG_MASK_INF ] = true;
- p[GGML_OP_DIAG_MASK_ZERO ] = true;
- p[GGML_OP_CONV_1D ] = true;
- p[GGML_OP_CONV_2D ] = true;
- p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
- p[GGML_OP_FLASH_ATTN_BACK ] = true;
- p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
- p[GGML_OP_ADD_REL_POS ] = true;
- }
- { // FINALIZE
- bool * p = GGML_OP_HAS_FINALIZE;
- p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
- }
- }
- //
- // ggml context
- //
- struct ggml_context {
- size_t mem_size;
- void * mem_buffer;
- bool mem_buffer_owned;
- bool no_alloc;
- bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
- int n_objects;
- struct ggml_object * objects_begin;
- struct ggml_object * objects_end;
- struct ggml_scratch scratch;
- struct ggml_scratch scratch_save;
- };
- struct ggml_context_container {
- bool used;
- struct ggml_context context;
- };
- //
- // NUMA support
- //
- #define GGML_NUMA_MAX_NODES 8
- #define GGML_NUMA_MAX_CPUS 512
- struct ggml_numa_node {
- uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
- uint32_t n_cpus;
- };
- struct ggml_numa_nodes {
- struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
- uint32_t n_nodes;
- uint32_t total_cpus; // hardware threads on system
- };
- //
- // ggml state
- //
- struct ggml_state {
- struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
- struct ggml_numa_nodes numa;
- };
- // global state
- static struct ggml_state g_state;
- static atomic_int g_state_barrier = 0;
- // barrier via spin lock
- inline static void ggml_critical_section_start(void) {
- int processing = atomic_fetch_add(&g_state_barrier, 1);
- while (processing > 0) {
- // wait for other threads to finish
- atomic_fetch_sub(&g_state_barrier, 1);
- sched_yield(); // TODO: reconsider this
- processing = atomic_fetch_add(&g_state_barrier, 1);
- }
- }
- // TODO: make this somehow automatically executed
- // some sort of "sentry" mechanism
- inline static void ggml_critical_section_end(void) {
- atomic_fetch_sub(&g_state_barrier, 1);
- }
- void ggml_numa_init(void) {
- if (g_state.numa.n_nodes > 0) {
- fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
- return;
- }
- #ifdef __linux__
- struct stat st;
- char path[256];
- int rv;
- // enumerate nodes
- while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) != 0) { break; }
- ++g_state.numa.n_nodes;
- }
- // enumerate CPUs
- while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) != 0) { break; }
- ++g_state.numa.total_cpus;
- }
- GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
- if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
- g_state.numa.n_nodes = 0;
- return;
- }
- for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
- struct ggml_numa_node * node = &g_state.numa.nodes[n];
- GGML_PRINT_DEBUG("CPUs on node %u:", n);
- node->n_cpus = 0;
- for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) == 0) {
- node->cpus[node->n_cpus++] = c;
- GGML_PRINT_DEBUG(" %u", c);
- }
- }
- GGML_PRINT_DEBUG("\n");
- }
- if (ggml_is_numa()) {
- FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
- if (fptr != NULL) {
- char buf[42];
- if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
- GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
- }
- fclose(fptr);
- }
- }
- #else
- // TODO
- #endif
- }
- bool ggml_is_numa(void) {
- return g_state.numa.n_nodes > 1;
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_print_object(const struct ggml_object * obj) {
- GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
- obj->type, obj->offs, obj->size, (const void *) obj->next);
- }
- void ggml_print_objects(const struct ggml_context * ctx) {
- struct ggml_object * obj = ctx->objects_begin;
- GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
- while (obj != NULL) {
- ggml_print_object(obj);
- obj = obj->next;
- }
- GGML_PRINT("%s: --- end ---\n", __func__);
- }
- int64_t ggml_nelements(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
- }
- int64_t ggml_nrows(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
- }
- size_t ggml_nbytes(const struct ggml_tensor * tensor) {
- size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type);
- for (int i = 1; i < GGML_MAX_DIMS; ++i) {
- nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
- }
- return nbytes;
- }
- size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
- return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
- }
- size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
- }
- int ggml_blck_size(enum ggml_type type) {
- return type_traits[type].blck_size;
- }
- size_t ggml_type_size(enum ggml_type type) {
- return type_traits[type].type_size;
- }
- float ggml_type_sizef(enum ggml_type type) {
- return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
- }
- const char * ggml_type_name(enum ggml_type type) {
- return type_traits[type].type_name;
- }
- bool ggml_is_quantized(enum ggml_type type) {
- return type_traits[type].is_quantized;
- }
- const char * ggml_op_name(enum ggml_op op) {
- return GGML_OP_NAME[op];
- }
- const char * ggml_op_symbol(enum ggml_op op) {
- return GGML_OP_SYMBOL[op];
- }
- size_t ggml_element_size(const struct ggml_tensor * tensor) {
- return ggml_type_size(tensor->type);
- }
- static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (t0->ne[0] == t1->ne[0]) &&
- (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
- (t1->ne[3]%t0->ne[3] == 0);
- }
- static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t0->ne[1] == t1->ne[1]) &&
- (t0->ne[2] == t1->ne[2]) &&
- (t0->ne[3] == t1->ne[3]);
- }
- enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
- enum ggml_type wtype = GGML_TYPE_COUNT;
- switch (ftype) {
- case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
- case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
- case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
- case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
- case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
- case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
- case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
- case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
- case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
- case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
- case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
- case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
- case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
- case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
- }
- GGML_ASSERT(wtype != GGML_TYPE_COUNT);
- return wtype;
- }
- size_t ggml_tensor_overhead(void) {
- return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
- }
- bool ggml_is_transposed(const struct ggml_tensor * tensor) {
- return tensor->nb[0] > tensor->nb[1];
- }
- bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == ggml_type_size(tensor->type) &&
- tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == ggml_type_size(tensor->type) &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- bool ggml_is_permuted(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
- }
- static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == ggml_type_size(tensor->type) &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t0->ne[0] == t1->ne[0] ) &&
- (t0->ne[1] == t1->ne[1] ) &&
- (t0->ne[2] == t1->ne[2] ) &&
- (t0->ne[3] == t1->ne[3] );
- }
- // check if t1 can be represented as a repeatition of t0
- static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t1->ne[0]%t0->ne[0] == 0) &&
- (t1->ne[1]%t0->ne[1] == 0) &&
- (t1->ne[2]%t0->ne[2] == 0) &&
- (t1->ne[3]%t0->ne[3] == 0);
- }
- static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
- }
- static inline int ggml_up32(int n) {
- return (n + 31) & ~31;
- }
- //static inline int ggml_up64(int n) {
- // return (n + 63) & ~63;
- //}
- static inline int ggml_up(int n, int m) {
- // assert m is a power of 2
- GGML_ASSERT((m & (m - 1)) == 0);
- return (n + m - 1) & ~(m - 1);
- }
- // assert that pointer is aligned to GGML_MEM_ALIGN
- #define ggml_assert_aligned(ptr) \
- GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
- ////////////////////////////////////////////////////////////////////////////////
- struct ggml_context * ggml_init(struct ggml_init_params params) {
- // make this function thread safe
- ggml_critical_section_start();
- static bool is_first_call = true;
- if (is_first_call) {
- // initialize time system (required on Windows)
- ggml_time_init();
- // initialize GELU, Quick GELU, SILU and EXP F32 tables
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
- ggml_fp16_t ii;
- for (int i = 0; i < (1 << 16); ++i) {
- uint16_t ui = i;
- memcpy(&ii, &ui, sizeof(ii));
- const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
- table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
- table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
- table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
- table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
- }
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
- GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
- }
- // initialize g_state
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
- g_state = (struct ggml_state) {
- /*.contexts =*/ { { 0 } },
- /*.numa =*/ {
- .n_nodes = 0,
- .total_cpus = 0,
- },
- };
- for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
- g_state.contexts[i].used = false;
- }
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
- GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
- }
- #if defined(GGML_USE_CUBLAS)
- ggml_init_cublas();
- #elif defined(GGML_USE_CLBLAST)
- ggml_cl_init();
- #endif
- ggml_setup_op_has_task_pass();
- is_first_call = false;
- }
- // find non-used context in g_state
- struct ggml_context * ctx = NULL;
- for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
- if (!g_state.contexts[i].used) {
- g_state.contexts[i].used = true;
- ctx = &g_state.contexts[i].context;
- GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
- break;
- }
- }
- if (ctx == NULL) {
- GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
- ggml_critical_section_end();
- return NULL;
- }
- // allow to call ggml_init with 0 size
- if (params.mem_size == 0) {
- params.mem_size = GGML_MEM_ALIGN;
- }
- const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
- *ctx = (struct ggml_context) {
- /*.mem_size =*/ mem_size,
- /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
- /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
- /*.no_alloc =*/ params.no_alloc,
- /*.no_alloc_save =*/ params.no_alloc,
- /*.n_objects =*/ 0,
- /*.objects_begin =*/ NULL,
- /*.objects_end =*/ NULL,
- /*.scratch =*/ { 0, 0, NULL, },
- /*.scratch_save =*/ { 0, 0, NULL, },
- };
- GGML_ASSERT(ctx->mem_buffer != NULL);
- ggml_assert_aligned(ctx->mem_buffer);
- GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
- ggml_critical_section_end();
- return ctx;
- }
- void ggml_free(struct ggml_context * ctx) {
- // make this function thread safe
- ggml_critical_section_start();
- bool found = false;
- for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
- if (&g_state.contexts[i].context == ctx) {
- g_state.contexts[i].used = false;
- GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
- __func__, i, ggml_used_mem(ctx));
- if (ctx->mem_buffer_owned) {
- GGML_ALIGNED_FREE(ctx->mem_buffer);
- }
- found = true;
- break;
- }
- }
- if (!found) {
- GGML_PRINT_DEBUG("%s: context not found\n", __func__);
- }
- ggml_critical_section_end();
- }
- size_t ggml_used_mem(const struct ggml_context * ctx) {
- return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
- }
- size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
- const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
- ctx->scratch = scratch;
- return result;
- }
- bool ggml_get_no_alloc(struct ggml_context * ctx) {
- return ctx->no_alloc;
- }
- void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
- ctx->no_alloc = no_alloc;
- }
- void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
- return ctx->mem_buffer;
- }
- size_t ggml_get_mem_size(const struct ggml_context * ctx) {
- return ctx->mem_size;
- }
- size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
- size_t max_size = 0;
- struct ggml_object * obj = ctx->objects_begin;
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TENSOR) {
- struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
- const size_t size = ggml_nbytes(tensor);
- if (max_size < size) {
- max_size = size;
- }
- }
- obj = obj->next;
- }
- return max_size;
- }
- // IMPORTANT:
- // when creating "opt" tensors, always save and load the scratch buffer
- // this is an error prone process, but it is necessary to support inplace
- // operators when using scratch buffers
- // TODO: implement a better way
- static void ggml_scratch_save(struct ggml_context * ctx) {
- // this is needed to allow opt tensors to store their data
- // TODO: again, need to find a better way
- ctx->no_alloc_save = ctx->no_alloc;
- ctx->no_alloc = false;
- ctx->scratch_save = ctx->scratch;
- ctx->scratch.data = NULL;
- }
- static void ggml_scratch_load(struct ggml_context * ctx) {
- ctx->no_alloc = ctx->no_alloc_save;
- ctx->scratch = ctx->scratch_save;
- }
- ////////////////////////////////////////////////////////////////////////////////
- static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
- // always insert objects at the end of the context's memory pool
- struct ggml_object * obj_cur = ctx->objects_end;
- const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
- const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
- const size_t cur_end = cur_offs + cur_size;
- // align to GGML_MEM_ALIGN
- size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
- char * const mem_buffer = ctx->mem_buffer;
- struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
- if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
- GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
- __func__, cur_end + size_needed, ctx->mem_size);
- assert(false);
- return NULL;
- }
- *obj_new = (struct ggml_object) {
- .offs = cur_end + GGML_OBJECT_SIZE,
- .size = size_needed,
- .next = NULL,
- .type = type,
- };
- ggml_assert_aligned(mem_buffer + obj_new->offs);
- if (obj_cur != NULL) {
- obj_cur->next = obj_new;
- } else {
- // this is the first object in this context
- ctx->objects_begin = obj_new;
- }
- ctx->objects_end = obj_new;
- //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
- return obj_new;
- }
- static struct ggml_tensor * ggml_new_tensor_impl(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne,
- struct ggml_tensor * view_src,
- size_t view_offs) {
- assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
- // find the base tensor and absolute offset
- if (view_src != NULL && view_src->view_src != NULL) {
- view_offs += view_src->view_offs;
- view_src = view_src->view_src;
- }
- size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
- for (int i = 1; i < n_dims; i++) {
- data_size *= ne[i];
- }
- GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
- void * data = view_src != NULL ? view_src->data : NULL;
- if (data != NULL) {
- data = (char *) data + view_offs;
- }
- size_t obj_alloc_size = 0;
- if (view_src == NULL && !ctx->no_alloc) {
- if (ctx->scratch.data != NULL) {
- // allocate tensor data in the scratch buffer
- if (ctx->scratch.offs + data_size > ctx->scratch.size) {
- GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
- __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
- assert(false);
- return NULL;
- }
- data = (char * const) ctx->scratch.data + ctx->scratch.offs;
- ctx->scratch.offs += data_size;
- } else {
- // allocate tensor data in the context's memory pool
- obj_alloc_size = data_size;
- }
- }
- struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
- // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
- struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
- *result = (struct ggml_tensor) {
- /*.type =*/ type,
- /*.backend =*/ GGML_BACKEND_CPU,
- /*.n_dims =*/ n_dims,
- /*.ne =*/ { 1, 1, 1, 1 },
- /*.nb =*/ { 0, 0, 0, 0 },
- /*.op =*/ GGML_OP_NONE,
- /*.op_params =*/ { 0 },
- /*.is_param =*/ false,
- /*.grad =*/ NULL,
- /*.src =*/ { NULL },
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- /*.view_src =*/ view_src,
- /*.view_offs =*/ view_offs,
- /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
- /*.name =*/ { 0 },
- /*.extra =*/ NULL,
- /*.padding =*/ { 0 },
- };
- // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
- //ggml_assert_aligned(result->data);
- for (int i = 0; i < n_dims; i++) {
- result->ne[i] = ne[i];
- }
- result->nb[0] = ggml_type_size(type);
- result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
- for (int i = 2; i < GGML_MAX_DIMS; i++) {
- result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
- }
- ctx->n_objects++;
- return result;
- }
- struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne) {
- return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
- }
- struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0) {
- return ggml_new_tensor(ctx, type, 1, &ne0);
- }
- struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1) {
- const int64_t ne[2] = { ne0, ne1 };
- return ggml_new_tensor(ctx, type, 2, ne);
- }
- struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- const int64_t ne[3] = { ne0, ne1, ne2 };
- return ggml_new_tensor(ctx, type, 3, ne);
- }
- struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- return ggml_new_tensor(ctx, type, 4, ne);
- }
- struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
- ggml_scratch_save(ctx);
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
- ggml_scratch_load(ctx);
- ggml_set_i32(result, value);
- return result;
- }
- struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
- ggml_scratch_save(ctx);
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_scratch_load(ctx);
- ggml_set_f32(result, value);
- return result;
- }
- struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
- return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
- }
- static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
- GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
- assert(params_size <= GGML_MAX_OP_PARAMS);
- memcpy(tensor->op_params, params, params_size);
- }
- static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
- return ((const int32_t *)(tensor->op_params))[i];
- }
- static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
- ((int32_t *)(tensor->op_params))[i] = value;
- }
- struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
- memset(tensor->data, 0, ggml_nbytes(tensor));
- return tensor;
- }
- struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
- char * const data = tensor->data;
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- return tensor;
- }
- struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
- char * const data = tensor->data;
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- return tensor;
- }
- int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- return 0.0f;
- }
- void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- return 0.0f;
- }
- void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- void * ggml_get_data(const struct ggml_tensor * tensor) {
- return tensor->data;
- }
- float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
- assert(tensor->type == GGML_TYPE_F32);
- return (float *)(tensor->data);
- }
- enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor->op == GGML_OP_UNARY);
- return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
- }
- const char * ggml_get_name(const struct ggml_tensor * tensor) {
- return tensor->name;
- }
- struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
- strncpy(tensor->name, name, sizeof(tensor->name));
- tensor->name[sizeof(tensor->name) - 1] = '\0';
- return tensor;
- }
- struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
- va_list args;
- va_start(args, fmt);
- vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
- va_end(args);
- return tensor;
- }
- struct ggml_tensor * ggml_view_tensor(
- struct ggml_context * ctx,
- struct ggml_tensor * src) {
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
- ggml_format_name(result, "%s (view)", src->name);
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- result->nb[i] = src->nb[i];
- }
- return result;
- }
- struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
- struct ggml_object * obj = ctx->objects_begin;
- char * const mem_buffer = ctx->mem_buffer;
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TENSOR) {
- struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
- if (strcmp(cur->name, name) == 0) {
- return cur;
- }
- }
- obj = obj->next;
- }
- return NULL;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // ggml_dup
- static struct ggml_tensor * ggml_dup_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_DUP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_dup_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, true);
- }
- // ggml_add
- static struct ggml_tensor * ggml_add_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- // TODO: support less-strict constraint
- // GGML_ASSERT(ggml_can_repeat(b, a));
- GGML_ASSERT(ggml_can_repeat_rows(b, a));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- // TODO: support backward pass for broadcasting
- GGML_ASSERT(ggml_are_same_shape(a, b));
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ADD;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, true);
- }
- // ggml_add1
- static struct ggml_tensor * ggml_add1_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_is_scalar(b));
- GGML_ASSERT(ggml_is_padded_1d(a));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ADD1;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_add1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add1_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_add1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add1_impl(ctx, a, b, true);
- }
- // ggml_acc
- static struct ggml_tensor * ggml_acc_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- GGML_ASSERT(b->type == GGML_TYPE_F32);
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_ACC;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_acc(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
- }
- struct ggml_tensor * ggml_acc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
- }
- // ggml_sub
- static struct ggml_tensor * ggml_sub_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SUB;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, true);
- }
- // ggml_mul
- static struct ggml_tensor * ggml_mul_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- // TODO: support less-strict constraint
- // GGML_ASSERT(ggml_can_repeat(b, a));
- GGML_ASSERT(ggml_can_repeat_rows(b, a));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- // TODO: support backward pass for broadcasting
- GGML_ASSERT(ggml_are_same_shape(a, b));
- is_node = true;
- }
- if (inplace) {
- GGML_ASSERT(!is_node);
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_MUL;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, true);
- }
- // ggml_div
- static struct ggml_tensor * ggml_div_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- if (inplace) {
- GGML_ASSERT(!is_node);
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_DIV;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, true);
- }
- // ggml_sqr
- static struct ggml_tensor * ggml_sqr_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SQR;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, true);
- }
- // ggml_sqrt
- static struct ggml_tensor * ggml_sqrt_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SQRT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, true);
- }
- // ggml_log
- static struct ggml_tensor * ggml_log_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_LOG;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_log(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_log_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_log_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_log_impl(ctx, a, true);
- }
- // ggml_sum
- struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
- result->op = GGML_OP_SUM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_sum_rows
- struct ggml_tensor * ggml_sum_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- int64_t ne[4] = {1,1,1,1};
- for (int i=1; i<a->n_dims; ++i) {
- ne[i] = a->ne[i];
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
- result->op = GGML_OP_SUM_ROWS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_mean
- struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement
- is_node = true;
- }
- int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
- result->op = GGML_OP_MEAN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_argmax
- struct ggml_tensor * ggml_argmax(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- GGML_ASSERT(ggml_is_matrix(a));
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false);
- is_node = true;
- }
- int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
- result->op = GGML_OP_ARGMAX;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_repeat
- struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_repeat(a, b));
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
- result->op = GGML_OP_REPEAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_repeat_back
- struct ggml_tensor * ggml_repeat_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_repeat(b, a));
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- if (ggml_are_same_shape(a, b) && !is_node) {
- return a;
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
- result->op = GGML_OP_REPEAT_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_concat
- struct ggml_tensor * ggml_concat(
- struct ggml_context* ctx,
- struct ggml_tensor* a,
- struct ggml_tensor* b) {
- GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
- result->op = GGML_OP_CONCAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_abs
- struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
- }
- struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
- }
- // ggml_sgn
- struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
- }
- struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
- }
- // ggml_neg
- struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
- }
- struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
- }
- // ggml_step
- struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
- }
- struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
- }
- // ggml_tanh
- struct ggml_tensor * ggml_tanh(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
- }
- struct ggml_tensor * ggml_tanh_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
- }
- // ggml_elu
- struct ggml_tensor * ggml_elu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
- }
- struct ggml_tensor * ggml_elu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
- }
- // ggml_relu
- struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
- }
- struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
- }
- // ggml_gelu
- struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
- }
- struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
- }
- // ggml_gelu_quick
- struct ggml_tensor * ggml_gelu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
- }
- struct ggml_tensor * ggml_gelu_quick_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
- }
- // ggml_silu
- struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
- }
- struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
- }
- // ggml_silu_back
- struct ggml_tensor * ggml_silu_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- bool is_node = false;
- if (a->grad || b->grad) {
- // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SILU_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_norm
- static struct ggml_tensor * ggml_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &eps, sizeof(eps));
- result->op = GGML_OP_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_norm_impl(ctx, a, eps, false);
- }
- struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_norm_impl(ctx, a, eps, true);
- }
- // ggml_rms_norm
- static struct ggml_tensor * ggml_rms_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &eps, sizeof(eps));
- result->op = GGML_OP_RMS_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_rms_norm_impl(ctx, a, eps, false);
- }
- struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_rms_norm_impl(ctx, a, eps, true);
- }
- // ggml_rms_norm_back
- struct ggml_tensor * ggml_rms_norm_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float eps) {
- bool is_node = false;
- if (a->grad) {
- // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &eps, sizeof(eps));
- result->op = GGML_OP_RMS_NORM_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_group_norm
- static struct ggml_tensor * ggml_group_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_GROUP_NORM;
- result->op_params[0] = n_groups;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = NULL; // TODO: maybe store epsilon here?
- return result;
- }
- struct ggml_tensor * ggml_group_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups) {
- return ggml_group_norm_impl(ctx, a, n_groups, false);
- }
- struct ggml_tensor * ggml_group_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups) {
- return ggml_group_norm_impl(ctx, a, n_groups, true);
- }
- // ggml_mul_mat
- struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_mul_mat(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
- result->op = GGML_OP_MUL_MAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_out_prod
- struct ggml_tensor * ggml_out_prod(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_out_prod(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
- result->op = GGML_OP_OUT_PROD;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_scale
- static struct ggml_tensor * ggml_scale_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_is_scalar(b));
- GGML_ASSERT(ggml_is_padded_1d(a));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SCALE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_scale_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_scale_impl(ctx, a, b, true);
- }
- // ggml_set
- static struct ggml_tensor * ggml_set_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- // make a view of the destination
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_SET;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_set(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
- }
- struct ggml_tensor * ggml_set_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
- }
- struct ggml_tensor * ggml_set_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
- }
- struct ggml_tensor * ggml_set_1d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
- }
- struct ggml_tensor * ggml_set_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
- }
- struct ggml_tensor * ggml_set_2d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
- }
- // ggml_cpy
- static struct ggml_tensor * ggml_cpy_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- // make a view of the destination
- struct ggml_tensor * result = ggml_view_tensor(ctx, b);
- if (strlen(b->name) > 0) {
- ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
- } else {
- ggml_format_name(result, "%s (copy)", a->name);
- }
- result->op = GGML_OP_CPY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_cpy_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_cpy_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_cpy_impl(ctx, a, b, true);
- }
- // ggml_cont
- static struct ggml_tensor * ggml_cont_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_format_name(result, "%s (cont)", a->name);
- result->op = GGML_OP_CONT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cont_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_cont_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cont_impl(ctx, a, true);
- }
- // ggml_reshape
- struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_is_contiguous(b));
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- if (b->grad) {
- // gradient propagation is not supported
- //GGML_ASSERT(false);
- }
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[1] = { ne0 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[2] = { ne0, ne1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[3] = { ne0, ne1, ne2 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- static struct ggml_tensor * ggml_view_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_dims,
- const int64_t * ne,
- size_t offset) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
- ggml_format_name(result, "%s (view)", a->name);
- ggml_set_op_params(result, &offset, sizeof(offset));
- result->op = GGML_OP_VIEW;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_view_1d
- struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset) {
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
- return result;
- }
- // ggml_view_2d
- struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1,
- size_t offset) {
- const int64_t ne[2] = { ne0, ne1 };
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
- result->nb[1] = nb1;
- result->nb[2] = result->nb[1]*ne1;
- result->nb[3] = result->nb[2];
- return result;
- }
- // ggml_view_3d
- struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1,
- size_t nb2,
- size_t offset) {
- const int64_t ne[3] = { ne0, ne1, ne2 };
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = result->nb[2]*ne2;
- return result;
- }
- // ggml_view_4d
- struct ggml_tensor * ggml_view_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = nb3;
- return result;
- }
- // ggml_permute
- struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3) {
- GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
- GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
- GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
- GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
- GGML_ASSERT(axis0 != axis1);
- GGML_ASSERT(axis0 != axis2);
- GGML_ASSERT(axis0 != axis3);
- GGML_ASSERT(axis1 != axis2);
- GGML_ASSERT(axis1 != axis3);
- GGML_ASSERT(axis2 != axis3);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- ggml_format_name(result, "%s (permuted)", a->name);
- int ne[GGML_MAX_DIMS];
- int nb[GGML_MAX_DIMS];
- ne[axis0] = a->ne[0];
- ne[axis1] = a->ne[1];
- ne[axis2] = a->ne[2];
- ne[axis3] = a->ne[3];
- nb[axis0] = a->nb[0];
- nb[axis1] = a->nb[1];
- nb[axis2] = a->nb[2];
- nb[axis3] = a->nb[3];
- result->ne[0] = ne[0];
- result->ne[1] = ne[1];
- result->ne[2] = ne[2];
- result->ne[3] = ne[3];
- result->nb[0] = nb[0];
- result->nb[1] = nb[1];
- result->nb[2] = nb[2];
- result->nb[3] = nb[3];
- result->op = GGML_OP_PERMUTE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- int32_t params[] = { axis0, axis1, axis2, axis3 };
- ggml_set_op_params(result, params, sizeof(params));
- return result;
- }
- // ggml_transpose
- struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- ggml_format_name(result, "%s (transposed)", a->name);
- result->ne[0] = a->ne[1];
- result->ne[1] = a->ne[0];
- result->nb[0] = a->nb[1];
- result->nb[1] = a->nb[0];
- result->op = GGML_OP_TRANSPOSE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_get_rows
- struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- // TODO: implement non F32 return
- //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
- struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
- result->op = GGML_OP_GET_ROWS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_get_rows_back
- struct ggml_tensor * ggml_get_rows_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c) {
- GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- // TODO: implement non F32 return
- //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
- struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
- result->op = GGML_OP_GET_ROWS_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- // ggml_diag
- struct ggml_tensor * ggml_diag(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- GGML_ASSERT(a->ne[1] == 1);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
- result->op = GGML_OP_DIAG;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_diag_mask_inf
- static struct ggml_tensor * ggml_diag_mask_inf_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- bool inplace) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { n_past };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_DIAG_MASK_INF;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
- }
- struct ggml_tensor * ggml_diag_mask_inf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
- }
- // ggml_diag_mask_zero
- static struct ggml_tensor * ggml_diag_mask_zero_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- bool inplace) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { n_past };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_DIAG_MASK_ZERO;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_diag_mask_zero(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
- }
- struct ggml_tensor * ggml_diag_mask_zero_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
- }
- // ggml_soft_max
- static struct ggml_tensor * ggml_soft_max_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SOFT_MAX;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_soft_max_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_soft_max_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_soft_max_impl(ctx, a, true);
- }
- // ggml_soft_max_back
- static struct ggml_tensor * ggml_soft_max_back_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true; // TODO : implement backward pass
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SOFT_MAX_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_soft_max_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_soft_max_back_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_soft_max_back_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_soft_max_back_impl(ctx, a, b, true);
- }
- // ggml_rope
- static struct ggml_tensor * ggml_rope_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx,
- float freq_base,
- float freq_scale,
- float xpos_base,
- bool xpos_down,
- bool inplace) {
- GGML_ASSERT(n_past >= 0);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[8] = { n_past, n_dims, mode, n_ctx };
- memcpy(params + 4, &freq_base, sizeof(float));
- memcpy(params + 5, &freq_scale, sizeof(float));
- memcpy(params + 6, &xpos_base, sizeof(float));
- memcpy(params + 7, &xpos_down, sizeof(bool));
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_ROPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx) {
- return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
- }
- struct ggml_tensor * ggml_rope_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx) {
- return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
- }
- struct ggml_tensor * ggml_rope_custom(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx,
- float freq_base,
- float freq_scale) {
- return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
- }
- struct ggml_tensor * ggml_rope_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx,
- float freq_base,
- float freq_scale) {
- return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
- }
- struct ggml_tensor * ggml_rope_xpos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- float base,
- bool down) {
- return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
- }
- // ggml_rope_back
- struct ggml_tensor * ggml_rope_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode,
- int n_ctx,
- float freq_base,
- float freq_scale,
- float xpos_base,
- bool xpos_down) {
- GGML_ASSERT(n_past >= 0);
- GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
- bool is_node = false;
- if (a->grad) {
- is_node = false; // TODO: implement backward
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- int32_t params[8] = { n_past, n_dims, mode, n_ctx };
- memcpy(params + 4, &freq_base, sizeof(float));
- memcpy(params + 5, &freq_scale, sizeof(float));
- memcpy(params + 6, &xpos_base, sizeof(float));
- memcpy(params + 7, &xpos_down, sizeof(bool));
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_ROPE_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_alibi
- struct ggml_tensor * ggml_alibi(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_head,
- float bias_max) {
- GGML_ASSERT(n_past >= 0);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: when implement backward, fix this:
- //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- int32_t op_params[3] = { n_past, n_head };
- memcpy(op_params + 2, &bias_max, sizeof(float));
- ggml_set_op_params(result, op_params, sizeof(op_params));
- result->op = GGML_OP_ALIBI;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_clamp
- struct ggml_tensor * ggml_clamp(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float min,
- float max) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: when implement backward, fix this:
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- float params[] = { min, max };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_CLAMP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_conv_1d
- static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
- }
- GGML_API struct ggml_tensor * ggml_conv_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int p0,
- int d0) {
- GGML_ASSERT(ggml_is_matrix(b));
- GGML_ASSERT(a->ne[1] == b->ne[1]);
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = {
- ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
- a->ne[2], 1, 1,
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
- int32_t params[] = { s0, p0, d0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_CONV_1D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_conv_1d_ph
- struct ggml_tensor* ggml_conv_1d_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s,
- int d) {
- return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
- }
- // ggml_conv_2d
- struct ggml_tensor * ggml_conv_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1) {
- GGML_ASSERT(a->ne[2] == b->ne[2]);
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = {
- ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
- ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
- a->ne[3], b->ne[3],
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- int32_t params[] = { s0, s1, p0, p1, d0, d1 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_CONV_2D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_conv_2d_sk_p0
- struct ggml_tensor * ggml_conv_2d_sk_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
- }
- // ggml_conv_2d_s1_ph
- struct ggml_tensor * ggml_conv_2d_s1_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
- }
- // ggml_conv_transpose_2d_p0
- static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
- return (ins - 1) * s - 2 * p + ks;
- }
- struct ggml_tensor * ggml_conv_transpose_2d_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int stride) {
- GGML_ASSERT(a->ne[3] == b->ne[2]);
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = {
- ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
- ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
- a->ne[2], b->ne[3],
- };
- struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- ggml_set_op_params_i32(result, 0, stride);
- result->op = GGML_OP_CONV_TRANSPOSE_2D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_pool_*
- static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
- return (ins + 2 * p - ks) / s + 1;
- }
- // ggml_pool_1d
- struct ggml_tensor * ggml_pool_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int s0,
- int p0) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[3] = {
- ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
- a->ne[1],
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
- int32_t params[] = { op, k0, s0, p0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_POOL_1D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_pool_2d
- struct ggml_tensor * ggml_pool_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- int p0,
- int p1) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[3] = {
- ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
- ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
- a->ne[2],
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
- int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_POOL_2D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_upscale
- static struct ggml_tensor * ggml_upscale_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int scale_factor) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
- a->ne[0] * scale_factor,
- a->ne[1] * scale_factor,
- a->ne[2], a->ne[3]);
- result->op = GGML_OP_UPSCALE;
- result->op_params[0] = scale_factor;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = NULL;
- return result;
- }
- struct ggml_tensor * ggml_upscale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int scale_factor) {
- return ggml_upscale_impl(ctx, a, scale_factor);
- }
- // ggml_flash_attn
- struct ggml_tensor * ggml_flash_attn(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- bool masked) {
- GGML_ASSERT(ggml_can_mul_mat(k, q));
- // TODO: check if vT can be multiplied by (k*qT)
- bool is_node = false;
- if (q->grad || k->grad || v->grad) {
- is_node = true;
- }
- //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
- int32_t t = masked ? 1 : 0;
- ggml_set_op_params(result, &t, sizeof(t));
- result->op = GGML_OP_FLASH_ATTN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = q;
- result->src[1] = k;
- result->src[2] = v;
- return result;
- }
- // ggml_flash_ff
- struct ggml_tensor * ggml_flash_ff(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b0,
- struct ggml_tensor * b1,
- struct ggml_tensor * c0,
- struct ggml_tensor * c1) {
- GGML_ASSERT(ggml_can_mul_mat(b0, a));
- // TODO: more checks
- bool is_node = false;
- if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
- is_node = true;
- }
- //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
- result->op = GGML_OP_FLASH_FF;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b0;
- result->src[2] = b1;
- result->src[3] = c0;
- result->src[4] = c1;
- return result;
- }
- // ggml_flash_attn_back
- struct ggml_tensor * ggml_flash_attn_back(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * d,
- bool masked) {
- GGML_ASSERT(ggml_can_mul_mat(k, q));
- // TODO: check if vT can be multiplied by (k*qT)
- // d shape [D,N,ne2,ne3]
- // q shape [D,N,ne2,ne3]
- // k shape [D,M,ne2,ne3]
- // v shape [M,D,ne2,ne3]
- const int64_t D = q->ne[0];
- const int64_t N = q->ne[1];
- const int64_t M = k->ne[1];
- const int64_t ne2 = q->ne[2];
- const int64_t ne3 = q->ne[3];
- GGML_ASSERT(k->ne[0] == D);
- GGML_ASSERT(v->ne[0] == M);
- GGML_ASSERT(v->ne[1] == D);
- GGML_ASSERT(d->ne[0] == D);
- GGML_ASSERT(d->ne[1] == N);
- GGML_ASSERT(k->ne[2] == ne2);
- GGML_ASSERT(k->ne[3] == ne3);
- GGML_ASSERT(v->ne[2] == ne2);
- GGML_ASSERT(v->ne[3] == ne3);
- GGML_ASSERT(d->ne[2] == ne2);
- GGML_ASSERT(d->ne[3] == ne3);
- bool is_node = false;
- if (q->grad || k->grad || v->grad) {
- // when using this operation (in backwards pass) these grads are set.
- // we don't want to create (big) grad of our result, so is_node is false.
- is_node = false;
- }
- // store gradients of q, k and v as continuous tensors concatenated in result.
- // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
- // gradq->data = result->data
- // gradk->data = result->data + nb0*D*N*ne2*ne3
- // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
- // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
- int64_t ne[4] = {D,M+N+M,ne2,ne3};
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- int32_t masked_i = masked ? 1 : 0;
- ggml_set_op_params(result, &masked_i, sizeof(masked_i));
- result->op = GGML_OP_FLASH_ATTN_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = q;
- result->src[1] = k;
- result->src[2] = v;
- result->src[3] = d;
- return result;
- }
- // ggml_win_part
- struct ggml_tensor * ggml_win_part(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w) {
- GGML_ASSERT(a->ne[3] == 1);
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // padding
- const int px = (w - a->ne[1]%w)%w;
- const int py = (w - a->ne[2]%w)%w;
- const int npx = (px + a->ne[1])/w;
- const int npy = (py + a->ne[2])/w;
- const int np = npx*npy;
- const int64_t ne[4] = { a->ne[0], w, w, np, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- int32_t params[] = { npx, npy, w };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_WIN_PART;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_win_unpart
- struct ggml_tensor * ggml_win_unpart(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w0,
- int h0,
- int w) {
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
- int32_t params[] = { w };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_WIN_UNPART;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_get_rel_pos
- struct ggml_tensor * ggml_get_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int qh,
- int kh) {
- GGML_ASSERT(qh == kh);
- GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
- result->op = GGML_OP_GET_REL_POS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = NULL;
- return result;
- }
- // ggml_add_rel_pos
- static struct ggml_tensor * ggml_add_rel_pos_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(pw, ph));
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_is_contiguous(pw));
- GGML_ASSERT(ggml_is_contiguous(ph));
- GGML_ASSERT(ph->type == GGML_TYPE_F32);
- GGML_ASSERT(pw->type == GGML_TYPE_F32);
- GGML_ASSERT(pw->ne[3] == a->ne[2]);
- GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
- GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
- bool is_node = false;
- if (!inplace && (a->grad || pw->grad || ph->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
- result->op = GGML_OP_ADD_REL_POS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = pw;
- result->src[2] = ph;
- return result;
- }
- struct ggml_tensor * ggml_add_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph) {
- return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
- }
- struct ggml_tensor * ggml_add_rel_pos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph) {
- return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
- }
- // gmml_unary
- static struct ggml_tensor * ggml_unary_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params_i32(result, 0, (int32_t) op);
- result->op = GGML_OP_UNARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_unary(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op) {
- return ggml_unary_impl(ctx, a, op, false);
- }
- struct ggml_tensor * ggml_unary_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op) {
- return ggml_unary_impl(ctx, a, op, true);
- }
- // ggml_map_unary
- static struct ggml_tensor * ggml_map_unary_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
- if (!inplace && a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_UNARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_map_unary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun) {
- return ggml_map_unary_impl_f32(ctx, a, fun, false);
- }
- struct ggml_tensor * ggml_map_unary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun) {
- return ggml_map_unary_impl_f32(ctx, a, fun, true);
- }
- // ggml_map_binary
- static struct ggml_tensor * ggml_map_binary_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_BINARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_map_binary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun) {
- return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
- }
- struct ggml_tensor * ggml_map_binary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun) {
- return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
- }
- // ggml_map_custom1_f32
- static struct ggml_tensor * ggml_map_custom1_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
- if (!inplace && a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_CUSTOM1_F32;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_map_custom1_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_f32_t fun) {
- return ggml_map_custom1_impl_f32(ctx, a, fun, false);
- }
- struct ggml_tensor * ggml_map_custom1_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_f32_t fun) {
- return ggml_map_custom1_impl_f32(ctx, a, fun, true);
- }
- // ggml_map_custom2_f32
- static struct ggml_tensor * ggml_map_custom2_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_CUSTOM2_F32;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_map_custom2_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_f32_t fun) {
- return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
- }
- struct ggml_tensor * ggml_map_custom2_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_f32_t fun) {
- return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
- }
- // ggml_map_custom3_f32
- static struct ggml_tensor * ggml_map_custom3_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad || b->grad || c->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_CUSTOM3_F32;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- struct ggml_tensor * ggml_map_custom3_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_f32_t fun) {
- return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
- }
- struct ggml_tensor * ggml_map_custom3_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_f32_t fun) {
- return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
- }
- // ggml_map_custom1
- struct ggml_map_custom1_op_params {
- ggml_custom1_op_t fun;
- int n_tasks;
- void * userdata;
- };
- static struct ggml_tensor * ggml_map_custom1_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
- bool is_node = false;
- if (!inplace && a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_map_custom1_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
- result->op = GGML_OP_MAP_CUSTOM1;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_map_custom1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
- }
- struct ggml_tensor * ggml_map_custom1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
- }
- // ggml_map_custom2
- struct ggml_map_custom2_op_params {
- ggml_custom2_op_t fun;
- int n_tasks;
- void * userdata;
- };
- static struct ggml_tensor * ggml_map_custom2_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_map_custom2_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
- result->op = GGML_OP_MAP_CUSTOM2;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_map_custom2(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
- }
- struct ggml_tensor * ggml_map_custom2_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
- }
- // ggml_map_custom3
- struct ggml_map_custom3_op_params {
- ggml_custom3_op_t fun;
- int n_tasks;
- void * userdata;
- };
- static struct ggml_tensor * ggml_map_custom3_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
- bool is_node = false;
- if (!inplace && (a->grad || b->grad || c->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_map_custom3_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
- result->op = GGML_OP_MAP_CUSTOM3;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- struct ggml_tensor * ggml_map_custom3(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
- }
- struct ggml_tensor * ggml_map_custom3_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
- }
- // ggml_cross_entropy_loss
- struct ggml_tensor * ggml_cross_entropy_loss(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
- result->op = GGML_OP_CROSS_ENTROPY_LOSS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_cross_entropy_loss_back
- struct ggml_tensor * ggml_cross_entropy_loss_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- GGML_ASSERT(ggml_is_scalar(c));
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
- result->grad = NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_set_param(
- struct ggml_context * ctx,
- struct ggml_tensor * tensor) {
- tensor->is_param = true;
- GGML_ASSERT(tensor->grad == NULL);
- tensor->grad = ggml_dup_tensor(ctx, tensor);
- }
- // ggml_compute_forward_dup
- static void ggml_compute_forward_dup_same_cont(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- GGML_ASSERT(src0->type == dst->type);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const size_t nb00 = src0->nb[0];
- const size_t nb0 = dst->nb[0];
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- // parallelize by elements
- const int ne = ggml_nelements(dst);
- const int dr = (ne + nth - 1) / nth;
- const int ie0 = dr * ith;
- const int ie1 = MIN(ie0 + dr, ne);
- if (ie0 < ie1) {
- memcpy(
- ((char *) dst->data + ie0*nb0),
- ((char *) src0->data + ie0*nb00),
- (ie1 - ie0) * ggml_type_size(src0->type));
- }
- }
- static void ggml_compute_forward_dup_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS;
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, src0, dst);
- return;
- }
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
- if (ggml_is_contiguous(dst)) {
- if (nb00 == sizeof(ggml_fp16_t)) {
- if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (type_traits[dst->type].from_float) {
- ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
- float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
- }
- quantize_row_q(src0_f32, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- static void ggml_compute_forward_dup_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS;
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, src0, dst);
- return;
- }
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- if (ggml_is_contiguous(dst)) {
- // TODO: simplify
- if (nb00 == sizeof(float)) {
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (type_traits[dst->type].from_float) {
- ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- quantize_row_q(src0_ptr, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(float));
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- static void ggml_compute_forward_dup(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, src0, dst);
- return;
- }
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_dup_f16(params, src0, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_dup_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_add
- static void ggml_compute_forward_add_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (nb10 == sizeof(float)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
- #ifdef GGML_USE_ACCELERATE
- vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
- #else
- ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
- #endif
- // }
- // }
- }
- } else {
- // src1 is not contiguous
- for (int ir = ir0; ir < ir1; ++ir) {
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- for (int i0 = 0; i0 < ne0; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
- dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
- }
- }
- }
- }
- static void ggml_compute_forward_add_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (nb10 == sizeof(float)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
- }
- }
- }
- else {
- // src1 is not contiguous
- GGML_ASSERT(false);
- }
- }
- static void ggml_compute_forward_add_f16_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (nb10 == sizeof(ggml_fp16_t)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
- }
- }
- }
- else {
- // src1 is not contiguous
- GGML_ASSERT(false);
- }
- }
- static void ggml_compute_forward_add_q_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
- ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(dst->type == src0->type);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- // src1 and dst are same shape as src0 => same indices
- const int i13 = i03;
- const int i12 = i02;
- const int i11 = i01;
- const int i3 = i03;
- const int i2 = i02;
- const int i1 = i01;
- void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
- void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- assert(ne00 % 32 == 0);
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne00);
- // add src1
- ggml_vec_acc_f32(ne00, wdata, src1_row);
- // quantize row to dst
- quantize_row_q(wdata, dst_row, ne00);
- }
- }
- static void ggml_compute_forward_add(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- if (src1->type == GGML_TYPE_F16) {
- ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- {
- ggml_compute_forward_add_q_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_add1
- static void ggml_compute_forward_add1_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS;
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- #ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_add1_f32);
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) src1->data), 0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
- #else
- ggml_vec_add1_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- *(float *) src1->data);
- #endif
- }
- }
- static void ggml_compute_forward_add1_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scalar to add
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS;
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
- }
- static void ggml_compute_forward_add1_f16_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scalar to add
- const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS;
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
- }
- static void ggml_compute_forward_add1_q_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scalar to add
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS;
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
- ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
- // we don't support permuted src0
- GGML_ASSERT(nb00 == ggml_type_size(type));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(dst->type == src0->type);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
- void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
- assert(ne0 % 32 == 0);
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne0);
- // add src1
- ggml_vec_acc1_f32(ne0, wdata, v);
- // quantize row to dst
- quantize_row_q(wdata, dst_row, ne0);
- }
- }
- static void ggml_compute_forward_add1(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add1_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- if (src1->type == GGML_TYPE_F16) {
- ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- {
- ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_acc
- static void ggml_compute_forward_acc_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- // view src0 and dst with these strides and data offset inbytes during acc
- // nb0 is implicitely element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
- if (!inplace && (params->type == GGML_TASK_INIT)) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
- // src0 and dst as viewed during acc
- const size_t nb0 = ggml_element_size(src0);
- const size_t nb00 = nb0;
- const size_t nb01 = nb1;
- const size_t nb02 = nb2;
- const size_t nb03 = nb3;
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
- GGML_ASSERT(nb10 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
- #ifdef GGML_USE_ACCELERATE
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
- #else
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- #endif
- }
- }
- static void ggml_compute_forward_acc(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_acc_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sub
- static void ggml_compute_forward_sub_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (nb10 == sizeof(float)) {
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- #ifdef GGML_USE_ACCELERATE
- vDSP_vsub(
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
- #else
- ggml_vec_sub_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- #endif
- // }
- // }
- }
- } else {
- // src1 is not contiguous
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i0 = 0; i0 < ne0; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
- dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
- }
- }
- }
- }
- static void ggml_compute_forward_sub(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sub_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mul
- static void ggml_compute_forward_mul_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- #ifdef GGML_USE_CLBLAST
- if (src1->backend == GGML_BACKEND_GPU) {
- if (ith == 0) {
- ggml_cl_mul(src0, src1, dst);
- }
- return;
- }
- #endif
- const int64_t nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(ne00 == ne10);
- if (nb10 == sizeof(float)) {
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
- #ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_mul_f32);
- vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
- #else
- ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
- #endif
- // }
- // }
- }
- } else {
- // src1 is not contiguous
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- for (int64_t i0 = 0; i0 < ne00; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
- dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
- }
- }
- }
- }
- static void ggml_compute_forward_mul(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mul_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_div
- static void ggml_compute_forward_div_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (nb10 == sizeof(float)) {
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- #ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_div_f32);
- vDSP_vdiv(
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
- #else
- ggml_vec_div_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- #endif
- // }
- // }
- }
- } else {
- // src1 is not contiguous
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i0 = 0; i0 < ne0; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
- dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
- }
- }
- }
- }
- static void ggml_compute_forward_div(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_div_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sqr
- static void ggml_compute_forward_sqr_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sqr_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sqr(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sqr_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sqrt
- static void ggml_compute_forward_sqrt_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sqrt_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sqrt(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sqrt_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_log
- static void ggml_compute_forward_log_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_log_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_log(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_log_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sum
- static void ggml_compute_forward_sum_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_is_scalar(dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(ggml_is_scalar(dst));
- assert(src0->nb[0] == sizeof(float));
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
- ggml_float sum = 0;
- ggml_float row_sum = 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32_ggf(ne00,
- &row_sum,
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- sum += row_sum;
- }
- }
- }
- ((float *) dst->data)[0] = sum;
- }
- static void ggml_compute_forward_sum_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_is_scalar(dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(src0->nb[0] == sizeof(ggml_fp16_t));
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
- float sum = 0;
- float row_sum = 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f16_ggf(ne00,
- &row_sum,
- (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
- sum += row_sum;
- }
- }
- }
- ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
- }
- static void ggml_compute_forward_sum(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_f32(params, src0, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_sum_f16(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sum_rows
- static void ggml_compute_forward_sum_rows_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(dst->nb[0] == sizeof(float));
- GGML_TENSOR_UNARY_OP_LOCALS;
- GGML_ASSERT(ne0 == 1);
- GGML_ASSERT(ne1 == ne01);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- for (int64_t i3 = 0; i3 < ne03; i3++) {
- for (int64_t i2 = 0; i2 < ne02; i2++) {
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
- float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
- float row_sum = 0;
- ggml_vec_sum_f32(ne00, &row_sum, src_row);
- dst_row[0] = row_sum;
- }
- }
- }
- }
- static void ggml_compute_forward_sum_rows(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_rows_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mean
- static void ggml_compute_forward_mean_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(src0->nb[0] == sizeof(float));
- GGML_TENSOR_UNARY_OP_LOCALS;
- assert(ne0 == 1);
- assert(ne1 == ne01);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
- UNUSED(ne0);
- UNUSED(ne1);
- UNUSED(ne2);
- UNUSED(ne3);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32(ne00,
- (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
- }
- }
- }
- }
- static void ggml_compute_forward_mean(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mean_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_argmax
- static void ggml_compute_forward_argmax_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(src0->nb[0] == sizeof(float));
- assert(dst->nb[0] == sizeof(float));
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const size_t nb01 = src0->nb[1];
- const size_t nb0 = dst->nb[0];
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float * src = (float *) ((char *) src0->data + i1*nb01);
- int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
- int v = 0;
- ggml_vec_argmax_f32(ne00, &v, src);
- dst_[0] = v;
- }
- }
- static void ggml_compute_forward_argmax(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_argmax_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_repeat
- static void ggml_compute_forward_repeat_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_can_repeat(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS;
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne0/ne00);
- const int nr1 = (int)(ne1/ne01);
- const int nr2 = (int)(ne2/ne02);
- const int nr3 = (int)(ne3/ne03);
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne03; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne02; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne01; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_cpy_f32(ne00,
- (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
- (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
- }
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_repeat(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_repeat_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_repeat_back
- static void ggml_compute_forward_repeat_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_can_repeat(dst, src0));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS;
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne00/ne0);
- const int nr1 = (int)(ne01/ne1);
- const int nr2 = (int)(ne02/ne2);
- const int nr3 = (int)(ne03/ne3);
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (ggml_is_contiguous(dst)) {
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- } else {
- for (int k3 = 0; k3 < ne3; k3++) {
- for (int k2 = 0; k2 < ne2; k2++) {
- for (int k1 = 0; k1 < ne1; k1++) {
- ggml_vec_set_f32(ne0,
- (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
- 0);
- }
- }
- }
- }
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne3; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne2; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne1; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_acc_f32(ne0,
- (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
- (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
- }
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_repeat_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_repeat_back_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_concat
- static void ggml_compute_forward_concat_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- GGML_TENSOR_BINARY_OP_LOCALS;
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2++) {
- if (i2 < ne02) { // src0
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
- float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
- *y = *x;
- }
- }
- } // src1
- else {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
- float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
- *y = *x;
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_concat(
- const struct ggml_compute_params* params,
- const struct ggml_tensor* src0,
- const struct ggml_tensor* src1,
- struct ggml_tensor* dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_concat_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_abs
- static void ggml_compute_forward_abs_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_abs_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_abs(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_abs_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sgn
- static void ggml_compute_forward_sgn_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sgn_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sgn(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sgn_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_neg
- static void ggml_compute_forward_neg_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_neg_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_neg(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_neg_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_step
- static void ggml_compute_forward_step_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_step_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_step(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_step_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_tanh
- static void ggml_compute_forward_tanh_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_tanh_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_tanh(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_tanh_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_elu
- static void ggml_compute_forward_elu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_elu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_elu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_elu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_relu
- static void ggml_compute_forward_relu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_relu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_relu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_relu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_gelu
- static void ggml_compute_forward_gelu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_gelu_quick
- static void ggml_compute_forward_gelu_quick_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_quick_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu_quick(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_quick_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_silu
- static void ggml_compute_forward_silu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_silu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_silu_back
- static void ggml_compute_forward_silu_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * grad,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_are_same_shape(src0, grad));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_backward_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])),
- (float *) ((char *) grad->data + i1*(grad->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_silu_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * grad,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_norm
- static void ggml_compute_forward_norm_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)x[i00];
- }
- float mean = sum/ne00;
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- ggml_float sum2 = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sum2 += (ggml_float)(v*v);
- }
- float variance = sum2/ne00;
- const float scale = 1.0f/sqrtf(variance + eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- static void ggml_compute_forward_norm(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_norm_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_group_rms_norm
- static void ggml_compute_forward_rms_norm_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)(x[i00] * x[i00]);
- }
- const float mean = sum/ne00;
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- memcpy(y, x, ne00 * sizeof(float));
- // for (int i00 = 0; i00 < ne00; i00++) {
- // y[i00] = x[i00];
- // }
- const float scale = 1.0f/sqrtf(mean + eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- static void ggml_compute_forward_rms_norm(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_rms_norm_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_BINARY_OP_LOCALS;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- // src1 is same shape as src0 => same indices
- const int64_t i11 = i01;
- const int64_t i12 = i02;
- const int64_t i13 = i03;
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
- ggml_float sum_xx = 0.0;
- ggml_float sum_xdz = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum_xx += (ggml_float)(x[i00] * x[i00]);
- sum_xdz += (ggml_float)(x[i00] * dz[i00]);
- }
- //const float mean = (float)(sum_xx)/ne00;
- const float mean_eps = (float)(sum_xx)/ne00 + eps;
- const float sum_eps = (float)(sum_xx) + eps*ne00;
- //const float mean_xdz = (float)(sum_xdz)/ne00;
- // we could cache rms from forward pass to improve performance.
- // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
- //const float rms = sqrtf(mean_eps);
- const float rrms = 1.0f / sqrtf(mean_eps);
- //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
- {
- // z = rms_norm(x)
- //
- // rms_norm(src0) =
- // scale(
- // src0,
- // div(
- // 1,
- // sqrt(
- // add(
- // scale(
- // sum(
- // sqr(
- // src0)),
- // (1.0/N)),
- // eps))));
- // postorder:
- // ## op args grad
- // 00 param src0 grad[#00]
- // 01 const 1
- // 02 sqr (#00) grad[#02]
- // 03 sum (#02) grad[#03]
- // 04 const 1/N
- // 05 scale (#03, #04) grad[#05]
- // 06 const eps
- // 07 add (#05, #06) grad[#07]
- // 08 sqrt (#07) grad[#08]
- // 09 div (#01,#08) grad[#09]
- // 10 scale (#00,#09) grad[#10]
- //
- // backward pass, given grad[#10]
- // #10: scale
- // grad[#00] += scale(grad[#10],#09)
- // grad[#09] += sum(mul(grad[#10],#00))
- // #09: div
- // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
- // #08: sqrt
- // grad[#07] += mul(grad[#08], div(0.5, #08))
- // #07: add
- // grad[#05] += grad[#07]
- // #05: scale
- // grad[#03] += scale(grad[#05],#04)
- // #03: sum
- // grad[#02] += repeat(grad[#03], #02)
- // #02:
- // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
- //
- // substitute and simplify:
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#02] = repeat(grad[#03], #02)
- // grad[#02] = repeat(scale(grad[#05],#04), #02)
- // grad[#02] = repeat(scale(grad[#07],#04), #02)
- // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
- // a = b*c + d*e
- // a = b*c*f/f + d*e*f/f
- // a = (b*c*f + d*e*f)*(1/f)
- // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
- // a = (b + d*e/c)*c
- // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
- // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
- // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
- // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
- // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
- // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
- // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- }
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // post-order:
- // dx := x
- // dx := scale(dx,-mean_xdz/mean_eps)
- // dx := add(dx, dz)
- // dx := scale(dx, rrms)
- float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- ggml_vec_cpy_f32 (ne00, dx, x);
- // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
- ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
- ggml_vec_acc_f32 (ne00, dx, dz);
- ggml_vec_scale_f32(ne00, dx, rrms);
- }
- }
- }
- }
- static void ggml_compute_forward_rms_norm_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_group_norm
- static void ggml_compute_forward_group_norm_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS;
- const float eps = 1e-6f; // TODO: make this a parameter
- // TODO: optimize
- int n_channels = src0->ne[2];
- int n_groups = dst->op_params[0];
- int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
- for (int i = ith; i < n_groups; i+=nth) {
- int start = i * n_channels_per_group;
- int end = start + n_channels_per_group;
- if (end > n_channels) {
- end = n_channels;
- }
- int step = end - start;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- ggml_float sum = 0.0;
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)x[i00];
- }
- }
- }
- float mean = sum / (ne00 * ne01 * step);
- ggml_float sum2 = 0.0;
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
- float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sum2 += (ggml_float)(v * v);
- }
- }
- }
- float variance = sum2 / (ne00 * ne01 * step);
- const float scale = 1.0f / sqrtf(variance + eps);
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- }
- static void ggml_compute_forward_group_norm(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_group_norm_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mul_mat
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- // helper function to determine if it is better to use BLAS or not
- // for large matrices, BLAS is faster
- static bool ggml_compute_forward_mul_mat_use_blas(
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- //const int64_t ne00 = src0->ne[0];
- //const int64_t ne01 = src0->ne[1];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- if (ggml_is_contiguous(src0) &&
- ggml_is_contiguous(src1) &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
- /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
- return true;
- }
- return false;
- }
- #endif
- static void ggml_compute_forward_mul_mat(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- const enum ggml_type type = src0->type;
- const bool src1_cont = ggml_is_contiguous(src1);
- ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
- enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
- ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- #if defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(src0, src1, dst)) {
- // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
- // ref: https://github.com/ggerganov/ggml/pull/224
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
- ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
- }
- return;
- }
- #endif
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
- if (params->ith != 0) {
- return;
- }
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- for (int64_t i13 = 0; i13 < ne13; i13++) {
- for (int64_t i12 = 0; i12 < ne12; i12++) {
- // broadcast src0 into src1 across 2nd,3rd dimension
- const int64_t i03 = i13/r3;
- const int64_t i02 = i12/r2;
- const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
- const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
- float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
- if (type != GGML_TYPE_F32) {
- float * const wdata = params->wdata;
- ggml_to_float_t const to_float = type_traits[type].to_float;
- size_t id = 0;
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- to_float((const char *) x + i01*nb01, wdata + id, ne00);
- id += ne00;
- }
- assert(id*sizeof(float) <= params->wsize);
- x = wdata;
- }
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne11, ne01, ne10,
- 1.0f, y, ne10,
- x, ne00,
- 0.0f, d, ne01);
- }
- }
- //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
- return;
- }
- #endif
- if (params->type == GGML_TASK_INIT) {
- if (src1->type != vec_dot_type) {
- char * wdata = params->wdata;
- const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
- wdata += row_size;
- }
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
- const int64_t nr0 = ne01; // src0 rows
- const int64_t nr1 = ne11*ne12*ne13; // src1 rows
- //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
- // distribute the thread work across the inner or outer loop based on which one is larger
- const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
- const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
- const int64_t ith0 = ith % nth0;
- const int64_t ith1 = ith / nth0;
- const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
- const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
- const int64_t ir010 = dr0*ith0;
- const int64_t ir011 = MIN(ir010 + dr0, nr0);
- const int64_t ir110 = dr1*ith1;
- const int64_t ir111 = MIN(ir110 + dr1, nr1);
- //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
- // threads with no work simply yield (not sure if it helps)
- if (ir010 >= ir011 || ir110 >= ir111) {
- sched_yield();
- return;
- }
- assert(ne12 % ne02 == 0);
- assert(ne13 % ne03 == 0);
- // block-tiling attempt
- const int64_t blck_0 = 16;
- const int64_t blck_1 = 16;
- // attempt to reduce false-sharing (does not seem to make a difference)
- float tmp[16];
- for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
- for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
- for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
- const int64_t i13 = (ir1/(ne12*ne11));
- const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
- const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
- // broadcast src0 into src1
- const int64_t i03 = i13/r3;
- const int64_t i02 = i12/r2;
- const int64_t i1 = i11;
- const int64_t i2 = i12;
- const int64_t i3 = i13;
- const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
- // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
- // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
- // the original src1 data pointer, so we should index using the indices directly
- // TODO: this is a bit of a hack, we should probably have a better way to handle this
- const char * src1_col = (const char *) wdata +
- (src1_cont || src1->type != vec_dot_type
- ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
- : (i11*nb11 + i12*nb12 + i13*nb13));
- float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
- //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
- // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
- //}
- for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
- vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
- }
- memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
- }
- }
- }
- }
- // ggml_compute_forward_out_prod
- static void ggml_compute_forward_out_prod_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
- // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
- if (params->type == GGML_TASK_INIT) {
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by last three dimensions
- // total rows in dst
- const int64_t nr = ne1*ne2*ne3;
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
- // dst[:,:,:,:] = 0
- // for i2,i3:
- // for i1:
- // for i01:
- // for i0:
- // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
- for (int64_t ir = ir0; ir < ir1; ++ir) {
- // dst indices
- const int64_t i3 = ir/(ne2*ne1);
- const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
- const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
- const int64_t i02 = i2;
- const int64_t i03 = i3;
- //const int64_t i10 = i1;
- const int64_t i12 = i2;
- const int64_t i13 = i3;
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- const int64_t i11 = i01;
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- ggml_vec_mad_f32(ne0, d, s0, *s1);
- // for (int64_t i0 = 0; i0 < ne0; ++i0) {
- // d[i0] += s0[i0] * s1[i1];
- // }
- }
- }
- //int64_t t1 = ggml_perf_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
- }
- static void ggml_compute_forward_out_prod(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- {
- GGML_ASSERT(false); // todo
- // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(false); // todo
- // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_scale
- static void ggml_compute_forward_scale_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scale factor
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const size_t nb01 = src0->nb[1];
- const size_t nb1 = dst->nb[1];
- for (int i1 = ir0; i1 < ir1; i1++) {
- if (dst->data != src0->data) {
- // src0 is same shape as dst => same indices
- memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
- }
- ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
- }
- }
- static void ggml_compute_forward_scale(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_scale_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_set
- static void ggml_compute_forward_set_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- // view src0 and dst with these strides and data offset inbytes during set
- // nb0 is implicitely element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
- if (!inplace && (params->type == GGML_TASK_INIT)) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
- // src0 and dst as viewed during set
- const size_t nb0 = ggml_element_size(src0);
- const int im0 = (ne10 == 0 ? 0 : ne10-1);
- const int im1 = (ne11 == 0 ? 0 : ne11-1);
- const int im2 = (ne12 == 0 ? 0 : ne12-1);
- const int im3 = (ne13 == 0 ? 0 : ne13-1);
- GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
- GGML_ASSERT(nb10 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- }
- }
- static void ggml_compute_forward_set(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_set_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_cpy
- static void ggml_compute_forward_cpy(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, src0, dst);
- }
- // ggml_compute_forward_cont
- static void ggml_compute_forward_cont(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, src0, dst);
- }
- // ggml_compute_forward_reshape
- static void ggml_compute_forward_reshape(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- UNUSED(dst);
- }
- // ggml_compute_forward_view
- static void ggml_compute_forward_view(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_permute
- static void ggml_compute_forward_permute(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_transpose
- static void ggml_compute_forward_transpose(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_get_rows
- static void ggml_compute_forward_get_rows_q(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
- assert( dst->ne[0] == nc);
- assert( dst->ne[1] == nr);
- assert(src0->nb[0] == ggml_type_size(type));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- dequantize_row_q(
- (const void *) ((char *) src0->data + r*src0->nb[1]),
- (float *) ((char *) dst->data + i*dst->nb[1]), nc);
- }
- }
- static void ggml_compute_forward_get_rows_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- assert( dst->ne[0] == nc);
- assert( dst->ne[1] == nr);
- assert(src0->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- for (int j = 0; j < nc; ++j) {
- ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
- ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
- }
- }
- }
- static void ggml_compute_forward_get_rows_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- assert( dst->ne[0] == nc);
- assert( dst->ne[1] == nr);
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i*dst->nb[1]),
- (float *) ((char *) src0->data + r*src0->nb[1]));
- }
- }
- static void ggml_compute_forward_get_rows(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- {
- ggml_compute_forward_get_rows_q(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
- }
- // ggml_compute_forward_get_rows_back
- static void ggml_compute_forward_get_rows_back_f32_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_are_same_shape(opt0, dst));
- GGML_ASSERT(ggml_is_contiguous(opt0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- ggml_compute_forward_dup_same_cont(params, opt0, dst);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- for (int j = 0; j < nc; ++j) {
- ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
- ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
- }
- }
- }
- static void ggml_compute_forward_get_rows_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_are_same_shape(opt0, dst));
- GGML_ASSERT(ggml_is_contiguous(opt0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- // ggml_compute_forward_dup_same_cont(params, opt0, dst);
- if (params->type == GGML_TASK_INIT) {
- memset(dst->data, 0, ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) src0->data + i*src0->nb[1]));
- }
- }
- static void ggml_compute_forward_get_rows_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
- }
- // ggml_compute_forward_diag
- static void ggml_compute_forward_diag_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- GGML_TENSOR_UNARY_OP_LOCALS;
- GGML_ASSERT(ne00 == ne0);
- GGML_ASSERT(ne00 == ne1);
- GGML_ASSERT(ne01 == 1);
- GGML_ASSERT(ne02 == ne2);
- GGML_ASSERT(ne03 == ne3);
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb0 == sizeof(float));
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = 0; i2 < ne2; i2++) {
- for (int i1 = 0; i1 < ne1; i1++) {
- float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
- for (int i0 = 0; i0 < i1; i0++) {
- d[i0] = 0;
- }
- d[i1] = s[i1];
- for (int i0 = i1+1; i0 < ne0; i0++) {
- d[i0] = 0;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_diag(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_diag_mask_inf
- static void ggml_compute_forward_diag_mask_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst,
- const float value) {
- const int ith = params->ith;
- const int nth = params->nth;
- const int n_past = ((int32_t *) dst->op_params)[0];
- const bool inplace = src0->data == dst->data;
- GGML_ASSERT(n_past >= 0);
- if (!inplace && (params->type == GGML_TASK_INIT)) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const int nr = src0->ne[1];
- const int nz = n/nr;
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- for (int k = 0; k < nz; k++) {
- for (int j = ith; j < nr; j += nth) {
- for (int i = n_past; i < nc; i++) {
- if (i > n_past + j) {
- *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_diag_mask_inf(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_diag_mask_zero(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_soft_max
- static void ggml_compute_forward_soft_max_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
- float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(sp[i]));
- }
- #endif
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, sp);
- ggml_float sum = 0.0;
- uint16_t scvt;
- for (int i = 0; i < nc; i++) {
- if (sp[i] == -INFINITY) {
- dp[i] = 0.0f;
- } else {
- // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
- ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
- memcpy(&scvt, &s, sizeof(scvt));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
- sum += (ggml_float)val;
- dp[i] = val;
- }
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(nc, dp, sum);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(dp[i]));
- assert(!isinf(dp[i]));
- }
- #endif
- }
- }
- static void ggml_compute_forward_soft_max(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_soft_max_back
- static void ggml_compute_forward_soft_max_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_are_same_shape(src1, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
- float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
- float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(dy[i]));
- assert(!isnan(y[i]));
- }
- #endif
- // Jii = yi - yi*yi
- // Jij = -yi*yj
- // J = diag(y)-y.T*y
- // dx = J * dy
- // dxk = sum_i(Jki * dyi)
- // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
- // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
- // dxk = sum_i(-yk*yi * dyi) + yk*dyk
- // dxk = -yk * sum_i(yi * dyi) + yk*dyk
- // dxk = -yk * dot(y, dy) + yk*dyk
- // dxk = yk * (- dot(y, dy) + dyk)
- // dxk = yk * (dyk - dot(y, dy))
- //
- // post-order:
- // dot_y_dy := dot(y, dy)
- // dx := dy
- // dx := dx - dot_y_dy
- // dx := dx * y
- // linear runtime, no additional memory
- float dot_y_dy = 0;
- ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
- ggml_vec_cpy_f32 (nc, dx, dy);
- ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
- ggml_vec_mul_f32 (nc, dx, dx, y);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(dx[i]));
- assert(!isinf(dx[i]));
- }
- #endif
- }
- }
- static void ggml_compute_forward_soft_max_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_alibi
- static void ggml_compute_forward_alibi_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_head = ((int32_t *) dst->op_params)[1];
- float max_bias;
- memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
- assert(n_past >= 0);
- const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
- const int ne1 = src0->ne[1]; // seq_len_without_past
- const int ne2 = src0->ne[2]; // n_head -> this is k
- //const int ne3 = src0->ne[3]; // 1 -> bsz
- const int n = ggml_nrows(src0);
- const int ne2_ne3 = n/ne1; // ne2*ne3
- const int nb0 = src0->nb[0];
- const int nb1 = src0->nb[1];
- const int nb2 = src0->nb[2];
- //const int nb3 = src0->nb[3];
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(ne1 + n_past == ne0);
- GGML_ASSERT(n_head == ne2);
- // add alibi to src0 (KQ_scaled)
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- for (int i = 0; i < ne0; i++) {
- for (int j = 0; j < ne1; j++) {
- for (int k = 0; k < ne2_ne3; k++) {
- float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
- float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
- // TODO: k*nb2 or k*nb3
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = powf(m0, k + 1);
- } else {
- m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
- }
- pdst[0] = i * m_k + src[0];
- }
- }
- }
- }
- static void ggml_compute_forward_alibi_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_head = ((int32_t *) dst->op_params)[1];
- float max_bias;
- memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
- assert(n_past >= 0);
- const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
- const int ne1 = src0->ne[1]; // seq_len_without_past
- const int ne2 = src0->ne[2]; // n_head -> this is k
- //const int ne3 = src0->ne[3]; // 1 -> bsz
- const int n = ggml_nrows(src0);
- const int ne2_ne3 = n/ne1; // ne2*ne3
- const int nb0 = src0->nb[0];
- const int nb1 = src0->nb[1];
- const int nb2 = src0->nb[2];
- //const int nb3 = src0->nb[3];
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
- GGML_ASSERT(n_head == ne2);
- // add alibi to src0 (KQ_scaled)
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- for (int i = 0; i < ne0; i++) {
- for (int j = 0; j < ne1; j++) {
- for (int k = 0; k < ne2_ne3; k++) {
- ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
- float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
- // TODO: k*nb2 or k*nb3
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = powf(m0, k + 1);
- } else {
- m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
- }
- // we return F32
- pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
- }
- }
- }
- }
- static void ggml_compute_forward_alibi(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_alibi_f16(params, src0, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_alibi_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_Q8_K:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_clamp
- static void ggml_compute_forward_clamp_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- float min;
- float max;
- memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- for (int j = ith; j < n; j += nth) {
- float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
- float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
- for (int i = 0; i < nc; i++) {
- dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
- }
- }
- }
- static void ggml_compute_forward_clamp(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_clamp_f32(params, src0, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_Q8_K:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_rope
- static void ggml_compute_forward_rope_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- float freq_base;
- float freq_scale;
- // these two only relevant for xPos RoPE:
- float xpos_base;
- bool xpos_down;
- const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx = ((int32_t *) dst->op_params)[3];
- memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
- assert(n_past >= 0);
- GGML_TENSOR_UNARY_OP_LOCALS;
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- GGML_ASSERT(nb00 == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const bool is_neox = mode & 2;
- const bool is_glm = mode & 4;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- float theta = freq_scale * (float)p;
- if (is_glm) {
- theta = MIN(p, n_ctx - 2);
- float block_theta = MAX(p - (n_ctx - 2), 0);
- for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- const float cos_block_theta = cosf(block_theta);
- const float sin_block_theta = sinf(block_theta);
- theta *= theta_scale;
- block_theta *= theta_scale;
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = src[0];
- const float x1 = src[n_dims/2];
- const float x2 = src[n_dims];
- const float x3 = src[n_dims/2*3];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
- dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
- dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
- }
- } else if (!is_neox) {
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- // zeta scaling for xPos only:
- float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
- if (xpos_down) zeta = 1.0f / zeta;
- theta *= theta_scale;
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = src[0];
- const float x1 = src[1];
- dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
- dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
- }
- } else {
- // TODO: this might be wrong for ne0 != n_dims - need double check
- // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
- for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
- for (int64_t ic = 0; ic < n_dims; ic += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const int64_t i0 = ib*n_dims + ic/2;
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = src[0];
- const float x1 = src[n_dims/2];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- float freq_base;
- float freq_scale;
- const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx = ((int32_t *) dst->op_params)[3];
- memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
- assert(n_past >= 0);
- GGML_TENSOR_UNARY_OP_LOCALS;
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const bool is_neox = mode & 2;
- const bool is_glm = mode & 4;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- float theta = freq_scale * (float)p;
- if (is_glm) {
- theta = MIN(p, n_ctx - 2);
- float block_theta = MAX(p - (n_ctx - 2), 0);
- for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- const float cos_block_theta = cosf(block_theta);
- const float sin_block_theta = sinf(block_theta);
- theta *= theta_scale;
- block_theta *= theta_scale;
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
- const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
- const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
- dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
- }
- } if (!is_neox) {
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[1]);
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- } else {
- // TODO: this might be wrong for ne0 != n_dims - need double check
- // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
- for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
- for (int64_t ic = 0; ic < n_dims; ic += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const int64_t i0 = ib*n_dims + ic/2;
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, src0, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_rope_back
- static void ggml_compute_forward_rope_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // y = rope(x, src1)
- // dx = rope_back(dy, src1)
- // src0 is dy, src1 contains options
- float freq_base;
- float freq_scale;
- // these two only relevant for xPos RoPE:
- float xpos_base;
- bool xpos_down;
- const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
- memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
- assert(n_past >= 0);
- GGML_TENSOR_UNARY_OP_LOCALS;
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- assert(nb0 == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const bool is_neox = mode & 2;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- float theta = freq_scale * (float)p;
- if (!is_neox) {
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- // zeta scaling for xPos only:
- float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
- if (xpos_down) zeta = 1.0f / zeta;
- theta *= theta_scale;
- const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float dy0 = dy[0];
- const float dy1 = dy[1];
- dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
- dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
- }
- } else {
- for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
- for (int64_t ic = 0; ic < n_dims; ic += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const int64_t i0 = ib*n_dims + ic/2;
- const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float dy0 = dy[0];
- const float dy1 = dy[n_dims/2];
- dx[0] = dy0*cos_theta + dy1*sin_theta;
- dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope_back_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // y = rope(x, src1)
- // dx = rope_back(dy, src1)
- // src0 is dy, src1 contains options
- const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- assert(n_past >= 0);
- GGML_TENSOR_UNARY_OP_LOCALS;
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- assert(nb0 == sizeof(ggml_fp16_t));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(10000.0, -2.0f/n_dims);
- const bool is_neox = mode & 2;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- float theta = (float)p;
- if (!is_neox) {
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float dy0 = GGML_FP16_TO_FP32(dy[0]);
- const float dy1 = GGML_FP16_TO_FP32(dy[1]);
- dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
- dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
- }
- } else {
- for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
- for (int64_t ic = 0; ic < n_dims; ic += 2) {
- const float cos_theta = cosf(theta);
- const float sin_theta = sinf(theta);
- theta *= theta_scale;
- const int64_t i0 = ib*n_dims + ic/2;
- const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float dy0 = GGML_FP16_TO_FP32(dy[0]);
- const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
- dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
- dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_back_f16(params, src0, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_back_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_conv_1d
- static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- ggml_fp16_t * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; ++i0) {
- dst_data[i0] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f16(ew0, &v,
- (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_s1_ph_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- float * const wdata = (float *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- float * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = src[i10];
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; ++i0) {
- dst_data[i0] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f32(ew0, &v,
- (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_s1_ph(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- ggml_fp16_t * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
- dst_data[i0/2] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f16(ew0, &v,
- (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0/2] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_s2_ph_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00;
- const int nh = nk/2;
- const int ew0 = ggml_up32(ne01);
- GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- // TODO: fix this memset (wsize is overestimated)
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0)
- {
- float * const wdata = (float *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i02*ew0*ne00;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ew0 + i01] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- float * dst_data = wdata;
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[(i10 + nh)*ew0 + i11] = src[i10];
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total rows in dst
- const int nr = ne02;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
- dst_data[i0/2] = 0;
- for (int k = -nh; k <= nh; k++) {
- float v = 0.0f;
- ggml_vec_dot_f32(ew0, &v,
- (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
- (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
- dst_data[i0/2] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_1d_s2_ph(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_conv_1d
- static void ggml_compute_forward_conv_1d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
- GGML_ASSERT(d0 == 1); // dilation not supported
- GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
- if (s0 == 1) {
- ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
- } else if (s0 == 2) {
- ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
- } else {
- GGML_ASSERT(false); // only stride 1 and 2 supported
- };
- }
- // ggml_compute_forward_conv_2d
- static void ggml_compute_forward_conv_2d_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk0 = ne00;
- const int nk1 = ne01;
- // size of the convolution row - the kernel size unrolled across all channels
- const int ew0 = nk0*nk1*ne02;
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- memset(params->wdata, 0, params->wsize);
- // prepare source data (src1)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int i12 = 0; i12 < ne12; i12++) {
- const float * const src = (float *)((char *) src1->data + i12*nb12);
- ggml_fp16_t * dst_data = wdata;
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- for (int ik1 = 0; ik1 < nk1; ik1++) {
- for (int ik0 = 0; ik0 < nk0; ik0++) {
- const int idx0 = i0*s0 + ik0*d0 - p0;
- const int idx1 = i1*s1 + ik1*d1 - p1;
- if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
- dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
- GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
- }
- }
- }
- }
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // total patches in dst
- const int np = ne2;
- // patches per thread
- const int dp = (np + nth - 1)/nth;
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ip0; i2 < ip1; i2++) {
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
- for (int i1 = 0; i1 < ne1; ++i1) {
- for (int i0 = 0; i0 < ne0; ++i0) {
- ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
- (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
- (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
- }
- }
- }
- }
- }
- static void ggml_compute_forward_conv_2d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
- GGML_ASSERT(false);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_conv_transpose_2d
- static void ggml_compute_forward_conv_transpose_2d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00*ne01*ne02*ne03;
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- memset(params->wdata, 0, params->wsize);
- // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
- ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
- }
- }
- }
- }
- }
- // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
- for (int i12 = 0; i12 < ne12; i12++) {
- for (int i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
- ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
- for (int i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int32_t stride = ggml_get_op_params_i32(dst, 0);
- // total patches in dst
- const int np = ne2;
- // patches per thread
- const int dp = (np + nth - 1)/nth;
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- ggml_fp16_t * const wdata_src = wdata + nk;
- for (int i2 = ip0; i2 < ip1; i2++) { // Cout
- float * dst_data = (float *)((char *) dst->data + i2*nb2);
- ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
- for (int i11 = 0; i11 < ne11; i11++) {
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i11*ne10*ne12 + i10*ne12;
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f16(ne03, &v,
- wdata_src + i1n,
- wdata_kernel + i01*ne00*ne03 + i00*ne03);
- dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
- }
- }
- }
- }
- }
- }
- // ggml_compute_forward_pool_1d_sk_p0
- static void ggml_compute_forward_pool_1d_sk_p0(
- const struct ggml_compute_params * params,
- const enum ggml_op_pool op,
- const struct ggml_tensor * src,
- const int k,
- struct ggml_tensor * dst) {
- assert(src->type == GGML_TYPE_F32);
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const char * cdata = (const char *)src->data;
- const char * const data_end = cdata + ggml_nbytes(src);
- float * drow = (float *)dst->data;
- const int64_t rs = dst->ne[0];
- while (cdata < data_end) {
- const float * const srow = (const float *)cdata;
- int j = 0;
- for (int64_t i = 0; i < rs; ++i) {
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] = 0; break;
- case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- for (int ki = 0; ki < k; ++ki) {
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
- case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- ++j;
- }
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] /= k; break;
- case GGML_OP_POOL_MAX: break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- }
- cdata += src->nb[1];
- drow += rs;
- }
- }
- // ggml_compute_forward_pool_1d
- static void ggml_compute_forward_pool_1d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = opts[0];
- const int k0 = opts[1];
- const int s0 = opts[2];
- const int p0 = opts[3];
- GGML_ASSERT(p0 == 0); // padding not supported
- GGML_ASSERT(k0 == s0); // only s = k supported
- ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
- }
- // ggml_compute_forward_pool_2d_sk_p0
- static void ggml_compute_forward_pool_2d_sk_p0(
- const struct ggml_compute_params * params,
- const enum ggml_op_pool op,
- const struct ggml_tensor * src,
- const int k0,
- const int k1,
- struct ggml_tensor * dst) {
- assert(src->type == GGML_TYPE_F32);
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const char * cdata = (const char*)src->data;
- const char * const data_end = cdata + ggml_nbytes(src);
- const int64_t px = dst->ne[0];
- const int64_t py = dst->ne[1];
- const int64_t pa = px * py;
- float * dplane = (float *)dst->data;
- const int ka = k0 * k1;
- while (cdata < data_end) {
- for (int oy = 0; oy < py; ++oy) {
- float * const drow = dplane + oy * px;
- for (int ox = 0; ox < px; ++ox) {
- float * const out = drow + ox;
- switch (op) {
- case GGML_OP_POOL_AVG: *out = 0; break;
- case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- const int ix = ox * k0;
- const int iy = oy * k1;
- for (int ky = 0; ky < k1; ++ky) {
- const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
- for (int kx = 0; kx < k0; ++kx) {
- int j = ix + kx;
- switch (op) {
- case GGML_OP_POOL_AVG: *out += srow[j]; break;
- case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- }
- }
- switch (op) {
- case GGML_OP_POOL_AVG: *out /= ka; break;
- case GGML_OP_POOL_MAX: break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- }
- }
- cdata += src->nb[2];
- dplane += pa;
- }
- }
- // ggml_compute_forward_pool_2d
- static void ggml_compute_forward_pool_2d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = opts[0];
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- GGML_ASSERT(p0 == 0);
- GGML_ASSERT(p1 == 0); // padding not supported
- GGML_ASSERT(k0 == s0);
- GGML_ASSERT(k1 == s1); // only s = k supported
- ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
- }
- // ggml_compute_forward_upscale
- static void ggml_compute_forward_upscale_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- GGML_TENSOR_UNARY_OP_LOCALS;
- const int scale_factor = dst->op_params[0];
- // TODO: optimize
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = ith; i02 < ne02; i02++) {
- for (int m = 0; m < dst->ne[1]; m++) {
- int i01 = m / scale_factor;
- for (int n = 0; n < dst->ne[0]; n++) {
- int i00 = n / scale_factor;
- const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
- float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
- *y = *x;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_upscale(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_upscale_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_flash_attn
- static void ggml_compute_forward_flash_attn_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- GGML_ASSERT(ne0 == D);
- GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(float));
- GGML_ASSERT(nbk0 == sizeof(float));
- GGML_ASSERT(nbv0 == sizeof(float));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by q rows using ggml_vec_dot_f32
- // total rows in q
- const int nr = neq1*neq2*neq3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
- float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- for (int64_t ic = 0; ic < nek1; ++ic) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f32(neq0,
- S + i1,
- (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- // scale
- ggml_vec_scale_f32(nek1, S, scale);
- if (masked) {
- for (int64_t i = P; i < M; i++) {
- if (i > P + iq1) {
- S[i] = -INFINITY;
- }
- }
- }
- // softmax
- {
- float max = -INFINITY;
- ggml_vec_max_f32(M, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(S, 1, &max, S, 1, Mup);
- vvexpf(S, S, &Mup);
- ggml_vec_sum_f32(Mup, &sum, S);
- #else
- uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
- ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
- for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
- float * SS = S + i;
- for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
- if (SS[j] == -INFINITY) {
- SS[j] = 0.0f;
- } else {
- #ifndef GGML_FLASH_ATTN_EXP_FP16
- const float val = expf(SS[j] - max);
- #else
- ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
- memcpy(&scvt[j], &s, sizeof(uint16_t));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
- #endif
- sump[j] += (ggml_float)val;
- SS[j] = val;
- }
- }
- }
- for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
- sum += sump[i];
- }
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(M, S, sum);
- #ifndef NDEBUG
- for (int i = 0; i < M; ++i) {
- assert(!isnan(S[i]));
- assert(!isinf(S[i]));
- }
- #endif
- }
- for (int64_t ic = 0; ic < nev1; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_dot_f32(nek1,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
- S);
- }
- }
- }
- static void ggml_compute_forward_flash_attn_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- GGML_ASSERT(ne0 == D);
- GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by q rows using ggml_vec_dot_f32
- // total rows in q
- const int nr = neq1*neq2*neq3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
- float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
- for (int64_t ic = 0; ic < nek1; ++ic) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f16(neq0,
- S + i1,
- (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- } else {
- for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f16_unroll(neq0, nbk1,
- S + i1,
- ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- }
- // scale
- ggml_vec_scale_f32(nek1, S, scale);
- if (masked) {
- for (int64_t i = P; i < M; i++) {
- if (i > P + iq1) {
- S[i] = -INFINITY;
- }
- }
- }
- // softmax
- {
- float max = -INFINITY;
- ggml_vec_max_f32(M, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(S, 1, &max, S, 1, Mup);
- vvexpf(S, S, &Mup);
- ggml_vec_sum_f32(Mup, &sum, S);
- #else
- uint16_t scvt[GGML_SOFT_MAX_UNROLL];
- ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
- for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
- float * SS = S + i;
- for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
- if (SS[j] == -INFINITY) {
- SS[j] = 0.0f;
- } else {
- ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
- memcpy(&scvt[j], &s, sizeof(uint16_t));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
- sump[j] += (ggml_float)val;
- SS[j] = val;
- }
- }
- }
- for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
- sum += sump[i];
- }
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(M, S, sum);
- #ifndef NDEBUG
- for (int i = 0; i < M; ++i) {
- assert(!isnan(S[i]));
- assert(!isinf(S[i]));
- }
- #endif
- }
- ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
- for (int64_t i = 0; i < M; i++) {
- S16[i] = GGML_FP32_TO_FP16(S[i]);
- }
- if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
- for (int64_t ic = 0; ic < nev1; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_dot_f16(nek1,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
- S16);
- }
- } else {
- for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_dot_f16_unroll(nek1, nbv1,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
- S16);
- }
- }
- }
- }
- static void ggml_compute_forward_flash_attn(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- switch (q->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_flash_ff
- static void ggml_compute_forward_flash_ff_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a, // F16
- const struct ggml_tensor * b0, // F16 fc_w
- const struct ggml_tensor * b1, // F32 fc_b
- const struct ggml_tensor * c0, // F16 proj_w
- const struct ggml_tensor * c1, // F32 proj_b
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
- GGML_TENSOR_LOCALS(size_t, nba, a, nb);
- GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
- GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
- GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
- GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
- GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
- GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
- GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
- GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = nea0;
- //const int64_t N = nea1;
- const int64_t M = neb01;
- GGML_ASSERT(ne0 == nea0);
- GGML_ASSERT(ne1 == nea1);
- GGML_ASSERT(ne2 == nea2);
- GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbb10 == sizeof(float));
- GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbc10 == sizeof(float));
- GGML_ASSERT(neb00 == D);
- GGML_ASSERT(neb01 == M);
- GGML_ASSERT(neb10 == M);
- GGML_ASSERT(neb11 == 1);
- GGML_ASSERT(nec00 == M);
- GGML_ASSERT(nec01 == D);
- GGML_ASSERT(nec10 == D);
- GGML_ASSERT(nec11 == 1);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by a rows using ggml_vec_dot_f32
- // total rows in a
- const int nr = nea1*nea2*nea3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // a indices
- const int ia3 = ir/(nea2*nea1);
- const int ia2 = (ir - ia3*nea2*nea1)/nea1;
- const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
- float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
- for (int64_t ic = 0; ic < neb01; ++ic) {
- // b0 indices
- const int ib03 = ia3;
- const int ib02 = ia2;
- const int ib01 = ic;
- // S indices
- const int i1 = ib01;
- ggml_vec_dot_f16(nea0,
- S + i1,
- (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
- (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
- }
- ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
- //ggml_vec_gelu_f32(neb01, S, S);
- ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
- for (int64_t i = 0; i < M; i++) {
- S16[i] = GGML_FP32_TO_FP16(S[i]);
- }
- ggml_vec_gelu_f16(neb01, S16, S16);
- {
- // dst indices
- const int i1 = ia1;
- const int i2 = ia2;
- const int i3 = ia3;
- for (int64_t ic = 0; ic < nec01; ++ic) {
- ggml_vec_dot_f16(neb01,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
- S16);
- }
- ggml_vec_add_f32(nec01,
- (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) c1->data);
- }
- }
- }
- static void ggml_compute_forward_flash_ff(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b0,
- const struct ggml_tensor * b1,
- const struct ggml_tensor * c0,
- const struct ggml_tensor * c1,
- struct ggml_tensor * dst) {
- switch (b0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(false); // TODO
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_flash_attn_back
- static void ggml_compute_forward_flash_attn_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const struct ggml_tensor * d,
- const bool masked,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
- GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
- GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- const int mxDM = MAX(D, Mup);
- // GGML_ASSERT(ne0 == D);
- // GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(float));
- GGML_ASSERT(nbk0 == sizeof(float));
- GGML_ASSERT(nbv0 == sizeof(float));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(ned0 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(ned1 == N);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- if (ith == 0) {
- memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by q rows using ggml_vec_dot_f32
- // total rows in q
- const int nr = neq2*neq3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2);
- const int iq2 = ir - iq3*neq2;
- for ( int iq1 = 0; iq1 < neq1; ++iq1) {
- // not sure about CACHE_LINE_SIZE_F32..
- // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
- float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
- float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- for (int64_t ic = 0; ic < nek1; ++ic) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f32(neq0,
- S + i1,
- (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- // scale
- ggml_vec_scale_f32(nek1, S, scale);
- if (masked) {
- for (int64_t i = P; i < M; i++) {
- if (i > P + iq1) {
- S[i] = -INFINITY;
- }
- }
- }
- // softmax
- {
- float max = -INFINITY;
- ggml_vec_max_f32(M, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
- vvexpf(SM, SM, &Mup);
- ggml_vec_sum_f32(Mup, &sum, SM);
- #else
- uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
- ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
- for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
- float * SR = S + i;
- float * SW = SM + i;
- for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
- if (SR[j] == -INFINITY) {
- SW[j] = 0.0f;
- } else {
- #ifndef GGML_FLASH_ATTN_EXP_FP16
- const float val = expf(SR[j] - max);
- #else
- ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
- memcpy(&scvt[j], &s, sizeof(uint16_t));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
- #endif
- sump[j] += (ggml_float)val;
- SW[j] = val;
- }
- }
- }
- for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
- sum += sump[i];
- }
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(M, SM, sum);
- }
- // step-by-step explanation
- {
- // forward-process shape grads from backward process
- // parallel_for iq2,iq3:
- // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
- // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
- // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
- // for iq1:
- // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
- // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
- // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
- // S0 = -Inf [D,1,1,1]
- // ~S1[i] = dot(kcur[:D,i], qcur)
- // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
- // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
- // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
- // ~S5[i] = dot(vcur[:,i], S4)
- // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
- // ~dst[i,iq1,iq2,iq3] = S5[i] ^
- // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
- // dst backward-/ grad[dst] = d
- //
- // output gradients with their dependencies:
- //
- // grad[kcur] = grad[S1].T @ qcur
- // grad[S1] = diag_mask_zero(grad[S3], P) * scale
- // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // grad[S4] = grad[S5] @ vcur
- // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
- // grad[qcur] = grad[S1] @ kcur
- // grad[vcur] = grad[S5].T @ S4
- // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
- //
- // in post-order:
- //
- // S1 = qcur @ kcur.T
- // S2 = S1 * scale
- // S3 = diag_mask_inf(S2, P)
- // S4 = softmax(S3)
- // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
- // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // grad[S1] = diag_mask_zero(grad[S3], P) * scale
- // grad[qcur] = grad[S1] @ kcur
- // grad[kcur] = grad[S1].T @ qcur
- // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
- //
- // using less variables (SM=S4):
- //
- // S = diag_mask_inf(qcur @ kcur.T * scale, P)
- // SM = softmax(S)
- // S = d[:D,iq1,iq2,iq3] @ vcur
- // dot_SM_gradSM = dot(SM, S)
- // S = SM * (S - dot(SM, S))
- // S = diag_mask_zero(S, P) * scale
- //
- // grad[q][:D,iq1,iq2,iq3] += S @ kcur
- // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
- // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
- }
- // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
- // S = d[:D,iq1,iq2,iq3] @ vcur
- // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
- ggml_vec_set_f32(M, S, 0);
- for (int64_t ic = 0; ic < D; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_mad_f32(M,
- S,
- (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
- *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
- }
- // S = SM * (S - dot(SM, S))
- float dot_SM_gradSM = 0;
- ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
- ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
- ggml_vec_mul_f32 (M, S, S, SM);
- // S = diag_mask_zero(S, P) * scale
- if (masked) {
- // for (int64_t i = P + iq1 + 1; i < M; i++) {
- // S[i] = 0;
- // }
- for (int64_t i = P; i < M; i++) {
- if (i > P + iq1) {
- S[i] = 0;
- }
- }
- }
- ggml_vec_scale_f32(M, S, scale);
- void * grad_q = (char *) dst->data;
- void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
- void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
- const size_t nbgq1 = nb0*neq0;
- const size_t nbgq2 = nb0*neq0*neq1;
- const size_t nbgq3 = nb0*neq0*neq1*neq2;
- const size_t nbgk1 = nb0*nek0;
- const size_t nbgk2 = nb0*nek0*nek1;
- const size_t nbgk3 = nb0*nek0*nek1*neq2;
- const size_t nbgv1 = nb0*nev0;
- const size_t nbgv2 = nb0*nev0*nev1;
- const size_t nbgv3 = nb0*nev0*nev1*neq2;
- // S shape [M,1]
- // SM shape [M,1]
- // kcur shape [D,M]
- // qcur shape [D,1]
- // vcur shape [M,D]
- //
- // grad[q][:D,iq1,iq2,iq3] += S @ kcur
- // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
- // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
- //
- //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
- //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
- for (int64_t ic = 0; ic < M; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- ggml_vec_mad_f32(D,
- (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
- (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
- S[ic]);
- }
- // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
- // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
- // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
- for (int64_t ic = 0; ic < M; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- // ggml_vec_set_f32(D,
- // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
- // 0);
- ggml_vec_mad_f32(D,
- (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
- (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
- S[ic]);
- }
- // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
- // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
- // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
- for (int64_t ic = 0; ic < D; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- // ggml_vec_set_f32(M,
- // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
- // 0);
- ggml_vec_mad_f32(M,
- (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
- SM,
- *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
- }
- }
- }
- }
- static void ggml_compute_forward_flash_attn_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const struct ggml_tensor * d,
- const bool masked,
- struct ggml_tensor * dst) {
- switch (q->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_win_part
- static void ggml_compute_forward_win_part_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
- const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t w = ((const int32_t *)(dst->op_params))[2];
- assert(ne00 == ne0);
- assert(ne3 == nep0*nep1);
- // TODO: optimize / multi-thread
- for (int py = 0; py < nep1; ++py) {
- for (int px = 0; px < nep0; ++px) {
- const int64_t i3 = py*nep0 + px;
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int64_t i02 = py*w + i2;
- const int64_t i01 = px*w + i1;
- const int64_t i00 = i0;
- const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
- const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
- if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
- ((float *) dst->data)[i] = 0.0f;
- } else {
- ((float *) dst->data)[i] = ((float *) src0->data)[j];
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_win_part(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_win_part_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_win_unpart
- static void ggml_compute_forward_win_unpart_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
- const int32_t w = ((const int32_t *)(dst->op_params))[0];
- // padding
- const int px = (w - ne1%w)%w;
- //const int py = (w - ne2%w)%w;
- const int npx = (px + ne1)/w;
- //const int npy = (py + ne2)/w;
- assert(ne0 == ne00);
- // TODO: optimize / multi-thread
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int ip2 = i2/w;
- const int ip1 = i1/w;
- const int64_t i02 = i2%w;
- const int64_t i01 = i1%w;
- const int64_t i00 = i0;
- const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
- const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
- ((float *) dst->data)[j] = ((float *) src0->data)[i];
- }
- }
- }
- }
- static void ggml_compute_forward_win_unpart(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_win_unpart_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- //gmml_compute_forward_unary
- static void ggml_compute_forward_unary(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- const enum ggml_unary_op op = ggml_get_unary_op(dst);
- switch (op) {
- case GGML_UNARY_OP_ABS:
- {
- ggml_compute_forward_abs(params, src0, dst);
- } break;
- case GGML_UNARY_OP_SGN:
- {
- ggml_compute_forward_sgn(params, src0, dst);
- } break;
- case GGML_UNARY_OP_NEG:
- {
- ggml_compute_forward_neg(params, src0, dst);
- } break;
- case GGML_UNARY_OP_STEP:
- {
- ggml_compute_forward_step(params, src0, dst);
- } break;
- case GGML_UNARY_OP_TANH:
- {
- ggml_compute_forward_tanh(params, src0, dst);
- } break;
- case GGML_UNARY_OP_ELU:
- {
- ggml_compute_forward_elu(params, src0, dst);
- } break;
- case GGML_UNARY_OP_RELU:
- {
- ggml_compute_forward_relu(params, src0, dst);
- } break;
- case GGML_UNARY_OP_GELU:
- {
- ggml_compute_forward_gelu(params, src0, dst);
- } break;
- case GGML_UNARY_OP_GELU_QUICK:
- {
- ggml_compute_forward_gelu_quick(params, src0, dst);
- } break;
- case GGML_UNARY_OP_SILU:
- {
- ggml_compute_forward_silu(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_get_rel_pos
- static void ggml_compute_forward_get_rel_pos_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
- GGML_TENSOR_UNARY_OP_LOCALS;
- const int64_t w = ne1;
- ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
- ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- const int64_t pos = (w - i1 - 1) + i2;
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
- }
- }
- }
- }
- static void ggml_compute_forward_get_rel_pos(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_add_rel_pos
- static void ggml_compute_forward_add_rel_pos_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * src2,
- struct ggml_tensor * dst) {
- const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
- if (!inplace && params->type == GGML_TASK_INIT) {
- memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
- return;
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
- float * src1_data = (float *) src1->data;
- float * src2_data = (float *) src2->data;
- float * dst_data = (float *) dst->data;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int ith = params->ith;
- const int nth = params->nth;
- // total patches in dst
- const int np = ne13;
- // patches per thread
- const int dp = (np + nth - 1)/nth;
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
- for (int64_t i13 = ip0; i13 < ip1; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- const int64_t jp0 = jp1 + i10;
- const float src1_e = src1_data[jp0];
- const float src2_e = src2_data[jp0];
- const int64_t jdh = jp0 * ne10;
- const int64_t jdw = jdh - (ne10 - 1) * i10;
- for (int64_t j = 0; j < ne10; ++j) {
- dst_data[jdh + j ] += src2_e;
- dst_data[jdw + j*ne10] += src1_e;
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_add_rel_pos(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * src2,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_map_unary
- static void ggml_compute_forward_map_unary_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst,
- const ggml_unary_op_f32_t fun) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- fun(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_map_unary(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst,
- const ggml_unary_op_f32_t fun) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_map_binary
- static void ggml_compute_forward_map_binary_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst,
- const ggml_binary_op_f32_t fun) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- assert(src1->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- fun(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])),
- (float *) ((char *) src1->data + i*(src1->nb[1])));
- }
- }
- static void ggml_compute_forward_map_binary(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst,
- const ggml_binary_op_f32_t fun) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_map_custom1
- static void ggml_compute_forward_map_custom1_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- struct ggml_tensor * dst,
- const ggml_custom1_op_f32_t fun) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- fun(dst, a);
- }
- // ggml_compute_forward_map_custom2
- static void ggml_compute_forward_map_custom2_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b,
- struct ggml_tensor * dst,
- const ggml_custom2_op_f32_t fun) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- fun(dst, a, b);
- }
- // ggml_compute_forward_map_custom3
- static void ggml_compute_forward_map_custom3_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b,
- const struct ggml_tensor * c,
- struct ggml_tensor * dst,
- const ggml_custom3_op_f32_t fun) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- fun(dst, a, b, c);
- }
- // ggml_compute_forward_map_custom1
- static void ggml_compute_forward_map_custom1(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
- p->fun(dst, a, params->ith, params->nth, p->userdata);
- }
- // ggml_compute_forward_map_custom2
- static void ggml_compute_forward_map_custom2(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
- p->fun(dst, a, b, params->ith, params->nth, p->userdata);
- }
- // ggml_compute_forward_map_custom3
- static void ggml_compute_forward_map_custom3(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b,
- const struct ggml_tensor * c,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
- p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
- }
- // ggml_compute_forward_cross_entropy_loss
- static void ggml_compute_forward_cross_entropy_loss_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_scalar(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
- const int ith = params->ith;
- const int nth = params->nth;
- float * sums = (float *) params->wdata;
- // TODO: handle transposed/permuted matrices
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
- if (params->type == GGML_TASK_INIT) {
- if (ith == 0) {
- memset(sums, 0, sizeof(float) * (nth + nth * nc));
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- if (ith == 0) {
- float * dp = (float *) dst->data;
- ggml_vec_sum_f32(nth, dp, sums);
- dp[0] *= -1.0f / (float) nr;
- }
- return;
- }
- const double eps = 1e-9;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
- float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
- float * st = ((float *) params->wdata) + nth + ith*nc;
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(s0[i]));
- assert(!isnan(s1[i]));
- }
- #endif
- // soft_max
- ggml_float sum = 0.0;
- {
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, s0);
- uint16_t scvt; UNUSED(scvt);
- for (int i = 0; i < nc; i++) {
- if (s0[i] == -INFINITY) {
- st[i] = 0.0f;
- } else {
- #ifndef GGML_CROSS_ENTROPY_EXP_FP16
- const float s = s0[i] - max;
- const float val = expf(s);
- #else
- ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
- memcpy(&scvt, &s, sizeof(scvt));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
- #endif
- sum += (ggml_float)val;
- st[i] = val;
- }
- }
- assert(sum > 0.0);
- // sum = 1.0/sum;
- }
- // avoid log(0) by rescaling from [0..1] to [eps..1]
- sum = (1.0 - eps) / sum;
- ggml_vec_scale_f32(nc, st, sum);
- ggml_vec_add1_f32(nc, st, st, eps);
- ggml_vec_log_f32(nc, st, st);
- ggml_vec_mul_f32(nc, st, st, s1);
- float st_sum = 0;
- ggml_vec_sum_f32(nc, &st_sum, st);
- sums[ith] += st_sum;
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(st[i]));
- assert(!isinf(st[i]));
- }
- #endif
- }
- }
- static void ggml_compute_forward_cross_entropy_loss(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_cross_entropy_loss_back
- static void ggml_compute_forward_cross_entropy_loss_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(opt0));
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- const int64_t ith = params->ith;
- const int64_t nth = params->nth;
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const double eps = 1e-9;
- // TODO: handle transposed/permuted matrices
- const int64_t nc = src0->ne[0];
- const int64_t nr = ggml_nrows(src0);
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
- float * d = (float *) opt0->data;
- for (int64_t i1 = ir0; i1 < ir1; i1++) {
- float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
- float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
- float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(s0[i]));
- assert(!isnan(s1[i]));
- }
- #endif
- // soft_max
- ggml_float sum = 0.0;
- {
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, s0);
- uint16_t scvt; UNUSED(scvt);
- for (int i = 0; i < nc; i++) {
- if (s0[i] == -INFINITY) {
- ds0[i] = 0.0f;
- } else {
- #ifndef GGML_CROSS_ENTROPY_EXP_FP16
- const float s = s0[i] - max;
- const float val = expf(s);
- #else
- ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
- memcpy(&scvt, &s, sizeof(scvt));
- const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
- #endif
- sum += (ggml_float)val;
- ds0[i] = val;
- }
- }
- assert(sum > 0.0);
- sum = (1.0 - eps)/sum;
- }
- // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
- ggml_vec_scale_f32(nc, ds0, sum);
- ggml_vec_add1_f32(nc, ds0, ds0, eps);
- ggml_vec_sub_f32(nc, ds0, ds0, s1);
- ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(ds0[i]));
- assert(!isinf(ds0[i]));
- }
- #endif
- }
- }
- static void ggml_compute_forward_cross_entropy_loss_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- /////////////////////////////////
- static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
- GGML_ASSERT(params);
- #ifdef GGML_USE_CUBLAS
- bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
- if (skip_cpu) {
- return;
- }
- GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
- GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
- #endif // GGML_USE_CUBLAS
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- ggml_compute_forward_dup(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_ADD:
- {
- ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_ADD1:
- {
- ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_ACC:
- {
- ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_SUB:
- {
- ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_MUL:
- {
- ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_DIV:
- {
- ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_SQR:
- {
- ggml_compute_forward_sqr(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_SQRT:
- {
- ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_LOG:
- {
- ggml_compute_forward_log(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_SUM:
- {
- ggml_compute_forward_sum(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_SUM_ROWS:
- {
- ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_MEAN:
- {
- ggml_compute_forward_mean(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_ARGMAX:
- {
- ggml_compute_forward_argmax(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_REPEAT:
- {
- ggml_compute_forward_repeat(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_REPEAT_BACK:
- {
- ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_CONCAT:
- {
- ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_SILU_BACK:
- {
- ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_NORM:
- {
- ggml_compute_forward_norm(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_RMS_NORM:
- {
- ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_RMS_NORM_BACK:
- {
- ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_GROUP_NORM:
- {
- ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_MUL_MAT:
- {
- ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_OUT_PROD:
- {
- ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_SCALE:
- {
- ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_SET:
- {
- ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_CPY:
- {
- ggml_compute_forward_cpy(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_CONT:
- {
- ggml_compute_forward_cont(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_RESHAPE:
- {
- ggml_compute_forward_reshape(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_VIEW:
- {
- ggml_compute_forward_view(params, tensor->src[0]);
- } break;
- case GGML_OP_PERMUTE:
- {
- ggml_compute_forward_permute(params, tensor->src[0]);
- } break;
- case GGML_OP_TRANSPOSE:
- {
- ggml_compute_forward_transpose(params, tensor->src[0]);
- } break;
- case GGML_OP_GET_ROWS:
- {
- ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_GET_ROWS_BACK:
- {
- ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
- } break;
- case GGML_OP_DIAG:
- {
- ggml_compute_forward_diag(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- {
- ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_SOFT_MAX:
- {
- ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_SOFT_MAX_BACK:
- {
- ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_ROPE:
- {
- ggml_compute_forward_rope(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_ROPE_BACK:
- {
- ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_ALIBI:
- {
- ggml_compute_forward_alibi(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_CLAMP:
- {
- ggml_compute_forward_clamp(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_CONV_1D:
- {
- ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_CONV_2D:
- {
- ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_POOL_1D:
- {
- ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_POOL_2D:
- {
- ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_UPSCALE:
- {
- ggml_compute_forward_upscale(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- const int32_t t = ggml_get_op_params_i32(tensor, 0);
- GGML_ASSERT(t == 0 || t == 1);
- const bool masked = t != 0;
- ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
- } break;
- case GGML_OP_FLASH_FF:
- {
- ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- int32_t t = ggml_get_op_params_i32(tensor, 0);
- GGML_ASSERT(t == 0 || t == 1);
- bool masked = t != 0;
- ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
- } break;
- case GGML_OP_WIN_PART:
- {
- ggml_compute_forward_win_part(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_WIN_UNPART:
- {
- ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_UNARY:
- {
- ggml_compute_forward_unary(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_GET_REL_POS:
- {
- ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_ADD_REL_POS:
- {
- ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
- } break;
- case GGML_OP_MAP_UNARY:
- {
- ggml_unary_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
- }
- break;
- case GGML_OP_MAP_BINARY:
- {
- ggml_binary_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM1_F32:
- {
- ggml_custom1_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM2_F32:
- {
- ggml_custom2_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM3_F32:
- {
- ggml_custom3_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM1:
- {
- ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
- }
- break;
- case GGML_OP_MAP_CUSTOM2:
- {
- ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
- }
- break;
- case GGML_OP_MAP_CUSTOM3:
- {
- ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
- }
- break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
- }
- break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
- }
- break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- ////////////////////////////////////////////////////////////////////////////////
- static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
- struct ggml_tensor * src0 = tensor->src[0];
- struct ggml_tensor * src1 = tensor->src[1];
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_ADD:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_ADD1:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- src1->grad = ggml_add_impl(ctx,
- src1->grad,
- ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
- inplace);
- }
- } break;
- case GGML_OP_ACC:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- const size_t nb1 = ((int32_t *) tensor->op_params)[0];
- const size_t nb2 = ((int32_t *) tensor->op_params)[1];
- const size_t nb3 = ((int32_t *) tensor->op_params)[2];
- const size_t offset = ((int32_t *) tensor->op_params)[3];
- struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
- tensor->grad,
- src1->grad->ne[0],
- src1->grad->ne[1],
- src1->grad->ne[2],
- src1->grad->ne[3],
- nb1, nb2, nb3, offset);
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- ggml_reshape(ctx,
- ggml_cont(ctx, tensor_grad_view),
- src1->grad),
- inplace);
- }
- } break;
- case GGML_OP_SUB:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_MUL:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_mul(ctx, src1, tensor->grad),
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- ggml_mul(ctx, src0, tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_DIV:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_div(ctx, tensor->grad, src1),
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_sub_impl(ctx,
- src1->grad,
- ggml_mul(ctx,
- tensor->grad,
- ggml_div(ctx, tensor, src1)),
- inplace);
- }
- } break;
- case GGML_OP_SQR:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_scale(ctx,
- ggml_mul(ctx, src0, tensor->grad),
- ggml_new_f32(ctx, 2.0f)),
- inplace);
- }
- } break;
- case GGML_OP_SQRT:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_scale(ctx,
- ggml_div(ctx,
- tensor->grad,
- tensor),
- ggml_new_f32(ctx, 0.5f)),
- inplace);
- }
- } break;
- case GGML_OP_LOG:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_div(ctx,
- tensor->grad,
- src0),
- inplace);
- }
- } break;
- case GGML_OP_SUM:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add1_impl(ctx,
- src0->grad,
- tensor->grad,
- inplace);
- }
- } break;
- case GGML_OP_SUM_ROWS:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_repeat(ctx,
- tensor->grad,
- src0->grad),
- inplace);
- }
- } break;
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- {
- GGML_ASSERT(false); // TODO: implement
- } break;
- case GGML_OP_REPEAT:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_repeat_back(ctx, tensor->grad, src0->grad),
- inplace);
- }
- } break;
- case GGML_OP_REPEAT_BACK:
- {
- if (src0->grad) {
- // TODO: test this
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_repeat(ctx, tensor->grad, src0->grad),
- inplace);
- }
- } break;
- case GGML_OP_CONCAT:
- {
- GGML_ASSERT(false); // TODO: implement
- } break;
- case GGML_OP_SILU_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_NORM:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_RMS_NORM:
- {
- // necessary for llama
- if (src0->grad) {
- float eps;
- memcpy(&eps, tensor->op_params, sizeof(float));
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
- inplace);
- }
- } break;
- case GGML_OP_RMS_NORM_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_GROUP_NORM:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_MUL_MAT:
- {
- // https://cs231n.github.io/optimization-2/#staged
- // # forward pass
- // s0 = np.random.randn(5, 10)
- // s1 = np.random.randn(10, 3)
- // t = s0.dot(s1)
- // # now suppose we had the gradient on t from above in the circuit
- // dt = np.random.randn(*t.shape) # same shape as t
- // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
- // ds1 = t.T.dot(dt)
- // tensor.shape [m,p]
- // src0.shape [n,m]
- // src1.shape [n,p]
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_out_prod(ctx, // [n,m]
- src1, // [n,p]
- tensor->grad), // [m,p]
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- // ggml_mul_mat(ctx, // [n,p]
- // ggml_cont(ctx, // [m,n]
- // ggml_transpose(ctx, src0)), // [m,n]
- // tensor->grad), // [m,p]
- // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
- // // avoid transpose of src0, rather transpose smaller tensor->grad
- // // and then use ggml_out_prod
- ggml_out_prod(ctx, // [n,p]
- src0, // [n,m]
- ggml_transpose(ctx, // [p,m]
- tensor->grad)), // [m,p]
- inplace);
- }
- } break;
- case GGML_OP_OUT_PROD:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_SCALE:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_scale_impl(ctx, tensor->grad, src1, false),
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
- inplace);
- }
- } break;
- case GGML_OP_SET:
- {
- const size_t nb1 = ((int32_t *) tensor->op_params)[0];
- const size_t nb2 = ((int32_t *) tensor->op_params)[1];
- const size_t nb3 = ((int32_t *) tensor->op_params)[2];
- const size_t offset = ((int32_t *) tensor->op_params)[3];
- struct ggml_tensor * tensor_grad_view = NULL;
- if (src0->grad || src1->grad) {
- GGML_ASSERT(src0->type == tensor->type);
- GGML_ASSERT(tensor->grad->type == tensor->type);
- GGML_ASSERT(tensor->grad->type == src1->grad->type);
- tensor_grad_view = ggml_view_4d(ctx,
- tensor->grad,
- src1->grad->ne[0],
- src1->grad->ne[1],
- src1->grad->ne[2],
- src1->grad->ne[3],
- nb1, nb2, nb3, offset);
- }
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_acc_impl(ctx,
- tensor->grad,
- ggml_neg(ctx, tensor_grad_view),
- nb1, nb2, nb3, offset, false),
- inplace);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_impl(ctx,
- src1->grad,
- ggml_reshape(ctx,
- ggml_cont(ctx, tensor_grad_view),
- src1->grad),
- inplace);
- }
- } break;
- case GGML_OP_CPY:
- {
- // necessary for llama
- // cpy overwrites value of src1 by src0 and returns view(src1)
- // the overwriting is mathematically equivalent to:
- // tensor = src0 * 1 + src1 * 0
- if (src0->grad) {
- // dsrc0 = dtensor * 1
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- if (src1->grad) {
- // dsrc1 = dtensor * 0 -> noop
- }
- } break;
- case GGML_OP_CONT:
- {
- // same as cpy
- if (src0->grad) {
- GGML_ASSERT(ggml_is_contiguous(src0->grad));
- GGML_ASSERT(ggml_is_contiguous(tensor->grad));
- src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_OP_RESHAPE:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_reshape(ctx, tensor->grad, src0->grad),
- inplace);
- }
- } break;
- case GGML_OP_VIEW:
- {
- // necessary for llama
- if (src0->grad) {
- size_t offset;
- memcpy(&offset, tensor->op_params, sizeof(offset));
- size_t nb1 = tensor->nb[1];
- size_t nb2 = tensor->nb[2];
- size_t nb3 = tensor->nb[3];
- if (src0->type != src0->grad->type) {
- // gradient is typically F32, but src0 could be other type
- size_t ng = ggml_element_size(src0->grad);
- size_t n0 = ggml_element_size(src0);
- GGML_ASSERT(offset % n0 == 0);
- GGML_ASSERT(nb1 % n0 == 0);
- GGML_ASSERT(nb2 % n0 == 0);
- GGML_ASSERT(nb3 % n0 == 0);
- offset = (offset / n0) * ng;
- nb1 = (nb1 / n0) * ng;
- nb2 = (nb2 / n0) * ng;
- nb3 = (nb3 / n0) * ng;
- }
- src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
- }
- } break;
- case GGML_OP_PERMUTE:
- {
- // necessary for llama
- if (src0->grad) {
- int32_t * axes = (int32_t *) tensor->op_params;
- int axis0 = axes[0] & 0x3;
- int axis1 = axes[1] & 0x3;
- int axis2 = axes[2] & 0x3;
- int axis3 = axes[3] & 0x3;
- int axes_backward[4] = {0,0,0,0};
- axes_backward[axis0] = 0;
- axes_backward[axis1] = 1;
- axes_backward[axis2] = 2;
- axes_backward[axis3] = 3;
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_permute(ctx,
- tensor->grad,
- axes_backward[0],
- axes_backward[1],
- axes_backward[2],
- axes_backward[3]),
- inplace);
- }
- } break;
- case GGML_OP_TRANSPOSE:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_transpose(ctx, tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_GET_ROWS:
- {
- // necessary for llama (only for tokenizer)
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
- inplace);
- }
- if (src1->grad) {
- // noop
- }
- } break;
- case GGML_OP_GET_ROWS_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_DIAG:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- // necessary for llama
- if (src0->grad) {
- const int n_past = ((int32_t *) tensor->op_params)[0];
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
- inplace);
- }
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- {
- // necessary for llama
- if (src0->grad) {
- const int n_past = ((int32_t *) tensor->op_params)[0];
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
- inplace);
- }
- } break;
- case GGML_OP_SOFT_MAX:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx, src0->grad,
- ggml_soft_max_back(ctx, tensor->grad, tensor),
- inplace);
- }
- } break;
- case GGML_OP_SOFT_MAX_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_ROPE:
- {
- // necessary for llama
- if (src0->grad) {
- const int n_past = ((int32_t *) tensor->op_params)[0];
- const int n_dims = ((int32_t *) tensor->op_params)[1];
- const int mode = ((int32_t *) tensor->op_params)[2];
- const int n_ctx = ((int32_t *) tensor->op_params)[3];
- float freq_base;
- float freq_scale;
- float xpos_base;
- bool xpos_down;
- memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
- memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
- memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
- memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_rope_back(ctx,
- tensor->grad,
- n_past,
- n_dims,
- mode,
- n_ctx,
- freq_base,
- freq_scale,
- xpos_base,
- xpos_down),
- inplace);
- }
- } break;
- case GGML_OP_ROPE_BACK:
- {
- if (src0->grad) {
- const int n_past = ((int32_t *) tensor->op_params)[0];
- const int n_dims = ((int32_t *) tensor->op_params)[1];
- const int mode = ((int32_t *) tensor->op_params)[2];
- const int n_ctx = ((int32_t *) tensor->op_params)[3];
- float freq_base;
- float freq_scale;
- float xpos_base;
- bool xpos_down;
- memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
- memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
- memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
- memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_rope_impl(ctx,
- tensor->grad,
- n_past,
- n_dims,
- mode,
- n_ctx,
- freq_base,
- freq_scale,
- xpos_base,
- xpos_down,
- false),
- inplace);
- }
- } break;
- case GGML_OP_ALIBI:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CLAMP:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_1D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_2D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_POOL_1D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_POOL_2D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_UPSCALE:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- struct ggml_tensor * flash_grad = NULL;
- if (src0->grad || src1->grad || tensor->src[2]->grad) {
- int32_t t = ggml_get_op_params_i32(tensor, 0);
- GGML_ASSERT(t == 0 || t == 1);
- bool masked = t != 0;
- flash_grad =
- ggml_flash_attn_back(ctx,
- src0,
- src1,
- tensor->src[2],
- tensor->grad,
- masked);
- }
- if (src0->grad) {
- struct ggml_tensor * grad_q = NULL;
- const size_t nb0 = flash_grad->nb[0];
- const size_t offset = 0;
- switch(src0->n_dims) {
- case 2:
- {
- grad_q = ggml_view_2d(ctx,
- flash_grad,
- src0->ne[0],
- src0->ne[1],
- nb0*src0->ne[0],
- offset);
- } break;
- case 3:
- {
- grad_q = ggml_view_3d(ctx,
- flash_grad,
- src0->ne[0],
- src0->ne[1],
- src0->ne[2],
- nb0*src0->ne[0],
- nb0*src0->ne[0]*src0->ne[1],
- offset);
- } break;
- case 4:
- {
- grad_q = ggml_view_4d(ctx,
- flash_grad,
- src0->ne[0],
- src0->ne[1],
- src0->ne[2],
- src0->ne[3],
- nb0*src0->ne[0],
- nb0*src0->ne[0]*src0->ne[1],
- nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
- offset);
- } break;
- }
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- grad_q,
- inplace);
- }
- if (src1->grad) {
- struct ggml_tensor * grad_k = NULL;
- const size_t nb0 = flash_grad->nb[0];
- const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
- switch(src1->n_dims) {
- case 2:
- {
- grad_k = ggml_view_2d(ctx,
- flash_grad,
- src1->ne[0],
- src1->ne[1],
- nb0*src1->ne[0],
- offset);
- } break;
- case 3:
- {
- grad_k = ggml_view_3d(ctx,
- flash_grad,
- src1->ne[0],
- src1->ne[1],
- src1->ne[2],
- nb0*src1->ne[0],
- nb0*src1->ne[0]*src1->ne[1],
- offset);
- } break;
- case 4:
- {
- grad_k = ggml_view_4d(ctx,
- flash_grad,
- src1->ne[0],
- src1->ne[1],
- src1->ne[2],
- src1->ne[3],
- nb0*src1->ne[0],
- nb0*src1->ne[0]*src1->ne[1],
- nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
- offset);
- } break;
- }
- src1->grad = ggml_add_impl(ctx,
- src1->grad,
- grad_k,
- inplace);
- }
- struct ggml_tensor * opt0 = tensor->src[2];
- if (opt0->grad) {
- struct ggml_tensor * grad_v = NULL;
- const size_t nb0 = flash_grad->nb[0];
- const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
- + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
- switch(opt0->n_dims) {
- case 2:
- {
- grad_v = ggml_view_2d(ctx,
- flash_grad,
- opt0->ne[0],
- opt0->ne[1],
- nb0*opt0->ne[0],
- offset);
- } break;
- case 3:
- {
- grad_v = ggml_view_3d(ctx,
- flash_grad,
- opt0->ne[0],
- opt0->ne[1],
- opt0->ne[2],
- nb0*opt0->ne[0],
- nb0*opt0->ne[0]*opt0->ne[1],
- offset);
- } break;
- case 4:
- {
- grad_v = ggml_view_4d(ctx,
- flash_grad,
- opt0->ne[0],
- opt0->ne[1],
- opt0->ne[2],
- opt0->ne[3],
- nb0*opt0->ne[0],
- nb0*opt0->ne[0]*opt0->ne[1],
- nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
- offset);
- } break;
- }
- opt0->grad = ggml_add_impl(ctx,
- opt0->grad,
- grad_v,
- inplace);
- }
- } break;
- case GGML_OP_FLASH_FF:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_WIN_PART:
- case GGML_OP_WIN_UNPART:
- case GGML_OP_UNARY:
- {
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_ABS:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_sgn(ctx, src0),
- tensor->grad),
- inplace);
- }
- } break;
- case GGML_UNARY_OP_SGN:
- {
- if (src0->grad) {
- // noop
- }
- } break;
- case GGML_UNARY_OP_NEG:
- {
- if (src0->grad) {
- src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
- }
- } break;
- case GGML_UNARY_OP_STEP:
- {
- if (src0->grad) {
- // noop
- }
- } break;
- case GGML_UNARY_OP_TANH:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_ELU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_RELU:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_step(ctx, src0),
- tensor->grad),
- inplace);
- }
- } break;
- case GGML_UNARY_OP_GELU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_GELU_QUICK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_SILU:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_silu_back(ctx, src0, tensor->grad),
- inplace);
- }
- } break;
- default:
- GGML_ASSERT(false);
- }
- } break;
- case GGML_OP_GET_REL_POS:
- case GGML_OP_ADD_REL_POS:
- case GGML_OP_MAP_UNARY:
- case GGML_OP_MAP_BINARY:
- case GGML_OP_MAP_CUSTOM1_F32:
- case GGML_OP_MAP_CUSTOM2_F32:
- case GGML_OP_MAP_CUSTOM3_F32:
- case GGML_OP_MAP_CUSTOM1:
- case GGML_OP_MAP_CUSTOM2:
- case GGML_OP_MAP_CUSTOM3:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- if (src0->grad) {
- src0->grad = ggml_add_impl(ctx,
- src0->grad,
- ggml_cross_entropy_loss_back(ctx,
- src0,
- src1,
- tensor->grad),
- inplace);
- }
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
- static size_t hash(void * p) {
- return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
- }
- static bool hash_insert(void * hash_table[], void * p) {
- size_t h = hash(p);
- // linear probing
- size_t i = h;
- while (hash_table[i] != NULL && hash_table[i] != p) {
- i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
- if (i == h) {
- // hash table is full
- GGML_ASSERT(false);
- }
- }
- if (hash_table[i] == p) {
- return true;
- }
- // insert
- hash_table[i] = p;
- return false;
- }
- static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
- if (node->grad == NULL) {
- // this usually happens when we generate intermediate nodes from constants in the backward pass
- // it can also happen during forward pass, if the user performs computations with constants
- if (node->op != GGML_OP_NONE) {
- //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
- }
- }
- // check if already visited
- if (hash_insert(cgraph->visited_hash_table, node)) {
- return;
- }
- for (int i = 0; i < GGML_MAX_SRC; ++i) {
- if (node->src[i]) {
- ggml_visit_parents(cgraph, node->src[i]);
- }
- }
- if (node->op == GGML_OP_NONE && node->grad == NULL) {
- // reached a leaf node, not part of the gradient graph (e.g. a constant)
- GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
- if (strlen(node->name) == 0) {
- ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
- }
- cgraph->leafs[cgraph->n_leafs] = node;
- cgraph->n_leafs++;
- } else {
- GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
- if (strlen(node->name) == 0) {
- ggml_format_name(node, "node_%d", cgraph->n_nodes);
- }
- cgraph->nodes[cgraph->n_nodes] = node;
- cgraph->grads[cgraph->n_nodes] = node->grad;
- cgraph->n_nodes++;
- }
- }
- static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
- if (!expand) {
- cgraph->n_nodes = 0;
- cgraph->n_leafs = 0;
- }
- const int n0 = cgraph->n_nodes;
- UNUSED(n0);
- ggml_visit_parents(cgraph, tensor);
- const int n_new = cgraph->n_nodes - n0;
- GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
- if (n_new > 0) {
- // the last added node should always be starting point
- GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
- }
- }
- void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
- ggml_build_forward_impl(cgraph, tensor, true);
- }
- struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
- struct ggml_cgraph result = {
- /*.n_nodes =*/ 0,
- /*.n_leafs =*/ 0,
- /*.nodes =*/ { NULL },
- /*.grads =*/ { NULL },
- /*.leafs =*/ { NULL },
- /*.hash_table =*/ { NULL },
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- };
- ggml_build_forward_impl(&result, tensor, false);
- return result;
- }
- void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
- GGML_ASSERT(gf->n_nodes > 0);
- // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
- if (keep) {
- for (int i = 0; i < gf->n_nodes; i++) {
- struct ggml_tensor * node = gf->nodes[i];
- if (node->grad) {
- node->grad = ggml_dup_tensor(ctx, node);
- gf->grads[i] = node->grad;
- }
- }
- }
- for (int i = gf->n_nodes - 1; i >= 0; i--) {
- struct ggml_tensor * node = gf->nodes[i];
- // because we detached the grad nodes from the original graph, we can afford inplace operations
- if (node->grad) {
- ggml_compute_backward(ctx, node, keep);
- }
- }
- for (int i = 0; i < gf->n_nodes; i++) {
- struct ggml_tensor * node = gf->nodes[i];
- if (node->is_param) {
- GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
- ggml_build_forward_expand(gb, node->grad);
- }
- }
- }
- struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
- struct ggml_cgraph result = *gf;
- ggml_build_backward_expand(ctx, gf, &result, keep);
- return result;
- }
- struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
- struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
- *cgraph = (struct ggml_cgraph) {
- /*.n_nodes =*/ 0,
- /*.n_leafs =*/ 0,
- /*.nodes =*/ { NULL },
- /*.grads =*/ { NULL },
- /*.leafs =*/ { NULL },
- /*.hash_table =*/ { NULL },
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- };
- return cgraph;
- }
- struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
- struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
- ggml_build_forward_impl(cgraph, tensor, false);
- return cgraph;
- }
- size_t ggml_graph_overhead(void) {
- return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
- }
- //
- // thread data
- //
- // synchronization is done via busy loops
- // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
- //
- #ifdef __APPLE__
- //#include <os/lock.h>
- //
- //typedef os_unfair_lock ggml_lock_t;
- //
- //#define ggml_lock_init(x) UNUSED(x)
- //#define ggml_lock_destroy(x) UNUSED(x)
- //#define ggml_lock_lock os_unfair_lock_lock
- //#define ggml_lock_unlock os_unfair_lock_unlock
- //
- //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
- typedef int ggml_lock_t;
- #define ggml_lock_init(x) UNUSED(x)
- #define ggml_lock_destroy(x) UNUSED(x)
- #define ggml_lock_lock(x) UNUSED(x)
- #define ggml_lock_unlock(x) UNUSED(x)
- #define GGML_LOCK_INITIALIZER 0
- typedef pthread_t ggml_thread_t;
- #define ggml_thread_create pthread_create
- #define ggml_thread_join pthread_join
- #else
- //typedef pthread_spinlock_t ggml_lock_t;
- //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
- //#define ggml_lock_destroy pthread_spin_destroy
- //#define ggml_lock_lock pthread_spin_lock
- //#define ggml_lock_unlock pthread_spin_unlock
- typedef int ggml_lock_t;
- #define ggml_lock_init(x) UNUSED(x)
- #define ggml_lock_destroy(x) UNUSED(x)
- #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
- #define ggml_lock_lock(x) _mm_pause()
- #else
- #define ggml_lock_lock(x) UNUSED(x)
- #endif
- #define ggml_lock_unlock(x) UNUSED(x)
- #define GGML_LOCK_INITIALIZER 0
- typedef pthread_t ggml_thread_t;
- #define ggml_thread_create pthread_create
- #define ggml_thread_join pthread_join
- #endif
- // Android's libc implementation "bionic" does not support setting affinity
- #if defined(__linux__) && !defined(__BIONIC__)
- static void set_numa_thread_affinity(int thread_n, int n_threads) {
- if (!ggml_is_numa()) {
- return;
- }
- // run thread on node_num thread_n / (threads per node)
- const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
- struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
- size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
- cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
- CPU_ZERO_S(setsize, cpus);
- for (size_t i = 0; i < node->n_cpus; ++i) {
- CPU_SET_S(node->cpus[i], setsize, cpus);
- }
- int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
- if (rv) {
- fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
- strerror(rv));
- }
- CPU_FREE(cpus);
- }
- static void clear_numa_thread_affinity(void) {
- if (!ggml_is_numa()) {
- return;
- }
- size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
- cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
- CPU_ZERO_S(setsize, cpus);
- for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
- CPU_SET_S(i, setsize, cpus);
- }
- int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
- if (rv) {
- fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
- strerror(rv));
- }
- CPU_FREE(cpus);
- }
- #else
- // TODO: Windows etc.
- // (the linux implementation may also work on BSD, someone should test)
- static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
- static void clear_numa_thread_affinity(void) {}
- #endif
- struct ggml_compute_state_shared {
- const struct ggml_cgraph * cgraph;
- const struct ggml_cplan * cplan;
- int64_t perf_node_start_cycles;
- int64_t perf_node_start_time_us;
- const int n_threads;
- // synchronization primitives
- atomic_int n_active; // num active threads
- atomic_int node_n; // active graph node
- bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
- void * abort_callback_data;
- };
- struct ggml_compute_state {
- ggml_thread_t thrd;
- int ith;
- struct ggml_compute_state_shared * shared;
- };
- static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
- int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
- int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
- node->perf_runs++;
- node->perf_cycles += cycles_cur;
- node->perf_time_us += time_us_cur;
- }
- static thread_ret_t ggml_graph_compute_thread(void * data) {
- struct ggml_compute_state * state = (struct ggml_compute_state *) data;
- const struct ggml_cgraph * cgraph = state->shared->cgraph;
- const struct ggml_cplan * cplan = state->shared->cplan;
- const int * n_tasks_arr = cplan->n_tasks;
- const int n_threads = state->shared->n_threads;
- set_numa_thread_affinity(state->ith, n_threads);
- int node_n = -1;
- while (true) {
- if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
- state->shared->node_n += 1;
- return (thread_ret_t) GGML_EXIT_ABORTED;
- }
- if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
- // all other threads are finished and spinning
- // do finalize and init here so we don't have synchronize again
- struct ggml_compute_params params = {
- /*.type =*/ GGML_TASK_FINALIZE,
- /*.ith =*/ 0,
- /*.nth =*/ 0,
- /*.wsize =*/ cplan->work_size,
- /*.wdata =*/ cplan->work_data,
- };
- if (node_n != -1) {
- /* FINALIZE */
- struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
- if (GGML_OP_HAS_FINALIZE[node->op]) {
- params.nth = n_tasks_arr[node_n];
- ggml_compute_forward(¶ms, node);
- }
- ggml_graph_compute_perf_stats_node(node, state->shared);
- }
- // distribute new work or execute it direct if 1T
- while (++node_n < cgraph->n_nodes) {
- GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
- struct ggml_tensor * node = cgraph->nodes[node_n];
- const int n_tasks = n_tasks_arr[node_n];
- state->shared->perf_node_start_cycles = ggml_perf_cycles();
- state->shared->perf_node_start_time_us = ggml_perf_time_us();
- params.nth = n_tasks;
- /* INIT */
- if (GGML_OP_HAS_INIT[node->op]) {
- params.type = GGML_TASK_INIT;
- ggml_compute_forward(¶ms, node);
- }
- if (n_tasks == 1) {
- // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
- // they do something more efficient than spinning (?)
- params.type = GGML_TASK_COMPUTE;
- ggml_compute_forward(¶ms, node);
- if (GGML_OP_HAS_FINALIZE[node->op]) {
- params.type = GGML_TASK_FINALIZE;
- ggml_compute_forward(¶ms, node);
- }
- ggml_graph_compute_perf_stats_node(node, state->shared);
- } else {
- break;
- }
- if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
- break;
- }
- }
- atomic_store(&state->shared->n_active, n_threads);
- atomic_store(&state->shared->node_n, node_n);
- } else {
- // wait for other threads to finish
- const int last = node_n;
- do {
- //sched_yield();
- node_n = atomic_load(&state->shared->node_n);
- } while (node_n == last);
- }
- // check if we should stop
- if (node_n >= cgraph->n_nodes) break;
- /* COMPUTE */
- struct ggml_tensor * node = cgraph->nodes[node_n];
- const int n_tasks = n_tasks_arr[node_n];
- struct ggml_compute_params params = {
- /*.type =*/ GGML_TASK_COMPUTE,
- /*.ith =*/ state->ith,
- /*.nth =*/ n_tasks,
- /*.wsize =*/ cplan->work_size,
- /*.wdata =*/ cplan->work_data,
- };
- if (state->ith < n_tasks) {
- ggml_compute_forward(¶ms, node);
- }
- }
- return GGML_EXIT_SUCCESS;
- }
- struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
- if (n_threads <= 0) {
- n_threads = GGML_DEFAULT_N_THREADS;
- }
- size_t work_size = 0;
- struct ggml_cplan cplan;
- memset(&cplan, 0, sizeof(struct ggml_cplan));
- // thread scheduling for the different operations + work buffer size estimation
- for (int i = 0; i < cgraph->n_nodes; i++) {
- int n_tasks = 1;
- struct ggml_tensor * node = cgraph->nodes[i];
- switch (node->op) {
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- {
- n_tasks = n_threads;
- size_t cur = 0;
- if (ggml_is_quantized(node->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_ADD:
- case GGML_OP_ADD1:
- {
- n_tasks = n_threads;
- size_t cur = 0;
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_ACC:
- {
- n_tasks = n_threads;
- size_t cur = 0;
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_SUB:
- case GGML_OP_DIV:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_LOG:
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- case GGML_OP_REPEAT:
- case GGML_OP_REPEAT_BACK:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_UNARY:
- {
- switch (ggml_get_unary_op(node)) {
- case GGML_UNARY_OP_ABS:
- case GGML_UNARY_OP_SGN:
- case GGML_UNARY_OP_NEG:
- case GGML_UNARY_OP_STEP:
- case GGML_UNARY_OP_TANH:
- case GGML_UNARY_OP_ELU:
- case GGML_UNARY_OP_RELU:
- {
- n_tasks = 1;
- } break;
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_SILU:
- {
- n_tasks = n_threads;
- } break;
- }
- } break;
- case GGML_OP_SILU_BACK:
- case GGML_OP_MUL:
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM:
- case GGML_OP_RMS_NORM_BACK:
- case GGML_OP_GROUP_NORM:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CONCAT:
- case GGML_OP_MUL_MAT:
- case GGML_OP_OUT_PROD:
- {
- n_tasks = n_threads;
- // TODO: use different scheduling for different matrix sizes
- //const int nr0 = ggml_nrows(node->src[0]);
- //const int nr1 = ggml_nrows(node->src[1]);
- //n_tasks = MIN(n_threads, MAX(1, nr0/128));
- //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
- size_t cur = 0;
- const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
- #if defined(GGML_USE_CUBLAS)
- if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
- n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
- } else
- #elif defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
- n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
- cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
- } else
- #endif
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
- n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
- if (node->src[0]->type != GGML_TYPE_F32) {
- // here we need memory just for single 2D matrix from src0
- cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
- }
- } else
- #endif
- if (node->src[1]->type != vec_dot_type) {
- cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
- } else {
- cur = 0;
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_SCALE:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_SET:
- case GGML_OP_CONT:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_GET_ROWS:
- case GGML_OP_GET_ROWS_BACK:
- case GGML_OP_DIAG:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_SOFT_MAX_BACK:
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- case GGML_OP_ADD_REL_POS:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_ALIBI:
- {
- n_tasks = 1; //TODO
- } break;
- case GGML_OP_CLAMP:
- {
- n_tasks = 1; //TODO
- } break;
- case GGML_OP_CONV_1D:
- {
- n_tasks = n_threads;
- GGML_ASSERT(node->src[0]->ne[3] == 1);
- GGML_ASSERT(node->src[1]->ne[2] == 1);
- GGML_ASSERT(node->src[1]->ne[3] == 1);
- size_t cur = 0;
- const int nk = node->src[0]->ne[0];
- if (node->src[0]->type == GGML_TYPE_F16 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(ggml_fp16_t)*(
- nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
- ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
- );
- } else if (node->src[0]->type == GGML_TYPE_F32 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*(
- nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
- ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
- );
- } else {
- GGML_ASSERT(false);
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_CONV_2D:
- {
- n_tasks = n_threads;
- const int64_t ne00 = node->src[0]->ne[0]; // W
- const int64_t ne01 = node->src[0]->ne[1]; // H
- const int64_t ne02 = node->src[0]->ne[2]; // C
- const int64_t ne03 = node->src[0]->ne[3]; // N
- const int64_t ne10 = node->src[1]->ne[0]; // W
- const int64_t ne11 = node->src[1]->ne[1]; // H
- const int64_t ne12 = node->src[1]->ne[2]; // C
- const int64_t ne0 = node->ne[0];
- const int64_t ne1 = node->ne[1];
- const int64_t ne2 = node->ne[2];
- const int64_t nk = ne00*ne01;
- const int64_t ew0 = nk * ne02;
- UNUSED(ne03);
- UNUSED(ne2);
- size_t cur = 0;
- if (node->src[0]->type == GGML_TYPE_F16 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
- } else if (node->src[0]->type == GGML_TYPE_F32 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)* (ne10*ne11*ne12);
- } else {
- GGML_ASSERT(false);
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- n_tasks = n_threads;
- const int64_t ne00 = node->src[0]->ne[0]; // W
- const int64_t ne01 = node->src[0]->ne[1]; // H
- const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
- const int64_t ne03 = node->src[0]->ne[3]; // Channels In
- const int64_t ne10 = node->src[1]->ne[0]; // W
- const int64_t ne11 = node->src[1]->ne[1]; // H
- const int64_t ne12 = node->src[1]->ne[2]; // Channels In
- size_t cur = 0;
- cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
- cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_POOL_1D:
- case GGML_OP_POOL_2D:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_UPSCALE:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- n_tasks = n_threads;
- size_t cur = 0;
- const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
- if (node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
- }
- if (node->src[1]->type == GGML_TYPE_F16) {
- cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_FLASH_FF:
- {
- n_tasks = n_threads;
- size_t cur = 0;
- if (node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
- }
- if (node->src[1]->type == GGML_TYPE_F16) {
- cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- n_tasks = n_threads;
- size_t cur = 0;
- const int64_t D = node->src[0]->ne[0];
- const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
- const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
- if (node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
- }
- if (node->src[1]->type == GGML_TYPE_F16) {
- cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
- }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_WIN_PART:
- case GGML_OP_WIN_UNPART:
- case GGML_OP_GET_REL_POS:
- case GGML_OP_MAP_UNARY:
- case GGML_OP_MAP_BINARY:
- case GGML_OP_MAP_CUSTOM1_F32:
- case GGML_OP_MAP_CUSTOM2_F32:
- case GGML_OP_MAP_CUSTOM3_F32:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_MAP_CUSTOM1:
- {
- struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
- if (p->n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p->n_tasks, n_threads);
- }
- } break;
- case GGML_OP_MAP_CUSTOM2:
- {
- struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
- if (p->n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p->n_tasks, n_threads);
- }
- } break;
- case GGML_OP_MAP_CUSTOM3:
- {
- struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
- if (p->n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p->n_tasks, n_threads);
- }
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- n_tasks = n_threads;
- size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_NONE:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- cplan.n_tasks[i] = n_tasks;
- }
- if (work_size > 0) {
- work_size += CACHE_LINE_SIZE*(n_threads - 1);
- }
- cplan.n_threads = n_threads;
- cplan.work_size = work_size;
- cplan.work_data = NULL;
- return cplan;
- }
- int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
- {
- GGML_ASSERT(cplan);
- GGML_ASSERT(cplan->n_threads > 0);
- if (cplan->work_size > 0) {
- GGML_ASSERT(cplan->work_data);
- }
- for (int i = 0; i < cgraph->n_nodes; ++i) {
- if (cgraph->nodes[i]->op != GGML_OP_NONE) {
- GGML_ASSERT(cplan->n_tasks[i] > 0);
- }
- }
- }
- const int n_threads = cplan->n_threads;
- struct ggml_compute_state_shared state_shared = {
- /*.cgraph =*/ cgraph,
- /*.cgraph_plan =*/ cplan,
- /*.perf_node_start_cycles =*/ 0,
- /*.perf_node_start_time_us =*/ 0,
- /*.n_threads =*/ n_threads,
- /*.n_active =*/ n_threads,
- /*.node_n =*/ -1,
- /*.abort_callback =*/ NULL,
- /*.abort_callback_data =*/ NULL,
- };
- struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
- // create thread pool
- if (n_threads > 1) {
- for (int j = 1; j < n_threads; ++j) {
- workers[j] = (struct ggml_compute_state) {
- .thrd = 0,
- .ith = j,
- .shared = &state_shared,
- };
- const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
- GGML_ASSERT(rc == 0);
- UNUSED(rc);
- }
- }
- workers[0].ith = 0;
- workers[0].shared = &state_shared;
- const int64_t perf_start_cycles = ggml_perf_cycles();
- const int64_t perf_start_time_us = ggml_perf_time_us();
- // this is a work thread too
- int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
- // don't leave affinity set on the main thread
- clear_numa_thread_affinity();
- // join or kill thread pool
- if (n_threads > 1) {
- for (int j = 1; j < n_threads; j++) {
- const int rc = ggml_thread_join(workers[j].thrd, NULL);
- GGML_ASSERT(rc == 0);
- }
- }
- // performance stats (graph)
- {
- int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
- int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
- cgraph->perf_runs++;
- cgraph->perf_cycles += perf_cycles_cur;
- cgraph->perf_time_us += perf_time_us_cur;
- GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
- __func__, cgraph->perf_runs,
- (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
- (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
- (double) perf_time_us_cur / 1000.0,
- (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
- }
- return compute_status;
- }
- void ggml_graph_reset(struct ggml_cgraph * cgraph) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * grad = cgraph->grads[i];
- if (grad) {
- ggml_set_zero(grad);
- }
- }
- }
- void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
- struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
- cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
- ggml_graph_compute(cgraph, &cplan);
- }
- struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * leaf = cgraph->leafs[i];
- if (strcmp(leaf->name, name) == 0) {
- return leaf;
- }
- }
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- if (strcmp(node->name, name) == 0) {
- return node;
- }
- }
- return NULL;
- }
- static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
- const int64_t * ne = tensor->ne;
- const size_t * nb = tensor->nb;
- fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
- ggml_type_name(tensor->type),
- ggml_op_name (tensor->op),
- tensor->n_dims,
- ne[0], ne[1], ne[2], ne[3],
- nb[0], nb[1], nb[2], nb[3],
- tensor->data,
- tensor->name);
- }
- static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
- const int64_t * ne = tensor->ne;
- const size_t * nb = tensor->nb;
- fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
- arg,
- ggml_type_name(tensor->type),
- ggml_op_name (tensor->op),
- tensor->n_dims,
- ne[0], ne[1], ne[2], ne[3],
- nb[0], nb[1], nb[2], nb[3],
- tensor->data,
- tensor->name);
- }
- void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
- uint64_t size_eval = 0;
- // compute size of intermediate results
- // TODO: does not take into account scratch buffers !!!!
- for (int i = 0; i < cgraph->n_nodes; ++i) {
- size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
- }
- // print
- {
- FILE * fout = stdout;
- fprintf(fout, "\n");
- fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
- fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
- fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
- fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
- fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
- // header
- fprintf(fout, "\n");
- fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
- "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
- for (int i = 0; i < cgraph->n_leafs; ++i) {
- ggml_graph_export_leaf(cgraph->leafs[i], fout);
- GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
- GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
- GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
- }
- // header
- fprintf(fout, "\n");
- fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
- "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
- for (int i = 0; i < cgraph->n_nodes; ++i) {
- ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- if (cgraph->nodes[i]->src[j]) {
- ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
- }
- }
- fprintf(fout, "\n");
- }
- fprintf(fout, "\n");
- }
- // write binary data
- {
- FILE * fout = fopen(fname, "wb");
- if (!fout) {
- fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
- return;
- }
- // header
- {
- const uint32_t magic = GGML_FILE_MAGIC;
- const uint32_t version = GGML_FILE_VERSION;
- const uint32_t n_leafs = cgraph->n_leafs;
- const uint32_t nodes = cgraph->n_nodes;
- fwrite(&magic, sizeof(uint32_t), 1, fout);
- fwrite(&version, sizeof(uint32_t), 1, fout);
- fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
- fwrite(&nodes, sizeof(uint32_t), 1, fout);
- fwrite(&size_eval, sizeof(uint64_t), 1, fout);
- }
- // leafs
- {
- for (int i = 0; i < cgraph->n_leafs; ++i) {
- const struct ggml_tensor * tensor = cgraph->leafs[i];
- const uint32_t type = tensor->type;
- const uint32_t op = tensor->op;
- const uint32_t n_dims = tensor->n_dims;
- fwrite(&type, sizeof(uint32_t), 1, fout);
- fwrite(&op, sizeof(uint32_t), 1, fout);
- fwrite(&n_dims, sizeof(uint32_t), 1, fout);
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- const uint64_t ne = tensor->ne[j];
- const uint64_t nb = tensor->nb[j];
- fwrite(&ne, sizeof(uint64_t), 1, fout);
- fwrite(&nb, sizeof(uint64_t), 1, fout);
- }
- fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
- fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
- // dump the data
- // TODO: pad this to 32 byte boundary
- {
- const size_t size = ggml_nbytes(tensor);
- fwrite(tensor->data, sizeof(char), size, fout);
- }
- }
- }
- // nodes
- {
- for (int i = 0; i < cgraph->n_nodes; ++i) {
- const struct ggml_tensor * tensor = cgraph->nodes[i];
- const uint32_t type = tensor->type;
- const uint32_t op = tensor->op;
- const uint32_t n_dims = tensor->n_dims;
- fwrite(&type, sizeof(uint32_t), 1, fout);
- fwrite(&op, sizeof(uint32_t), 1, fout);
- fwrite(&n_dims, sizeof(uint32_t), 1, fout);
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- const uint64_t ne = tensor->ne[j];
- const uint64_t nb = tensor->nb[j];
- fwrite(&ne, sizeof(uint64_t), 1, fout);
- fwrite(&nb, sizeof(uint64_t), 1, fout);
- }
- fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
- fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
- // output the op arguments
- {
- struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- args[j] = tensor->src[j];
- }
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- if (args[j]) {
- int32_t idx = -1;
- // check if leaf
- {
- for (int k = 0; k < cgraph->n_leafs; ++k) {
- if (args[j] == cgraph->leafs[k]) {
- idx = k;
- break;
- }
- }
- }
- // check if node
- if (idx == -1) {
- for (int k = 0; k < cgraph->n_nodes; ++k) {
- if (args[j] == cgraph->nodes[k]) {
- idx = GGML_MAX_NODES + k;
- break;
- }
- }
- }
- if (idx == -1) {
- fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
- return;
- }
- fwrite(&idx, sizeof(int32_t), 1, fout);
- } else {
- const int32_t nul = -1;
- fwrite(&nul, sizeof(int32_t), 1, fout);
- }
- }
- }
- }
- }
- fclose(fout);
- }
- }
- struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
- assert(*ctx_data == NULL);
- assert(*ctx_eval == NULL);
- struct ggml_cgraph result = { 0 };
- struct ggml_tensor * data = NULL;
- // read file into data
- {
- FILE * fin = fopen(fname, "rb");
- if (!fin) {
- fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
- return result;
- }
- size_t fsize = 0;
- fseek(fin, 0, SEEK_END);
- fsize = ftell(fin);
- fseek(fin, 0, SEEK_SET);
- // create the data context
- {
- const size_t overhead = 1*ggml_tensor_overhead();
- struct ggml_init_params params = {
- .mem_size = fsize + overhead,
- .mem_buffer = NULL,
- .no_alloc = false,
- };
- *ctx_data = ggml_init(params);
- if (!*ctx_data) {
- fprintf(stderr, "%s: failed to create ggml context\n", __func__);
- fclose(fin);
- return result;
- }
- }
- data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
- {
- const size_t ret = fread(data->data, sizeof(char), fsize, fin);
- if (ret != fsize) {
- fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
- fclose(fin);
- return result;
- }
- }
- fclose(fin);
- }
- // populate result
- {
- char * ptr = (char *) data->data;
- const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
- if (magic != GGML_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
- return result;
- }
- const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
- if (version != GGML_FILE_VERSION) {
- fprintf(stderr, "%s: invalid version number\n", __func__);
- return result;
- }
- const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
- const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
- const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
- result.n_leafs = n_leafs;
- result.n_nodes = n_nodes;
- // create the data context
- {
- const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
- struct ggml_init_params params = {
- .mem_size = size_eval + overhead,
- .mem_buffer = NULL,
- .no_alloc = true,
- };
- *ctx_eval = ggml_init(params);
- if (!*ctx_eval) {
- fprintf(stderr, "%s: failed to create ggml context\n", __func__);
- return result;
- }
- }
- // leafs
- {
- uint32_t type;
- uint32_t op;
- uint32_t n_dims;
- for (uint32_t i = 0; i < n_leafs; ++i) {
- type = *(const uint32_t *) ptr; ptr += sizeof(type);
- op = *(const uint32_t *) ptr; ptr += sizeof(op);
- n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
- int64_t ne[GGML_MAX_DIMS];
- size_t nb[GGML_MAX_DIMS];
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- uint64_t ne_cur;
- uint64_t nb_cur;
- ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
- nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
- ne[j] = ne_cur;
- nb[j] = nb_cur;
- }
- struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
- tensor->op = (enum ggml_op) op;
- memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
- memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
- tensor->data = (void *) ptr;
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- tensor->nb[j] = nb[j];
- }
- result.leafs[i] = tensor;
- ptr += ggml_nbytes(tensor);
- fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
- }
- }
- ggml_set_no_alloc(*ctx_eval, false);
- // nodes
- {
- uint32_t type;
- uint32_t op;
- uint32_t n_dims;
- for (uint32_t i = 0; i < n_nodes; ++i) {
- type = *(const uint32_t *) ptr; ptr += sizeof(type);
- op = *(const uint32_t *) ptr; ptr += sizeof(op);
- n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
- enum ggml_op eop = (enum ggml_op) op;
- int64_t ne[GGML_MAX_DIMS];
- size_t nb[GGML_MAX_DIMS];
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- uint64_t ne_cur;
- uint64_t nb_cur;
- ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
- nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
- ne[j] = ne_cur;
- nb[j] = nb_cur;
- }
- const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
- const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
- const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
- struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
- // parse args
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- const int32_t arg_idx = ptr_arg_idx[j];
- if (arg_idx == -1) {
- continue;
- }
- if (arg_idx < GGML_MAX_NODES) {
- args[j] = result.leafs[arg_idx];
- } else {
- args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
- }
- }
- // create the tensor
- // "view" operations are handled differently
- // TODO: handle inplace ops - currently a copy is always made
- struct ggml_tensor * tensor = NULL;
- switch (eop) {
- // TODO: implement other view ops
- case GGML_OP_RESHAPE:
- {
- tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
- } break;
- case GGML_OP_VIEW:
- {
- tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
- size_t offs;
- memcpy(&offs, ptr_op_params, sizeof(offs));
- tensor->data = ((char *) tensor->data) + offs;
- } break;
- case GGML_OP_TRANSPOSE:
- {
- tensor = ggml_transpose(*ctx_eval, args[0]);
- } break;
- case GGML_OP_PERMUTE:
- {
- tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
- } break;
- default:
- {
- tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
- tensor->op = eop;
- } break;
- }
- memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
- memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- tensor->nb[j] = nb[j];
- }
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- tensor->src[j] = args[j];
- }
- result.nodes[i] = tensor;
- fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
- }
- }
- }
- return result;
- }
- void ggml_graph_print(const struct ggml_cgraph * cgraph) {
- int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
- GGML_PRINT("=== GRAPH ===\n");
- GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
- GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
- i,
- node->ne[0], node->ne[1], node->ne[2],
- ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
- (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
- (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
- (double) node->perf_time_us / 1000.0,
- (double) node->perf_time_us / 1000.0 / node->perf_runs);
- }
- GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * node = cgraph->leafs[i];
- GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
- i,
- node->ne[0], node->ne[1],
- ggml_op_name(node->op));
- }
- for (int i = 0; i < GGML_OP_COUNT; i++) {
- if (perf_total_per_op_us[i] == 0) {
- continue;
- }
- GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
- }
- GGML_PRINT("========================================\n");
- }
- // check if node is part of the graph
- static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- if (cgraph == NULL) {
- return true;
- }
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (cgraph->nodes[i] == node) {
- return true;
- }
- }
- return false;
- }
- static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * parent = cgraph->nodes[i];
- if (parent->grad == node) {
- return parent;
- }
- }
- return NULL;
- }
- static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
- struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
- struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
- gparent0 ? (void *) gparent0 : (void *) parent,
- gparent0 ? "g" : "x",
- gparent ? (void *) gparent : (void *) node,
- gparent ? "g" : "x",
- gparent ? "empty" : "vee",
- gparent ? "dashed" : "solid",
- label);
- }
- static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
- (void *) parent, "x",
- (void *) node, "x",
- label);
- }
- void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
- char color[16];
- FILE * fp = fopen(filename, "w");
- GGML_ASSERT(fp);
- fprintf(fp, "digraph G {\n");
- fprintf(fp, " newrank = true;\n");
- fprintf(fp, " rankdir = LR;\n");
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
- if (ggml_graph_get_parent(gb, node) != NULL) {
- continue;
- }
- if (node->is_param) {
- snprintf(color, sizeof(color), "yellow");
- } else if (node->grad) {
- if (ggml_graph_find(gf, node)) {
- snprintf(color, sizeof(color), "green");
- } else {
- snprintf(color, sizeof(color), "lightblue");
- }
- } else {
- snprintf(color, sizeof(color), "white");
- }
- fprintf(fp, " \"%p\" [ "
- "style = filled; fillcolor = %s; shape = record; "
- "label=\"",
- (void *) node, color);
- if (strlen(node->name) > 0) {
- fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
- } else {
- fprintf(fp, "(%s)|", ggml_type_name(node->type));
- }
- if (node->n_dims == 2) {
- fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
- } else {
- fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
- }
- if (node->grad) {
- fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
- } else {
- fprintf(fp, "\"; ]\n");
- }
- }
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
- snprintf(color, sizeof(color), "pink");
- fprintf(fp, " \"%p\" [ "
- "style = filled; fillcolor = %s; shape = record; "
- "label=\"<x>",
- (void *) node, color);
- if (strlen(node->name) > 0) {
- fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
- } else {
- fprintf(fp, "(%s)|", ggml_type_name(node->type));
- }
- fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
- if (ggml_nelements(node) < 5) {
- fprintf(fp, " | (");
- for (int j = 0; j < ggml_nelements(node); j++) {
- if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
- fprintf(fp, "%d", ggml_get_i32_1d(node, j));
- }
- else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
- fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
- }
- else {
- fprintf(fp, "#");
- }
- if (j < ggml_nelements(node) - 1) {
- fprintf(fp, ", ");
- }
- }
- fprintf(fp, ")");
- }
- fprintf(fp, "\"; ]\n");
- }
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j]) {
- char label[16];
- snprintf(label, sizeof(label), "src %d", j);
- ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
- }
- }
- }
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j]) {
- char label[16];
- snprintf(label, sizeof(label), "src %d", j);
- ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
- }
- }
- }
- fprintf(fp, "}\n");
- fclose(fp);
- GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
- }
- ////////////////////////////////////////////////////////////////////////////////
- static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to set tensor from array
- for (int64_t j = 0; j < ne; ++j) {
- ggml_set_f32_1d(ps[p], j, x[i++]);
- }
- }
- }
- static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- x[i++] = ggml_get_f32_1d(ps[p], j);
- }
- }
- }
- static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
- }
- }
- }
- //
- // ADAM
- //
- // ref: https://arxiv.org/pdf/1412.6980.pdf
- //
- static enum ggml_opt_result ggml_opt_adam(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- ggml_opt_callback callback,
- void * callback_data) {
- GGML_ASSERT(ggml_is_scalar(f));
- // these will store the parameters we want to optimize
- struct ggml_tensor * ps[GGML_MAX_PARAMS];
- int np = 0;
- int64_t nx = 0;
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (gf->nodes[i]->is_param) {
- GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
- GGML_ASSERT(np < GGML_MAX_PARAMS);
- ps[np++] = gf->nodes[i];
- nx += ggml_nelements(gf->nodes[i]);
- }
- }
- if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
- int iter = opt->iter;
- ggml_opt_init(opt->ctx, opt, params, nx);
- opt->iter = iter;
- }
- // constants
- float sched = params.adam.sched;
- const float alpha = params.adam.alpha;
- const float decay = params.adam.decay * alpha;
- const float beta1 = params.adam.beta1;
- const float beta2 = params.adam.beta2;
- const float eps = params.adam.eps;
- const float gclip = params.adam.gclip;
- const int decay_min_ndim = params.adam.decay_min_ndim;
- float * m = opt->adam.m->data; // first moment
- float * v = opt->adam.v->data; // second moment
- float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
- if (callback) {
- callback(callback_data, &sched);
- }
- // compute the function value
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
- cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
- ggml_graph_compute(gb, &cplan);
- opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
- opt->adam.fx_best = opt->adam.fx_prev;
- if (pf) {
- pf[opt->iter % params.past] = opt->adam.fx_prev;
- }
- opt->loss_before = opt->adam.fx_prev;
- opt->loss_after = opt->adam.fx_prev;
- // initialize
- if (opt->just_initialized) {
- opt->adam.n_no_improvement = 0;
- opt->just_initialized = false;
- }
- float * fx_best = &opt->adam.fx_best;
- float * fx_prev = &opt->adam.fx_prev;
- int * n_no_improvement = &opt->adam.n_no_improvement;
- int iter0 = opt->iter;
- // run the optimizer
- for (int t = 0; t < params.adam.n_iter; ++t) {
- opt->iter = iter0 + t + 1;
- GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
- GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
- GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
- GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
- for (int i = 0; i < np; ++i) {
- GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
- ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
- }
- const int64_t t_start_wall = ggml_time_us();
- const int64_t t_start_cpu = ggml_cycles();
- UNUSED(t_start_wall);
- UNUSED(t_start_cpu);
- {
- float gnorm = 1.0f;
- if (gclip > 0.0f) {
- // gradient clipping
- ggml_float sum = 0.0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]);
- for (int64_t j = 0; j < ne; ++j) {
- float g = ggml_get_f32_1d(ps[p]->grad, j);
- sum += (ggml_float)(g*g);
- }
- }
- ggml_float norm = sqrt(sum);
- if (norm > (ggml_float) gclip) {
- gnorm = (float) ((ggml_float) gclip / norm);
- }
- }
- const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
- const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
- int64_t i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]);
- const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
- for (int64_t j = 0; j < ne; ++j) {
- float x = ggml_get_f32_1d(ps[p], j);
- float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm;
- m[i] = m[i]*beta1 + g*(1.0f - beta1);
- v[i] = v[i]*beta2 + g*g*(1.0f - beta2);
- float mh = m[i]*beta1h;
- float vh = v[i]*beta2h;
- vh = sqrtf(vh) + eps;
- x = x*(1.0f - p_decay) - mh/vh;
- ggml_set_f32_1d(ps[p], j, x);
- ++i;
- }
- }
- }
- if (callback) {
- callback(callback_data, &sched);
- }
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, &cplan);
- const float fx = ggml_get_f32_1d(f, 0);
- opt->loss_after = fx;
- // check convergence
- if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
- GGML_PRINT_DEBUG("converged\n");
- return GGML_OPT_OK;
- }
- // delta-based convergence test
- if (pf != NULL) {
- // need at least params.past iterations to start checking for convergence
- if (params.past <= iter0 + t) {
- const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
- if (fabsf(rate) < params.delta) {
- return GGML_OPT_OK;
- }
- }
- pf[(iter0 + t)%params.past] = fx;
- }
- // check for improvement
- if (params.max_no_improvement > 0) {
- if (fx_best[0] > fx) {
- fx_best[0] = fx;
- n_no_improvement[0] = 0;
- } else {
- ++n_no_improvement[0];
- if (n_no_improvement[0] >= params.max_no_improvement) {
- return GGML_OPT_OK;
- }
- }
- }
- fx_prev[0] = fx;
- {
- const int64_t t_end_cpu = ggml_cycles();
- GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
- UNUSED(t_end_cpu);
- const int64_t t_end_wall = ggml_time_us();
- GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
- UNUSED(t_end_wall);
- }
- }
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- //
- // L-BFGS
- //
- // the L-BFGS implementation below is based on the following implementation:
- //
- // https://github.com/chokkan/liblbfgs
- //
- struct ggml_lbfgs_iteration_data {
- float alpha;
- float ys;
- float * s;
- float * y;
- };
- static enum ggml_opt_result linesearch_backtracking(
- const struct ggml_opt_params * params,
- int nx,
- float * x,
- float * fx,
- float * g,
- float * d,
- float * step,
- const float * xp,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- struct ggml_cplan * cplan,
- const int np,
- struct ggml_tensor * ps[],
- ggml_opt_callback callback,
- void * callback_data) {
- int count = 0;
- float width = 0.0f;
- float dg = 0.0f;
- float finit = 0.0f;
- float dginit = 0.0f;
- float dgtest = 0.0f;
- const float dec = 0.5f;
- const float inc = 2.1f;
- if (*step <= 0.f) {
- return GGML_LINESEARCH_INVALID_PARAMETERS;
- }
- // compute the initial gradient in the search direction
- ggml_vec_dot_f32(nx, &dginit, g, d);
- // make sure that d points to a descent direction
- if (0 < dginit) {
- return GGML_LINESEARCH_FAIL;
- }
- // initialize local variables
- finit = *fx;
- dgtest = params->lbfgs.ftol*dginit;
- while (true) {
- if (callback) {
- // LBFG-S does not support learning rate -> ignore learning schedule
- float sched = 0;
- callback(callback_data, &sched);
- }
- ggml_vec_cpy_f32(nx, x, xp);
- ggml_vec_mad_f32(nx, x, d, *step);
- // evaluate the function and gradient values
- {
- ggml_opt_set_params(np, ps, x);
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, cplan);
- ggml_opt_get_grad(np, ps, g);
- *fx = ggml_get_f32_1d(f, 0);
- }
- ++count;
- if (*fx > finit + (*step)*dgtest) {
- width = dec;
- } else {
- // Armijo condition is satisfied
- if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
- return count;
- }
- ggml_vec_dot_f32(nx, &dg, g, d);
- // check the Wolfe condition
- if (dg < params->lbfgs.wolfe * dginit) {
- width = inc;
- } else {
- if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
- // regular Wolfe conditions
- return count;
- }
- if(dg > -params->lbfgs.wolfe*dginit) {
- width = dec;
- } else {
- // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
- return count;
- }
- }
- }
- if (*step < params->lbfgs.min_step) {
- return GGML_LINESEARCH_MINIMUM_STEP;
- }
- if (*step > params->lbfgs.max_step) {
- return GGML_LINESEARCH_MAXIMUM_STEP;
- }
- if (params->lbfgs.max_linesearch <= count) {
- return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
- }
- (*step) *= width;
- }
- return GGML_LINESEARCH_FAIL;
- }
- static enum ggml_opt_result ggml_opt_lbfgs(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- ggml_opt_callback callback,
- void * callback_data) {
- if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
- params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
- if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
- return GGML_OPT_INVALID_WOLFE;
- }
- }
- const int m = params.lbfgs.m;
- // these will store the parameters we want to optimize
- struct ggml_tensor * ps[GGML_MAX_PARAMS];
- int np = 0;
- int nx = 0;
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (gf->nodes[i]->is_param) {
- GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
- GGML_ASSERT(np < GGML_MAX_PARAMS);
- ps[np++] = gf->nodes[i];
- nx += ggml_nelements(gf->nodes[i]);
- }
- }
- if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
- int iter = opt->iter;
- ggml_opt_init(ctx, opt, params, nx);
- opt->iter = iter;
- }
- struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
- cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
- float * x = opt->lbfgs.x->data; // current parameters
- float * xp = opt->lbfgs.xp->data; // previous parameters
- float * g = opt->lbfgs.g->data; // current gradient
- float * gp = opt->lbfgs.gp->data; // previous gradient
- float * d = opt->lbfgs.d->data; // search direction
- float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
- float fx = 0.0f; // cost function value
- float xnorm = 0.0f; // ||x||
- float gnorm = 0.0f; // ||g||
- // initialize x from the graph nodes
- ggml_opt_get_params(np, ps, x);
- // the L-BFGS memory
- float * lm_alpha = opt->lbfgs.lmal->data;
- float * lm_ys = opt->lbfgs.lmys->data;
- float * lm_s = opt->lbfgs.lms->data;
- float * lm_y = opt->lbfgs.lmy->data;
- if (callback) {
- // LBFG-S does not support learning rate -> ignore learning schedule
- float sched = 0;
- callback(callback_data, &sched);
- }
- // evaluate the function value and its gradient
- {
- ggml_opt_set_params(np, ps, x);
- ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, &cplan);
- ggml_opt_get_grad(np, ps, g);
- fx = ggml_get_f32_1d(f, 0);
- opt->loss_before = fx;
- opt->loss_after = fx;
- }
- // search direction = -gradient
- ggml_vec_neg_f32(nx, d, g);
- // ||x||, ||g||
- ggml_vec_norm_f32(nx, &xnorm, x);
- ggml_vec_norm_f32(nx, &gnorm, g);
- if (xnorm < 1.0f) {
- xnorm = 1.0f;
- }
- // already optimized
- if (gnorm/xnorm <= params.lbfgs.eps) {
- return GGML_OPT_OK;
- }
- if (opt->just_initialized) {
- if (pf) {
- pf[0] = fx;
- }
- opt->lbfgs.fx_best = fx;
- // initial step
- ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
- opt->lbfgs.j = 0;
- opt->lbfgs.k = 1;
- opt->lbfgs.end = 0;
- opt->lbfgs.n_no_improvement = 0;
- opt->just_initialized = false;
- }
- float * fx_best = &opt->lbfgs.fx_best;
- float * step = &opt->lbfgs.step;
- int * j = &opt->lbfgs.j;
- int * k = &opt->lbfgs.k;
- int * end = &opt->lbfgs.end;
- int * n_no_improvement = &opt->lbfgs.n_no_improvement;
- int ls = 0;
- int bound = 0;
- float ys = 0.0f;
- float yy = 0.0f;
- float beta = 0.0f;
- int it = 0;
- while (true) {
- // store the current position and gradient vectors
- ggml_vec_cpy_f32(nx, xp, x);
- ggml_vec_cpy_f32(nx, gp, g);
- ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data);
- if (ls < 0) {
- // linesearch failed - go back to the previous point and return
- ggml_vec_cpy_f32(nx, x, xp);
- ggml_vec_cpy_f32(nx, g, gp);
- return ls;
- }
- opt->loss_after = fx;
- ggml_vec_norm_f32(nx, &xnorm, x);
- ggml_vec_norm_f32(nx, &gnorm, g);
- GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
- if (xnorm < 1.0f) {
- xnorm = 1.0f;
- }
- if (gnorm/xnorm <= params.lbfgs.eps) {
- // converged
- return GGML_OPT_OK;
- }
- // delta-based convergence test
- if (pf != NULL) {
- // need at least params.past iterations to start checking for convergence
- if (params.past <= k[0]) {
- const float rate = (pf[k[0]%params.past] - fx)/fx;
- if (fabsf(rate) < params.delta) {
- return GGML_OPT_OK;
- }
- }
- pf[k[0]%params.past] = fx;
- }
- // check for improvement
- if (params.max_no_improvement > 0) {
- if (fx < fx_best[0]) {
- fx_best[0] = fx;
- n_no_improvement[0] = 0;
- } else {
- n_no_improvement[0]++;
- if (n_no_improvement[0] >= params.max_no_improvement) {
- return GGML_OPT_OK;
- }
- }
- }
- if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
- // reached the maximum number of iterations
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- // update vectors s and y:
- // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
- // y_{k+1} = g_{k+1} - g_{k}.
- //
- ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
- ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
- // compute scalars ys and yy:
- // ys = y^t \cdot s -> 1 / \rho.
- // yy = y^t \cdot y.
- //
- ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
- ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
- lm_ys[end[0]] = ys;
- // find new search direction
- // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
- bound = (m <= k[0]) ? m : k[0];
- k[0]++;
- it++;
- end[0] = (end[0] + 1)%m;
- // initialize search direction with -g
- ggml_vec_neg_f32(nx, d, g);
- j[0] = end[0];
- for (int i = 0; i < bound; ++i) {
- j[0] = (j[0] + m - 1) % m;
- // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
- ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
- lm_alpha[j[0]] /= lm_ys[j[0]];
- // q_{i} = q_{i+1} - \alpha_{i} y_{i}
- ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
- }
- ggml_vec_scale_f32(nx, d, ys/yy);
- for (int i = 0; i < bound; ++i) {
- // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
- ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
- beta /= lm_ys[j[0]];
- // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
- ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
- j[0] = (j[0] + 1)%m;
- }
- step[0] = 1.0;
- }
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
- struct ggml_opt_params result;
- switch (type) {
- case GGML_OPT_ADAM:
- {
- result = (struct ggml_opt_params) {
- .type = GGML_OPT_ADAM,
- .n_threads = 1,
- .past = 0,
- .delta = 1e-5f,
- .max_no_improvement = 100,
- .print_forward_graph = true,
- .print_backward_graph = true,
- .adam = {
- .n_iter = 10000,
- .sched = 1.000f,
- .decay = 0.0f,
- .decay_min_ndim = 2,
- .alpha = 0.001f,
- .beta1 = 0.9f,
- .beta2 = 0.999f,
- .eps = 1e-8f,
- .eps_f = 1e-5f,
- .eps_g = 1e-3f,
- .gclip = 0.0f,
- },
- };
- } break;
- case GGML_OPT_LBFGS:
- {
- result = (struct ggml_opt_params) {
- .type = GGML_OPT_LBFGS,
- .n_threads = 1,
- .past = 0,
- .delta = 1e-5f,
- .max_no_improvement = 0,
- .print_forward_graph = true,
- .print_backward_graph = true,
- .lbfgs = {
- .m = 6,
- .n_iter = 100,
- .max_linesearch = 20,
- .eps = 1e-5f,
- .ftol = 1e-4f,
- .wolfe = 0.9f,
- .min_step = 1e-20f,
- .max_step = 1e+20f,
- .linesearch = GGML_LINESEARCH_DEFAULT,
- },
- };
- } break;
- }
- return result;
- }
- GGML_API void ggml_opt_init(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- int64_t nx) {
- opt->ctx = ctx;
- opt->params = params;
- opt->iter = 0;
- opt->nx = nx;
- opt->just_initialized = true;
- switch (opt->params.type) {
- case GGML_OPT_ADAM:
- {
- opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
- opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
- opt->adam.pf = params.past > 0
- ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
- : NULL;
- ggml_set_zero(opt->adam.m);
- ggml_set_zero(opt->adam.v);
- if (opt->adam.pf) {
- ggml_set_zero(opt->adam.pf);
- }
- } break;
- case GGML_OPT_LBFGS:
- {
- opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.pf = params.past > 0
- ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
- : NULL;
- opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
- opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
- opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
- opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
- ggml_set_zero(opt->lbfgs.x);
- ggml_set_zero(opt->lbfgs.xp);
- ggml_set_zero(opt->lbfgs.g);
- ggml_set_zero(opt->lbfgs.gp);
- ggml_set_zero(opt->lbfgs.d);
- if (opt->lbfgs.pf) {
- ggml_set_zero(opt->lbfgs.pf);
- }
- ggml_set_zero(opt->lbfgs.lmal);
- ggml_set_zero(opt->lbfgs.lmys);
- ggml_set_zero(opt->lbfgs.lms);
- ggml_set_zero(opt->lbfgs.lmy);
- } break;
- }
- }
- enum ggml_opt_result ggml_opt(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f) {
- bool free_ctx = false;
- if (ctx == NULL) {
- struct ggml_init_params params_ctx = {
- .mem_size = 16*1024*1024,
- .mem_buffer = NULL,
- .no_alloc = false,
- };
- ctx = ggml_init(params_ctx);
- if (ctx == NULL) {
- return GGML_OPT_NO_CONTEXT;
- }
- free_ctx = true;
- }
- enum ggml_opt_result result = GGML_OPT_OK;
- struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
- ggml_opt_init(ctx, opt, params, 0);
- result = ggml_opt_resume(ctx, opt, f);
- if (free_ctx) {
- ggml_free(ctx);
- }
- return result;
- }
- enum ggml_opt_result ggml_opt_resume(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_tensor * f) {
- // build forward + backward compute graphs
- struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
- struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
- struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
- struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
- *gf = ggml_build_forward (f);
- *gb = ggml_build_backward(ctx, gf, true);
- return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
- }
- enum ggml_opt_result ggml_opt_resume_g(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- ggml_opt_callback callback,
- void * callback_data) {
- // build forward + backward compute graphs
- enum ggml_opt_result result = GGML_OPT_OK;
- switch (opt->params.type) {
- case GGML_OPT_ADAM:
- {
- result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
- } break;
- case GGML_OPT_LBFGS:
- {
- result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
- } break;
- }
- if (opt->params.print_forward_graph) {
- ggml_graph_print (gf);
- ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
- }
- if (opt->params.print_backward_graph) {
- ggml_graph_print (gb);
- ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
- }
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK4_0 == 0);
- const int nb = k / QK4_0;
- for (int b = 0; b < n; b += k) {
- block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
- quantize_row_q4_0_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- for (int j = 0; j < QK4_0; j += 2) {
- const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
- const uint8_t vi1 = y[i].qs[j/2] >> 4;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK4_0*sizeof(block_q4_0));
- }
- size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK4_1 == 0);
- const int nb = k / QK4_1;
- for (int b = 0; b < n; b += k) {
- block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
- quantize_row_q4_1_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- for (int j = 0; j < QK4_1; j += 2) {
- const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
- const uint8_t vi1 = y[i].qs[j/2] >> 4;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK4_1*sizeof(block_q4_1));
- }
- size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK5_0 == 0);
- const int nb = k / QK5_0;
- for (int b = 0; b < n; b += k) {
- block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
- quantize_row_q5_0_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- uint32_t qh;
- memcpy(&qh, &y[i].qh, sizeof(qh));
- for (int j = 0; j < QK5_0; j += 2) {
- const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
- const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
- // cast to 16 bins
- const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
- const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK5_0*sizeof(block_q5_0));
- }
- size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK5_1 == 0);
- const int nb = k / QK5_1;
- for (int b = 0; b < n; b += k) {
- block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
- quantize_row_q5_1_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- uint32_t qh;
- memcpy(&qh, &y[i].qh, sizeof(qh));
- for (int j = 0; j < QK5_1; j += 2) {
- const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
- const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
- // cast to 16 bins
- const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
- const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK5_1*sizeof(block_q5_1));
- }
- size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK8_0 == 0);
- const int nb = k / QK8_0;
- for (int b = 0; b < n; b += k) {
- block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
- quantize_row_q8_0_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- for (int j = 0; j < QK8_0; ++j) {
- const int8_t vi = y[i].qs[j];
- hist[vi/16 + 8]++;
- }
- }
- }
- return (n/QK8_0*sizeof(block_q8_0));
- }
- size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
- size_t result = 0;
- switch (type) {
- case GGML_TYPE_Q4_0:
- {
- GGML_ASSERT(start % QK4_0 == 0);
- block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
- result = ggml_quantize_q4_0(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q4_1:
- {
- GGML_ASSERT(start % QK4_1 == 0);
- block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
- result = ggml_quantize_q4_1(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q5_0:
- {
- GGML_ASSERT(start % QK5_0 == 0);
- block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
- result = ggml_quantize_q5_0(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q5_1:
- {
- GGML_ASSERT(start % QK5_1 == 0);
- block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
- result = ggml_quantize_q5_1(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q8_0:
- {
- GGML_ASSERT(start % QK8_0 == 0);
- block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
- result = ggml_quantize_q8_0(src + start, block, n, n, hist);
- } break;
- #ifdef GGML_USE_K_QUANTS
- case GGML_TYPE_Q2_K:
- {
- GGML_ASSERT(start % QK_K == 0);
- block_q2_K * block = (block_q2_K*)dst + start / QK_K;
- result = ggml_quantize_q2_K(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q3_K:
- {
- GGML_ASSERT(start % QK_K == 0);
- block_q3_K * block = (block_q3_K*)dst + start / QK_K;
- result = ggml_quantize_q3_K(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q4_K:
- {
- GGML_ASSERT(start % QK_K == 0);
- block_q4_K * block = (block_q4_K*)dst + start / QK_K;
- result = ggml_quantize_q4_K(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q5_K:
- {
- GGML_ASSERT(start % QK_K == 0);
- block_q5_K * block = (block_q5_K*)dst + start / QK_K;
- result = ggml_quantize_q5_K(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q6_K:
- {
- GGML_ASSERT(start % QK_K == 0);
- block_q6_K * block = (block_q6_K*)dst + start / QK_K;
- result = ggml_quantize_q6_K(src + start, block, n, n, hist);
- } break;
- #endif
- case GGML_TYPE_F16:
- {
- int elemsize = sizeof(ggml_fp16_t);
- ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
- result = n * elemsize;
- } break;
- case GGML_TYPE_F32:
- {
- int elemsize = sizeof(float);
- result = n * elemsize;
- memcpy((uint8_t *)dst + start * elemsize, src + start, result);
- } break;
- default:
- assert(false);
- }
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- struct gguf_str {
- uint64_t n; // GGUFv2
- char * data;
- };
- static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
- [GGUF_TYPE_UINT8] = sizeof(uint8_t),
- [GGUF_TYPE_INT8] = sizeof(int8_t),
- [GGUF_TYPE_UINT16] = sizeof(uint16_t),
- [GGUF_TYPE_INT16] = sizeof(int16_t),
- [GGUF_TYPE_UINT32] = sizeof(uint32_t),
- [GGUF_TYPE_INT32] = sizeof(int32_t),
- [GGUF_TYPE_FLOAT32] = sizeof(float),
- [GGUF_TYPE_BOOL] = sizeof(bool),
- [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
- [GGUF_TYPE_UINT64] = sizeof(uint64_t),
- [GGUF_TYPE_INT64] = sizeof(int64_t),
- [GGUF_TYPE_FLOAT64] = sizeof(double),
- [GGUF_TYPE_ARRAY] = 0, // undefined
- };
- static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
- static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
- [GGUF_TYPE_UINT8] = "u8",
- [GGUF_TYPE_INT8] = "i8",
- [GGUF_TYPE_UINT16] = "u16",
- [GGUF_TYPE_INT16] = "i16",
- [GGUF_TYPE_UINT32] = "u32",
- [GGUF_TYPE_INT32] = "i32",
- [GGUF_TYPE_FLOAT32] = "f32",
- [GGUF_TYPE_BOOL] = "bool",
- [GGUF_TYPE_STRING] = "str",
- [GGUF_TYPE_ARRAY] = "arr",
- [GGUF_TYPE_UINT64] = "u64",
- [GGUF_TYPE_INT64] = "i64",
- [GGUF_TYPE_FLOAT64] = "f64",
- };
- static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
- union gguf_value {
- uint8_t uint8;
- int8_t int8;
- uint16_t uint16;
- int16_t int16;
- uint32_t uint32;
- int32_t int32;
- float float32;
- uint64_t uint64;
- int64_t int64;
- double float64;
- bool bool_;
- struct gguf_str str;
- struct {
- enum gguf_type type;
- uint64_t n; // GGUFv2
- void * data;
- } arr;
- };
- struct gguf_kv {
- struct gguf_str key;
- enum gguf_type type;
- union gguf_value value;
- };
- struct gguf_header {
- uint32_t magic;
- uint32_t version;
- uint64_t n_tensors; // GGUFv2
- uint64_t n_kv; // GGUFv2
- };
- struct gguf_tensor_info {
- struct gguf_str name;
- uint32_t n_dims;
- uint64_t ne[GGML_MAX_DIMS];
- enum ggml_type type;
- uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
- // for writing API
- const void * data;
- size_t size;
- };
- struct gguf_context {
- struct gguf_header header;
- struct gguf_kv * kv;
- struct gguf_tensor_info * infos;
- size_t alignment;
- size_t offset; // offset of `data` from beginning of file
- size_t size; // size of `data` in bytes
- //uint8_t * padding;
- void * data;
- };
- static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
- const size_t n = fread(dst, 1, size, file);
- *offset += n;
- return n == size;
- }
- // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
- static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
- p->n = 0;
- p->data = NULL;
- bool ok = true;
- ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
- ok = ok && gguf_fread_el(file, p->data, p->n, offset);
- return ok;
- }
- static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
- p->n = 0;
- p->data = NULL;
- bool ok = true;
- uint32_t n = 0;
- ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
- ok = ok && gguf_fread_el(file, p->data, p->n, offset);
- return ok;
- }
- struct gguf_context * gguf_init_empty(void) {
- struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
- ctx->header.magic = GGUF_MAGIC;
- ctx->header.version = GGUF_VERSION;
- ctx->header.n_tensors = 0;
- ctx->header.n_kv = 0;
- ctx->kv = NULL;
- ctx->infos = NULL;
- ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
- ctx->offset = 0;
- ctx->size = 0;
- ctx->data = NULL;
- return ctx;
- }
- struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
- FILE * file = fopen(fname, "rb");
- if (!file) {
- return NULL;
- }
- // offset from start of file
- size_t offset = 0;
- uint32_t magic = 0;
- // check the magic before making allocations
- {
- gguf_fread_el(file, &magic, sizeof(magic), &offset);
- if (magic != GGUF_MAGIC) {
- fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
- fclose(file);
- return NULL;
- }
- }
- bool ok = true;
- struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
- // read the header
- {
- ctx->header.magic = magic;
- ctx->kv = NULL;
- ctx->infos = NULL;
- ctx->data = NULL;
- ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
- if (ctx->header.version == 1) {
- // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
- uint32_t n_tensors = 0;
- uint32_t n_kv = 0;
- ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
- ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
- ctx->header.n_tensors = n_tensors;
- ctx->header.n_kv = n_kv;
- } else {
- ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
- ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
- }
- if (!ok) {
- fprintf(stderr, "%s: failed to read header\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- }
- // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
- bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
- if (ctx->header.version == 1) {
- gguf_fread_str = gguf_fread_str_v1;
- }
- // read the kv pairs
- {
- ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
- for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
- struct gguf_kv * kv = &ctx->kv[i];
- //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
- ok = ok && gguf_fread_str(file, &kv->key, &offset);
- ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
- //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
- switch (kv->type) {
- case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
- case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
- case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
- case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
- case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
- case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
- case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
- case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
- case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
- case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
- case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
- case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
- case GGUF_TYPE_ARRAY:
- {
- ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
- if (ctx->header.version == 1) {
- // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
- uint32_t n = 0;
- ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
- kv->value.arr.n = n;
- } else {
- ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
- }
- switch (kv->value.arr.type) {
- case GGUF_TYPE_UINT8:
- case GGUF_TYPE_INT8:
- case GGUF_TYPE_UINT16:
- case GGUF_TYPE_INT16:
- case GGUF_TYPE_UINT32:
- case GGUF_TYPE_INT32:
- case GGUF_TYPE_FLOAT32:
- case GGUF_TYPE_UINT64:
- case GGUF_TYPE_INT64:
- case GGUF_TYPE_FLOAT64:
- case GGUF_TYPE_BOOL:
- {
- kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
- ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
- } break;
- case GGUF_TYPE_STRING:
- {
- kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
- for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
- ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
- }
- } break;
- case GGUF_TYPE_ARRAY:
- case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
- };
- } break;
- case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
- };
- if (!ok) {
- break;
- }
- }
- if (!ok) {
- fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- }
- // read the tensor infos
- {
- ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- info->ne[j] = 1;
- }
- ok = ok && gguf_fread_str(file, &info->name, &offset);
- ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
- for (uint32_t j = 0; j < info->n_dims; ++j) {
- if (ctx->header.version == 1) {
- // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
- uint32_t t = 0;
- ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
- info->ne[j] = t;
- } else {
- ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
- }
- }
- ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
- ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
- if (!ok) {
- fprintf(stderr, "%s: failed to read tensor info\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- }
- }
- ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
- int alignment_idx = gguf_find_key(ctx, "general.alignment");
- if (alignment_idx != -1) {
- ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
- }
- // we require the data section to be aligned, so take into account any padding
- {
- const size_t offset_pad = offset % ctx->alignment;
- if (offset_pad != 0) {
- offset += ctx->alignment - offset_pad;
- fseek(file, offset, SEEK_SET);
- }
- }
- // store the current file offset - this is where the data section starts
- ctx->offset = offset;
- // compute the total size of the data section, taking into account the alignment
- {
- ctx->size = 0;
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
- const int64_t ne =
- (int64_t) info->ne[0] *
- (int64_t) info->ne[1] *
- (int64_t) info->ne[2] *
- (int64_t) info->ne[3];
- if (ne % ggml_blck_size(info->type) != 0) {
- fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
- __func__, info->name.data, ne, ggml_blck_size(info->type));
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
- ctx->size += GGML_PAD(size_cur, ctx->alignment);
- }
- }
- // load the tensor data only if requested
- if (params.ctx != NULL) {
- // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
- // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
- // the ggml_tensor structs to the appropriate locations in the binary blob
- // compute the exact size needed for the new ggml_context
- const size_t mem_size =
- params.no_alloc ?
- (ctx->header.n_tensors )*ggml_tensor_overhead() :
- (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
- struct ggml_init_params pdata = {
- .mem_size = mem_size,
- .mem_buffer = NULL,
- .no_alloc = params.no_alloc,
- };
- *params.ctx = ggml_init(pdata);
- struct ggml_context * ctx_data = *params.ctx;
- struct ggml_tensor * data = NULL;
- if (!params.no_alloc) {
- data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
- ok = ok && data != NULL;
- // read the binary blob with the tensor data
- ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
- if (!ok) {
- fprintf(stderr, "%s: failed to read tensor data\n", __func__);
- fclose(file);
- ggml_free(ctx_data);
- gguf_free(ctx);
- return NULL;
- }
- ctx->data = data->data;
- }
- ggml_set_no_alloc(ctx_data, true);
- // create the tensors
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- const int64_t ne[GGML_MAX_DIMS] = {
- ctx->infos[i].ne[0],
- ctx->infos[i].ne[1],
- ctx->infos[i].ne[2],
- ctx->infos[i].ne[3],
- };
- struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
- ok = ok && cur != NULL;
- ggml_set_name(cur, ctx->infos[i].name.data);
- if (!ok) {
- break;
- }
- // point the data member to the appropriate location in the binary blob using the tensor infos
- if (!params.no_alloc) {
- //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
- cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
- }
- }
- if (!ok) {
- fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
- fclose(file);
- ggml_free(ctx_data);
- gguf_free(ctx);
- return NULL;
- }
- ggml_set_no_alloc(ctx_data, params.no_alloc);
- }
- fclose(file);
- return ctx;
- }
- void gguf_free(struct gguf_context * ctx) {
- if (ctx == NULL) {
- return;
- }
- if (ctx->kv) {
- // free string memory - not great..
- for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
- struct gguf_kv * kv = &ctx->kv[i];
- if (kv->key.data) {
- free(kv->key.data);
- }
- if (kv->type == GGUF_TYPE_STRING) {
- if (kv->value.str.data) {
- free(kv->value.str.data);
- }
- }
- if (kv->type == GGUF_TYPE_ARRAY) {
- if (kv->value.arr.data) {
- if (kv->value.arr.type == GGUF_TYPE_STRING) {
- for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
- struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
- if (str->data) {
- free(str->data);
- }
- }
- }
- free(kv->value.arr.data);
- }
- }
- }
- free(ctx->kv);
- }
- if (ctx->infos) {
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
- if (info->name.data) {
- free(info->name.data);
- }
- }
- free(ctx->infos);
- }
- GGML_ALIGNED_FREE(ctx);
- }
- const char * gguf_type_name(enum gguf_type type) {
- return GGUF_TYPE_NAME[type];
- }
- int gguf_get_version(const struct gguf_context * ctx) {
- return ctx->header.version;
- }
- size_t gguf_get_alignment(const struct gguf_context * ctx) {
- return ctx->alignment;
- }
- size_t gguf_get_data_offset(const struct gguf_context * ctx) {
- return ctx->offset;
- }
- void * gguf_get_data(const struct gguf_context * ctx) {
- return ctx->data;
- }
- int gguf_get_n_kv(const struct gguf_context * ctx) {
- return ctx->header.n_kv;
- }
- int gguf_find_key(const struct gguf_context * ctx, const char * key) {
- // return -1 if key not found
- int keyfound = -1;
- const int n_kv = gguf_get_n_kv(ctx);
- for (int i = 0; i < n_kv; ++i) {
- if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
- keyfound = i;
- break;
- }
- }
- return keyfound;
- }
- const char * gguf_get_key(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].key.data;
- }
- enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].type;
- }
- enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.arr.type;
- }
- const void * gguf_get_arr_data(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.arr.data;
- }
- const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
- struct gguf_kv * kv = &ctx->kv[key_id];
- struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
- return str->data;
- }
- int gguf_get_arr_n(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.arr.n;
- }
- uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.uint8;
- }
- int8_t gguf_get_val_i8(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.int8;
- }
- uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.uint16;
- }
- int16_t gguf_get_val_i16(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.int16;
- }
- uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.uint32;
- }
- int32_t gguf_get_val_i32(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.int32;
- }
- float gguf_get_val_f32(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.float32;
- }
- uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.uint64;
- }
- int64_t gguf_get_val_i64(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.int64;
- }
- double gguf_get_val_f64(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.float64;
- }
- bool gguf_get_val_bool(const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.bool_;
- }
- const char * gguf_get_val_str (const struct gguf_context * ctx, int i) {
- return ctx->kv[i].value.str.data;
- }
- int gguf_get_n_tensors(const struct gguf_context * ctx) {
- return ctx->header.n_tensors;
- }
- int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
- // return -1 if tensor not found
- int tensorfound = -1;
- const int n_tensors = gguf_get_n_tensors(ctx);
- for (int i = 0; i < n_tensors; ++i) {
- if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
- tensorfound = i;
- break;
- }
- }
- return tensorfound;
- }
- size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].offset;
- }
- char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].name.data;
- }
- // returns the index
- static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
- const int idx = gguf_find_key(ctx, key);
- if (idx >= 0) {
- return idx;
- }
- const int n_kv = gguf_get_n_kv(ctx);
- ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
- ctx->kv[n_kv].key.n = strlen(key);
- ctx->kv[n_kv].key.data = strdup(key);
- ctx->header.n_kv++;
- return n_kv;
- }
- void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_UINT8;
- ctx->kv[idx].value.uint8 = val;
- }
- void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_INT8;
- ctx->kv[idx].value.int8 = val;
- }
- void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_UINT16;
- ctx->kv[idx].value.uint16 = val;
- }
- void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_INT16;
- ctx->kv[idx].value.int16 = val;
- }
- void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_UINT32;
- ctx->kv[idx].value.uint32 = val;
- }
- void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_INT32;
- ctx->kv[idx].value.int32 = val;
- }
- void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
- ctx->kv[idx].value.float32 = val;
- }
- void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_UINT64;
- ctx->kv[idx].value.uint64 = val;
- }
- void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_INT64;
- ctx->kv[idx].value.int64 = val;
- }
- void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
- ctx->kv[idx].value.float64 = val;
- }
- void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_BOOL;
- ctx->kv[idx].value.bool_ = val;
- }
- void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_STRING;
- ctx->kv[idx].value.str.n = strlen(val);
- ctx->kv[idx].value.str.data = strdup(val);
- }
- void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_ARRAY;
- ctx->kv[idx].value.arr.type = type;
- ctx->kv[idx].value.arr.n = n;
- ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
- memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
- }
- void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_ARRAY;
- ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
- ctx->kv[idx].value.arr.n = n;
- ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
- for (int i = 0; i < n; i++) {
- struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
- str->n = strlen(data[i]);
- str->data = strdup(data[i]);
- }
- }
- // set or add KV pairs from another context
- void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
- for (uint32_t i = 0; i < src->header.n_kv; i++) {
- switch (src->kv[i].type) {
- case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
- case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
- case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
- case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
- case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
- case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
- case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
- case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
- case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
- case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
- case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
- case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
- case GGUF_TYPE_ARRAY:
- {
- if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
- const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
- for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
- data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
- }
- gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
- free(data);
- } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
- GGML_ASSERT(false && "nested arrays not supported");
- } else {
- gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
- }
- } break;
- case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
- }
- }
- }
- void gguf_add_tensor(
- struct gguf_context * ctx,
- const struct ggml_tensor * tensor) {
- const int idx = ctx->header.n_tensors;
- ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
- ctx->infos[idx].name.n = strlen(tensor->name);
- ctx->infos[idx].name.data = strdup(tensor->name);
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- ctx->infos[idx].ne[i] = 1;
- }
- ctx->infos[idx].n_dims = tensor->n_dims;
- for (int i = 0; i < tensor->n_dims; i++) {
- ctx->infos[idx].ne[i] = tensor->ne[i];
- }
- ctx->infos[idx].type = tensor->type;
- ctx->infos[idx].offset = 0;
- ctx->infos[idx].data = tensor->data;
- ctx->infos[idx].size = ggml_nbytes(tensor);
- if (ctx->header.n_tensors > 0) {
- ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
- }
- ctx->header.n_tensors++;
- }
- void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
- const int idx = gguf_find_tensor(ctx, name);
- if (idx < 0) {
- GGML_ASSERT(false && "tensor not found");
- }
- ctx->infos[idx].type = type;
- }
- void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
- const int idx = gguf_find_tensor(ctx, name);
- if (idx < 0) {
- GGML_ASSERT(false && "tensor not found");
- }
- ctx->infos[idx].data = data;
- ctx->infos[idx].size = size;
- // update offsets
- for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
- ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
- }
- }
- //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
- // fwrite(&val->n, sizeof(val->n), 1, file);
- // fwrite(val->data, sizeof(char), val->n, file);
- //}
- //
- //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
- // fwrite(val, sizeof(char), size, file);
- //}
- struct gguf_buf {
- void * data;
- size_t size;
- size_t offset;
- };
- static struct gguf_buf gguf_buf_init(size_t size) {
- struct gguf_buf buf = {
- /*buf.data =*/ size == 0 ? NULL : malloc(size),
- /*buf.size =*/ size,
- /*buf.offset =*/ 0,
- };
- return buf;
- }
- static void gguf_buf_free(struct gguf_buf buf) {
- if (buf.data) {
- free(buf.data);
- }
- }
- static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
- if (buf->offset + size > buf->size) {
- buf->size = 1.5*(buf->offset + size);
- if (buf->data) {
- buf->data = realloc(buf->data, buf->size);
- }
- }
- }
- static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
- gguf_buf_grow(buf, sizeof(val->n) + val->n);
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
- }
- buf->offset += sizeof(val->n);
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, val->data, val->n);
- }
- buf->offset += val->n;
- }
- static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
- gguf_buf_grow(buf, el_size);
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, val, el_size);
- }
- buf->offset += el_size;
- }
- static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
- // write header
- gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
- gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
- gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
- gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
- // write key-value pairs
- for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
- struct gguf_kv * kv = &ctx->kv[i];
- gguf_bwrite_str(buf, &kv->key);
- gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
- switch (kv->type) {
- case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
- case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
- case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
- case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
- case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
- case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
- case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
- case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
- case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
- case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
- case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
- case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
- case GGUF_TYPE_ARRAY:
- {
- gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
- gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
- switch (kv->value.arr.type) {
- case GGUF_TYPE_UINT8:
- case GGUF_TYPE_INT8:
- case GGUF_TYPE_UINT16:
- case GGUF_TYPE_INT16:
- case GGUF_TYPE_UINT32:
- case GGUF_TYPE_INT32:
- case GGUF_TYPE_FLOAT32:
- case GGUF_TYPE_UINT64:
- case GGUF_TYPE_INT64:
- case GGUF_TYPE_FLOAT64:
- case GGUF_TYPE_BOOL:
- {
- gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
- } break;
- case GGUF_TYPE_STRING:
- {
- for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
- gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
- }
- } break;
- case GGUF_TYPE_ARRAY:
- case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
- };
- } break;
- case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
- };
- }
- // write tensor infos
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
- gguf_bwrite_str(buf, &info->name);
- gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
- for (uint32_t j = 0; j < info->n_dims; ++j) {
- gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
- }
- gguf_bwrite_el(buf, &info->type, sizeof(info->type));
- gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
- }
- // we require the data section to be aligned, so take into account any padding
- {
- const size_t offset = buf->offset;
- const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
- if (offset_pad != offset) {
- uint8_t pad = 0;
- for (size_t i = 0; i < offset_pad - offset; ++i) {
- gguf_bwrite_el(buf, &pad, sizeof(pad));
- }
- }
- }
- if (only_meta) {
- return;
- }
- size_t offset = 0;
- // write tensor data
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
- const size_t size = info->size;
- const size_t size_pad = GGML_PAD(size, ctx->alignment);
- gguf_bwrite_el(buf, info->data, size);
- if (size_pad != size) {
- uint8_t pad = 0;
- for (size_t j = 0; j < size_pad - size; ++j) {
- gguf_bwrite_el(buf, &pad, sizeof(pad));
- }
- }
- GGML_ASSERT(offset == info->offset);
- offset += size_pad;
- }
- }
- void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
- FILE * file = fopen(fname, "wb");
- if (!file) {
- GGML_ASSERT(false && "failed to open file for writing");
- }
- struct gguf_buf buf = gguf_buf_init(16*1024);
- gguf_write_to_buf(ctx, &buf, only_meta);
- fwrite(buf.data, 1, buf.offset, file);
- gguf_buf_free(buf);
- fclose(file);
- }
- size_t gguf_get_meta_size(const struct gguf_context * ctx) {
- // no allocs - only compute size
- struct gguf_buf buf = gguf_buf_init(0);
- gguf_write_to_buf(ctx, &buf, true);
- return buf.offset;
- }
- void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
- struct gguf_buf buf = gguf_buf_init(16*1024);
- gguf_write_to_buf(ctx, &buf, true);
- memcpy(data, buf.data, buf.offset);
- gguf_buf_free(buf);
- }
- ////////////////////////////////////////////////////////////////////////////////
- int ggml_cpu_has_avx(void) {
- #if defined(__AVX__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx2(void) {
- #if defined(__AVX2__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512(void) {
- #if defined(__AVX512F__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512_vbmi(void) {
- #if defined(__AVX512VBMI__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512_vnni(void) {
- #if defined(__AVX512VNNI__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_fma(void) {
- #if defined(__FMA__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_neon(void) {
- #if defined(__ARM_NEON)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_arm_fma(void) {
- #if defined(__ARM_FEATURE_FMA)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_f16c(void) {
- #if defined(__F16C__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_fp16_va(void) {
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_wasm_simd(void) {
- #if defined(__wasm_simd128__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_blas(void) {
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_cublas(void) {
- #if defined(GGML_USE_CUBLAS)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_clblast(void) {
- #if defined(GGML_USE_CLBLAST)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_gpublas(void) {
- return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
- }
- int ggml_cpu_has_sse3(void) {
- #if defined(__SSE3__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_ssse3(void) {
- #if defined(__SSSE3__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_vsx(void) {
- #if defined(__POWER9_VECTOR__)
- return 1;
- #else
- return 0;
- #endif
- }
- ////////////////////////////////////////////////////////////////////////////////
|