fairseq2.cpp 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285
  1. #include <math.h>
  2. #include "kaldi-native-fbank/csrc/feature-fbank.h"
  3. #include "kaldi-native-fbank/csrc/feature-window.h"
  4. #include "ggml.h"
  5. #include "fairseq2.h"
  6. #include <unordered_map>
  7. #include <algorithm>
  8. #include <iostream>
  9. /// allocate the fairseq2 model and hyperparameters
  10. extern "C" fairseq2_model* fairseq2_model_alloc() {
  11. // pre-allocate some memory to write hyperparameters and tensors pointers
  12. auto* model = new fairseq2_model;
  13. model->hparams = new std::uint8_t[8 * 1024];
  14. model->tensors_ctx = nullptr;
  15. return model;
  16. }
  17. double fairseq2_model_layer_config_double(const fairseq2_model& model, std::string name) {
  18. const std::int64_t* data = &model.layer_config.at(name);
  19. return *(double*)data;
  20. }
  21. std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, std::string name) {
  22. return model.layer_config.at(name);
  23. }
  24. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  25. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  26. delete (std::uint8_t*)model->hparams;
  27. delete model;
  28. }
  29. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  30. model->ctx = ctx;
  31. }
  32. extern "C" std::string* std_string_alloc(char* c_str) {
  33. return new std::string(c_str);
  34. }
  35. extern "C" void std_string_free(std::string* str) {
  36. delete str;
  37. }
  38. bool has_layer(fairseq2_model& model, const std::string& name) {
  39. return model.tensors.find(name) != model.tensors.end();
  40. }
  41. extern "C" ggml_tensor* Linear_forward(
  42. fairseq2_model& model,
  43. const std::string &prefix,
  44. ggml_tensor* input // (d_in)
  45. ) {
  46. // Note: for now we assumed un-batched input
  47. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  48. GGML_ASSERT(weight != nullptr);
  49. ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
  50. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  51. if (bias == nullptr) return out;
  52. return ggml_add_inplace(model.ctx, out, bias);
  53. }
  54. extern "C" ggml_tensor* LayerNorm_forward(
  55. fairseq2_model& model,
  56. const std::string &prefix,
  57. ggml_tensor* input
  58. ) {
  59. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  60. GGML_ASSERT(weight != nullptr);
  61. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  62. GGML_ASSERT(bias != nullptr);
  63. auto ctx = model.ctx;
  64. double eps = fairseq2_model_layer_config_double(model, prefix + ".eps");
  65. input = ggml_norm(ctx, input, /*eps*/eps);
  66. return ggml_add_inplace(
  67. ctx,
  68. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  69. ggml_repeat(ctx, bias, input)
  70. );
  71. }
  72. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  73. fairseq2_model& model,
  74. const std::string& prefix,
  75. ggml_tensor* seqs
  76. ) {
  77. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  78. // inner_activation = ReLu // TODO: allow other activation
  79. seqs = ggml_relu_inplace(model.ctx, seqs);
  80. if (has_layer(model, prefix + ".inner_layer_norm")) {
  81. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  82. }
  83. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  84. return seqs;
  85. }
  86. extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
  87. fairseq2_model& model,
  88. const std::string& prefix,
  89. ggml_tensor* seqs
  90. ) {
  91. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  92. seqs = ggml_silu(model.ctx, seqs);
  93. if (has_layer(model, prefix + ".inner_layer_norm")) {
  94. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  95. }
  96. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  97. return seqs;
  98. }
  99. ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
  100. int n_dims = x->n_dims;
  101. GGML_ASSERT(dim >= 0);
  102. GGML_ASSERT(dim < n_dims);
  103. GGML_ASSERT(ggml_is_contiguous(x));
  104. // Nothing to do
  105. if (dim == n_dims - 1) return x;
  106. if (n_dims == 2) {
  107. return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
  108. } else if (n_dims == 3) {
  109. if (dim == 0) {
  110. return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
  111. } else { // dim == 1
  112. return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
  113. }
  114. } else { // n_dims == 4
  115. if (dim == 0) {
  116. return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
  117. } else if (dim == 1) {
  118. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
  119. } else { // dim == 2
  120. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
  121. }
  122. }
  123. }
  124. ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
  125. int n_dims = x->n_dims;
  126. GGML_ASSERT(dim >= 0);
  127. GGML_ASSERT(dim < n_dims);
  128. GGML_ASSERT(n_dims < 4);
  129. if (n_dims == 1) {
  130. return ggml_reshape_2d(ctx, x, num_el, x->ne[0] / num_el);
  131. } else if (n_dims == 2) {
  132. if (dim == 0) {
  133. return ggml_reshape_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1]);
  134. } else { // dim == 1
  135. return ggml_reshape_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el);
  136. }
  137. } else { // (n_dims == 3)
  138. if (dim == 0) {
  139. return ggml_reshape_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2]);
  140. } else if (dim == 1) {
  141. return ggml_reshape_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2]);
  142. } else { // dim == 2
  143. return ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el);
  144. }
  145. }
  146. }
  147. ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
  148. // (B, S, dim) -> (B, S, H, H_dim)
  149. x = ggml_unflatten_1d(ctx, x, 0, head_dim);
  150. x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
  151. x = ggml_cont(ctx, x);
  152. x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
  153. return x;
  154. }
  155. /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
  156. ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
  157. // (B, Sk, dim) -> (B, Sk, H, H_dim)
  158. v = ggml_unflatten_1d(ctx, v, 0, head_dim);
  159. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
  160. v = ggml_cont(ctx, v);
  161. v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
  162. return v;
  163. }
  164. // flash_attn doesn't work for cross attention because it assumes Q <= K
  165. // TODO: enable flash_attn only for the encoder
  166. # define UNITY_FLASH_ATTN 0
  167. extern "C" ggml_tensor* MultiheadAttention_forward(
  168. fairseq2_model& model,
  169. const std::string &prefix,
  170. ggml_tensor* queries, // (slen, d_in)
  171. ggml_tensor* keys, // (klen, d_in)
  172. ggml_tensor* values, // (klen, d_out)
  173. ggml_tensor* attn_mask // (klen, slen)
  174. ) {
  175. int model_dim = queries->ne[0];
  176. int num_heads = 16; // TODO: read from hparams
  177. int head_dim = model_dim / num_heads;
  178. GGML_ASSERT(model_dim % num_heads == 0);
  179. ggml_context* ctx = model.ctx;
  180. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
  181. ggml_set_name(q, "q");
  182. q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
  183. ggml_tensor* k = Linear_forward(model, prefix + ".k_proj", keys);
  184. ggml_set_name(k, "k");
  185. k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
  186. ggml_tensor* v = Linear_forward(model, prefix + ".v_proj", values);
  187. ggml_set_name(v, "v");
  188. v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
  189. v = ggml_cont(ctx, v);
  190. #if UNITY_FLASH_ATTN
  191. // For flash_attn, we assume either no masks, or triangular masks.
  192. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
  193. ggml_set_name(attn, "attn");
  194. // TODO test !
  195. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  196. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
  197. #else
  198. // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
  199. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  200. ggml_set_name(qk, "qk");
  201. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  202. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  203. qk = ggml_scale(ctx, qk, qk_scale);
  204. ggml_set_name(qk, "qk_scaled");
  205. // TODO: Should we replace this by ggml_diag_mask_inf ?
  206. if (attn_mask) qk = ggml_add(ctx, qk, attn_mask);
  207. // TODO: upgrade qk to float32 if needed
  208. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
  209. ggml_set_name(attn_weights, "attn_weights");
  210. // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
  211. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  212. ggml_set_name(attn, "attn");
  213. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  214. attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
  215. #endif // UNITY_FLASH_ATTN
  216. attn = ggml_cont(ctx, attn);
  217. attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
  218. // out -> (B, S, d_out)
  219. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  220. ggml_set_name(out, "out");
  221. return out;
  222. }
  223. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  224. fairseq2_model& model,
  225. const std::string& prefix,
  226. ggml_tensor* seqs,
  227. ggml_tensor* padding_mask
  228. ) {
  229. ggml_context* ctx = model.ctx;
  230. // TODO: read norm_order from model
  231. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  232. // _forward_self_attn(seqs, padding_mask)
  233. auto residual = seqs;
  234. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  235. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  236. // TODO: add padding_mask to MultiheadAttention_forward
  237. GGML_ASSERT(padding_mask == nullptr);
  238. seqs = MultiheadAttention_forward(
  239. model,
  240. prefix + ".self_attn",
  241. seqs,
  242. seqs,
  243. seqs,
  244. /*attn_mask=*/nullptr
  245. );
  246. if (has_layer(model, prefix + ".self_attn_norm"))
  247. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  248. seqs = ggml_add(ctx, seqs, residual);
  249. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  250. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  251. // _forward_ffn(seqs)
  252. residual = seqs;
  253. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  254. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  255. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  256. // TODO: if self.residual_scale is not None:
  257. // residual = self.residual_scale * residual
  258. seqs = ggml_add(ctx, seqs, residual);
  259. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  260. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  261. return seqs;
  262. }
  263. extern "C" ggml_tensor* WaveformToFbank_forward(
  264. fairseq2_model& model,
  265. const std::string &prefix,
  266. ggml_tensor* waveform
  267. ) {
  268. // Hardcoding: num_bins 80, sample rate 16k, always standardize
  269. ggml_context* ctx = model.ctx;
  270. knf::MelBanksOptions mel_opts{};
  271. mel_opts.num_bins = 80;
  272. knf::FrameExtractionOptions frame_opts{};
  273. frame_opts.samp_freq = 16000;
  274. knf::FbankOptions opts{};
  275. opts.frame_opts = frame_opts;
  276. opts.mel_opts = mel_opts;
  277. std::vector<float_t> signal_frame{};
  278. std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
  279. struct ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames);
  280. knf::FbankComputer native_(opts);
  281. knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
  282. for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
  283. signal_frame.resize(0);
  284. // Extract the frame from the waveform tensor.
  285. knf::ExtractWindow(
  286. /*sample_offset=*/0,
  287. (float *)(waveform->data),
  288. waveform->ne[0],
  289. frame_nr,
  290. frame_opts,
  291. window_fn_,
  292. &signal_frame);
  293. native_.Compute(
  294. /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
  295. }
  296. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  297. output = ggml_norm(ctx, output, 1e-5);
  298. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  299. if (output->ne[1] % 2 == 1) {
  300. struct ggml_tensor * remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);
  301. for (int i = 0; i < output->ne[1]-1; ++i) {
  302. ((int32_t *) remove_last->data)[i] = i;
  303. }
  304. output = ggml_get_rows(ctx, output, remove_last);
  305. }
  306. output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
  307. return output;
  308. }
  309. // TODO: Check if it's possible to merge with standard MHA
  310. extern "C" ggml_tensor* RelativePositionMHA_forward(
  311. fairseq2_model& model,
  312. const std::string& prefix,
  313. ggml_tensor* seqs
  314. ) {
  315. ggml_context* ctx = model.ctx;
  316. ggml_tensor* residual = seqs;
  317. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  318. // self_attn: qkv
  319. struct ggml_tensor * Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
  320. struct ggml_tensor * Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
  321. struct ggml_tensor * Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
  322. // self_attn: rel_pos SDPA
  323. int32_t S = seqs->ne[1];
  324. int32_t H = 16; // TODO: Make this configurable
  325. int32_t n_ctx = 4096;
  326. int32_t K_h = seqs->ne[0] / H;
  327. int32_t start_index = n_ctx - S;
  328. int32_t end_index = n_ctx + S - 1;
  329. int num_indices = end_index - start_index;
  330. struct ggml_tensor *rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices);
  331. rows->data = malloc(ggml_nbytes(rows));
  332. for (int i = 0; i < num_indices; i++) {
  333. ((int32_t *)rows->data)[i] = start_index + i;
  334. }
  335. // self_attn: load pos_enc weights & compute_r
  336. // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
  337. // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
  338. struct ggml_tensor * r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
  339. r = ggml_mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
  340. r = ggml_dup(ctx, ggml_permute(ctx,
  341. ggml_cpy(ctx,
  342. r,
  343. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S*2-1)),
  344. 0, 2, 1, 3));
  345. struct ggml_tensor * u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
  346. struct ggml_tensor * v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
  347. // self_attn: Permute QKV
  348. struct ggml_tensor * Q =
  349. ggml_dup(ctx, ggml_permute(ctx,
  350. ggml_cpy(ctx,
  351. Qcur,
  352. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  353. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  354. struct ggml_tensor * K =
  355. ggml_dup(ctx, ggml_permute(ctx,
  356. ggml_cpy(ctx,
  357. Kcur,
  358. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  359. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  360. struct ggml_tensor * V =
  361. ggml_dup(ctx, ggml_permute(ctx,
  362. ggml_cpy(ctx,
  363. Vcur,
  364. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  365. 1, 2, 0, 3)); // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
  366. struct ggml_tensor * q_with_u_bias = ggml_add(ctx, Q, u_bias); // (K_h, S, H)
  367. struct ggml_tensor * q_with_v_bias = ggml_add(ctx, Q, v_bias); // (K_h, S, H)
  368. struct ggml_tensor * ac = ggml_mul_mat(ctx, K, q_with_u_bias);
  369. struct ggml_tensor * bd = ggml_mul_mat(ctx, r, q_with_v_bias);
  370. // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
  371. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
  372. struct ggml_tensor * pad = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1);
  373. pad->data = malloc(ggml_nbytes(pad));
  374. pad = ggml_set_f32(pad, 0.0);
  375. bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
  376. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
  377. bd = ggml_dup(ctx, ggml_reshape_3d(ctx, bd, S, 2*S, H)); // (S, 2S, H)
  378. bd = ggml_remove_head_row(ctx, bd); // A custom operator introduced to reduce 1st row (in the 2nd dim)
  379. bd = ggml_reshape_3d(ctx, bd, 2*S-1, S, H);
  380. bd = ggml_get_first_cols_by_rows(ctx, bd); // A custom operator introduced to get first #rows cols.
  381. // self_attn: compute attn / weights
  382. struct ggml_tensor * attn_weights = ggml_add(ctx, ac, bd);
  383. struct ggml_tensor * attn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  384. attn_scale->data = malloc(ggml_nbytes(attn_scale));
  385. ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
  386. attn_weights = ggml_mul(ctx, ggml_repeat(ctx, attn_scale, attn_weights), attn_weights);
  387. attn_weights = ggml_soft_max(ctx, attn_weights);
  388. struct ggml_tensor * attn = ggml_mul_mat(ctx, V, attn_weights); // K_h, S, H
  389. attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
  390. struct ggml_tensor * attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
  391. struct ggml_tensor * attn_out = ggml_mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
  392. attn_out = ggml_add(ctx,
  393. ggml_repeat(ctx,
  394. model.tensors[prefix + ".output_proj.bias"],
  395. attn_out),
  396. attn_out);
  397. attn_out = ggml_add(ctx, residual, attn_out);
  398. return attn_out;
  399. }
  400. extern "C" ggml_tensor* ConvModule_forward(
  401. fairseq2_model& model,
  402. const std::string& prefix,
  403. ggml_tensor* seqs
  404. ) {
  405. ggml_context* ctx = model.ctx;
  406. ggml_tensor* residual = seqs;
  407. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  408. // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
  409. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
  410. // conv: GLU
  411. seqs = ggml_glu(ctx, seqs);
  412. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  413. // S x C -> (S+K-1) x C -> K x S x C -> S x C
  414. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);
  415. // conv: Custom implementation of batch norm
  416. seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
  417. // conv: SiLU actvation
  418. seqs = ggml_silu(ctx, seqs);
  419. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  420. // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
  421. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
  422. // conv: + residual
  423. seqs = ggml_add(ctx, seqs, residual);
  424. return seqs;
  425. }
  426. extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
  427. fairseq2_model& model,
  428. const std::string& prefix,
  429. ggml_tensor* seqs,
  430. ggml_tensor* padding_mask
  431. ) {
  432. ggml_context* ctx = model.ctx;
  433. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  434. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  435. ggml_set_f32(ffn_scale, 0.5f);
  436. struct ggml_tensor * residual = seqs;
  437. seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
  438. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
  439. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  440. seqs = ggml_add(ctx, seqs, residual);
  441. seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
  442. seqs = ConvModule_forward(model, prefix + ".conv", seqs);
  443. residual = seqs;
  444. seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
  445. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
  446. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  447. seqs = ggml_add(ctx, seqs, residual);
  448. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  449. return seqs;
  450. }
  451. extern "C" ggml_tensor* StandardConformerEncoder_forward(
  452. fairseq2_model& model,
  453. const std::string& prefix,
  454. ggml_tensor* seqs,
  455. ggml_tensor* padding_mask
  456. ) { // TODO: Implement this!
  457. ggml_context* ctx = model.ctx;
  458. seqs = WaveformToFbank_forward(model, prefix, seqs);
  459. seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
  460. seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
  461. int layer_idx = 0;
  462. std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  463. while (has_layer(model, layer_name)) {
  464. seqs = StandardConformerEncoderLayer_forward(
  465. model, layer_name, seqs, padding_mask
  466. );
  467. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  468. layer_idx += 1;
  469. layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  470. }
  471. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  472. ggml_tensor* residual = seqs;
  473. seqs = Linear_forward(model, prefix + ".proj1", seqs);
  474. seqs = ggml_relu_inplace(ctx, seqs);
  475. seqs = Linear_forward(model, prefix + ".proj2", seqs);
  476. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  477. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  478. ggml_set_f32(ffn_scale, 0.5f);
  479. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  480. seqs = ggml_add(ctx, seqs, residual);
  481. layer_idx = 0;
  482. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  483. while (has_layer(model, layer_name)) {
  484. seqs = StandardConformerEncoderAdaptorLayer_forward(
  485. model, layer_name, seqs, padding_mask
  486. );
  487. ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
  488. layer_idx += 1;
  489. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  490. }
  491. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  492. return seqs;
  493. }
  494. extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
  495. fairseq2_model& model,
  496. const std::string& prefix,
  497. ggml_tensor* seqs,
  498. ggml_tensor* padding_mask
  499. ) {
  500. ggml_context* ctx = model.ctx;
  501. struct ggml_tensor * residual = seqs;
  502. residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
  503. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  504. residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);
  505. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  506. residual = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
  507. residual = ggml_glu(ctx, residual);
  508. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  509. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  510. seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);
  511. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  512. seqs = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs), seqs);
  513. seqs = ggml_glu(ctx, seqs);
  514. seqs = MultiheadAttention_forward(
  515. model,
  516. prefix + ".self_attn",
  517. seqs,
  518. seqs,
  519. seqs,
  520. /*attention masks=*/nullptr
  521. );
  522. seqs = ggml_add(ctx, seqs, residual);
  523. residual = seqs;
  524. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  525. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  526. seqs = ggml_add(ctx, seqs, residual);
  527. return seqs;
  528. }
  529. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  530. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  531. struct ggml_tensor * ggml_slice(
  532. struct ggml_context * ctx,
  533. struct ggml_tensor * a,
  534. int axis,
  535. int64_t start,
  536. int64_t end
  537. ) {
  538. int64_t ne[4];
  539. std::copy(a->ne, a->ne + 4, ne);
  540. if (axis < 0) axis = a->n_dims + axis;
  541. if (start < 0) start = ne[axis] + start;
  542. if (end < 0) end = ne[axis] + end;
  543. GGML_ASSERT(0 <= start);
  544. GGML_ASSERT(start <= end);
  545. GGML_ASSERT(end <= ne[axis]);
  546. ne[axis] = end - start;
  547. size_t offset = a->nb[axis] * start;
  548. size_t* nb = a->nb;
  549. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  550. result->n_dims = a->n_dims;
  551. return result;
  552. }
  553. extern "C" ggml_tensor* PositionalEmbedding_forward(
  554. fairseq2_model& model,
  555. const std::string& prefix,
  556. ggml_tensor* embeds
  557. ) {
  558. // This only work with the simple pos encoders
  559. int seq_len = embeds->ne[1];
  560. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  561. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
  562. return ggml_add(model.ctx, embeds, pos_embeds);
  563. }
  564. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  565. fairseq2_model& model,
  566. const std::string& prefix,
  567. ggml_tensor* seqs
  568. // TODO: state_bag
  569. ) {
  570. GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
  571. ggml_context* ctx = model.ctx;
  572. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  573. GGML_ASSERT(embed_weights != nullptr);
  574. ggml_tensor* embeds;
  575. if (seqs->n_dims == 1) {
  576. embeds = ggml_get_rows(ctx, embed_weights, seqs);
  577. } else {
  578. // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
  579. ggml_tensor* flat_seqs = seqs;
  580. if (!ggml_is_contiguous(seqs)) {
  581. flat_seqs->type = GGML_TYPE_F32;
  582. flat_seqs = ggml_cont(ctx, flat_seqs);
  583. }
  584. flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
  585. flat_seqs->type = GGML_TYPE_I32;
  586. embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
  587. embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
  588. embeds->n_dims = seqs->n_dims + 1;
  589. }
  590. // padding mask ?
  591. // padding_mask = to_padding_mask(embeds, seq_lens)
  592. if (has_layer(model, prefix + ".pos_encoder")) {
  593. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  594. }
  595. if (has_layer(model, prefix + ".layer_norm")) {
  596. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  597. }
  598. return embeds;
  599. }
  600. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  601. fairseq2_model& model,
  602. const std::string& prefix,
  603. ggml_tensor* seqs,
  604. ggml_tensor* padding_mask
  605. ) {
  606. int layer_idx = 0;
  607. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  608. while (has_layer(model, layer_name)) {
  609. seqs = StandardTransformerEncoderLayer_forward(
  610. model, layer_name, seqs, padding_mask
  611. );
  612. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  613. layer_idx += 1;
  614. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  615. }
  616. if (has_layer(model, prefix + ".layer_norm"))
  617. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  618. return seqs;
  619. }
  620. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  621. fairseq2_model& model,
  622. const std::string& prefix,
  623. ggml_tensor* seqs,
  624. ggml_tensor* self_attn_mask,
  625. ggml_tensor* encoder_output,
  626. ggml_tensor* encoder_padding_mask
  627. ) {
  628. ggml_context* ctx = model.ctx;
  629. // TODO: read norm_order from model
  630. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  631. // _forward_self_attn(seqs, padding_mask)
  632. auto residual = seqs;
  633. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  634. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  635. seqs = MultiheadAttention_forward(
  636. model,
  637. prefix + ".self_attn",
  638. seqs,
  639. seqs,
  640. seqs,
  641. /*attn_mask=*/self_attn_mask
  642. );
  643. if (has_layer(model, prefix + ".self_attn_norm"))
  644. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  645. seqs = ggml_add(ctx, seqs, residual);
  646. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  647. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  648. // _forward_encoder_decoder_attn
  649. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  650. // `encoder_output` must be `None` for decoder-only attention.
  651. GGML_ASSERT(encoder_output == nullptr);
  652. return seqs;
  653. }
  654. // `encoder_output` must not be `None` for encoder-decoder attention.
  655. GGML_ASSERT(encoder_output != nullptr);
  656. residual = seqs;
  657. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  658. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  659. seqs = MultiheadAttention_forward(
  660. model,
  661. prefix + ".encoder_decoder_attn",
  662. seqs,
  663. encoder_output,
  664. encoder_output,
  665. /*attention masks=*/encoder_padding_mask
  666. );
  667. seqs = ggml_add(ctx, seqs, residual);
  668. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  669. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  670. // _forward_ffn(seqs)
  671. residual = seqs;
  672. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  673. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  674. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  675. // TODO:
  676. // if self.residual_scale is not None:
  677. // residual = self.residual_scale * residual
  678. seqs = ggml_add(ctx, seqs, residual);
  679. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  680. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  681. return seqs;
  682. }
  683. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  684. auto seq_len = seqs->ne[1];
  685. // TODO: allow other ggml_type
  686. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  687. return ggml_diag_mask_inf(ctx, mask, 0);
  688. }
  689. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  690. fairseq2_model& model,
  691. const std::string& prefix,
  692. ggml_tensor* seqs,
  693. ggml_tensor* padding_mask,
  694. ggml_tensor* encoder_output,
  695. ggml_tensor* encoder_padding_mask
  696. ) {
  697. int layer_idx = 0;
  698. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  699. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  700. while (has_layer(model, layer_name)) {
  701. seqs = StandardTransformerDecoderLayer_forward(
  702. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  703. );
  704. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  705. layer_idx += 1;
  706. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  707. }
  708. if (has_layer(model, prefix + ".layer_norm"))
  709. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  710. return seqs;
  711. }
  712. using IncrementalStateBag = std::unordered_map<ggml_tensor*, ggml_tensor*>*;
  713. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  714. auto opts = job.opts;
  715. int max_seq_len = -1;
  716. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  717. max_seq_len = opts.hard_max_seq_len;
  718. } else {
  719. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
  720. }
  721. if (opts.min_seq_len > max_seq_len) {
  722. printf(
  723. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  724. opts.min_seq_len,
  725. max_seq_len
  726. );
  727. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  728. }
  729. int prefix_seq_len = job.prefix_seq->ne[0];
  730. if (prefix_seq_len >= max_seq_len) {
  731. printf(
  732. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  733. prefix_seq_len,
  734. max_seq_len
  735. );
  736. GGML_ASSERT(prefix_seq_len < max_seq_len);
  737. }
  738. return max_seq_len;
  739. }
  740. void _fan_out_encoder_output(
  741. ggml_context* ctx,
  742. ggml_tensor** encoder_output_out,
  743. ggml_tensor** encoder_padding_mask_out,
  744. int beam_size
  745. ) {
  746. // (S_enc, M)
  747. ggml_tensor* encoder_output = *encoder_output_out;
  748. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  749. // (B, S_enc, M)
  750. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  751. // (S_enc, M) -> (B, S_enc, M)
  752. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  753. // (S_enc) -> (B, S_enc)
  754. if (encoder_padding_mask != nullptr) {
  755. ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
  756. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  757. }
  758. }
  759. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  760. // TODO: this isn't the most precise way of doing this
  761. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  762. }
  763. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  764. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  765. ggml_type true_type = x->type;
  766. x->type = GGML_TYPE_F32;
  767. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  768. y->type = true_type;
  769. return y;
  770. }
  771. void _bootstrap_seqs_and_scores(
  772. fairseq2_model& model,
  773. const SequenceGeneratorJob& job,
  774. ggml_tensor* full_seqs,
  775. ggml_tensor* scores,
  776. ggml_tensor* encoder_output,
  777. ggml_tensor* encoder_padding_mask,
  778. IncrementalStateBag state_bag
  779. ) {
  780. int prefix_seq_len = job.prefix_seq->ne[0];
  781. int max_seq_len = scores->ne[0];
  782. int beam_size = scores->ne[1];
  783. GGML_ASSERT(prefix_seq_len > 0);
  784. if (prefix_seq_len == 1)
  785. return;
  786. ggml_context* ctx = model.ctx;
  787. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  788. full_seqs->type = GGML_TYPE_F32;
  789. job.prefix_seq->type = GGML_TYPE_F32;
  790. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  791. seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
  792. // We have to bootstrap the model with the already fanned-out encoder
  793. // output to correctly initialize its incremental state.
  794. // Note: we don't start decoding the last prefix token just yet.
  795. seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
  796. seqs->type = GGML_TYPE_I32;
  797. // Bootstrap the model state with prefix sequence.
  798. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  799. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  800. model,
  801. "text_decoder",
  802. seqs,
  803. /*padding_mask*/ nullptr,
  804. encoder_output,
  805. encoder_padding_mask
  806. // TODO: state_bag
  807. );
  808. // TODO state_bag.increment_step(prefix_seq_len - 1)
  809. // logits, lprobs: (N, S_pfx - 1, V)
  810. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  811. int vocab_size = logits->ne[0];
  812. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  813. ggml_cgraph gf = ggml_build_forward(lprobs);
  814. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  815. full_seqs->type = GGML_TYPE_I32;
  816. job.prefix_seq->type = GGML_TYPE_I32;
  817. // Fetch scores of next steps from "lprobs"
  818. float p_score = 0;
  819. for (int i = 1; i < prefix_seq_len; ++i) {
  820. int p = ggml_get_i32_1d(job.prefix_seq, i);
  821. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  822. for (int b = 0; b < beam_size; ++b) {
  823. // scores: (N, S)
  824. // Note: First step (e.g. BOS)'s score is always 0.
  825. ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
  826. }
  827. }
  828. }
  829. /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
  830. int topk(
  831. ggml_tensor* lprobs, // (B, V)
  832. std::int64_t k,
  833. ggml_tensor* candidate_indices
  834. ) {
  835. // Take the best 2 x `beam_size` predictions. We'll choose the first
  836. // `beam_size` of these which don't predict EOS to continue with.
  837. // (N, 2 x B)
  838. // `vocab_size` - 1 to never select PAD.
  839. std::int64_t K = std::min(k, ggml_nelements(lprobs));
  840. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  841. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  842. };
  843. GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
  844. auto cand = (std::int32_t*)candidate_indices->data;
  845. std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
  846. return K;
  847. }
  848. void ggml_detach(ggml_tensor* a) {
  849. a->op = GGML_OP_NONE;
  850. a->src[0] = nullptr;
  851. }
  852. /// Copies the sequence and scores of a given candidate beam.
  853. void _finalize_hypothesis(
  854. const SequenceGeneratorJob& job,
  855. ggml_context* ctx,
  856. int step_nr,
  857. std::int32_t beam,
  858. std::int32_t token,
  859. float eos_score,
  860. ggml_tensor* seqs, // (beam_size, seq_len)
  861. ggml_tensor* scores, // (beam_size, seq_len)
  862. Hypothesis* hypothesis
  863. ) {
  864. ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  865. hypothesis->seq = seq;
  866. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  867. hypothesis->step_scores = step_scores;
  868. auto tok = (std::int32_t*)seq->data;
  869. for (int i = 0; i < step_nr + 1; ++i) {
  870. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  871. }
  872. tok[step_nr + 1] = token;
  873. // Convert from cumulative to per-step scores.
  874. auto sc = (float*)step_scores->data;
  875. float last_score = eos_score;
  876. for (int i = step_nr; i >= 0; --i) {
  877. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  878. sc[i + 1] = last_score - sc0;
  879. last_score = sc0;
  880. }
  881. sc[0] = 0;
  882. if (job.opts.normalize_scores)
  883. // Skip first EOS since it is always 0 and skews normalization.
  884. eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  885. hypothesis->score = eos_score;
  886. }
  887. // Uses ggml_context to store any object.
  888. #define GGML_CTX_ALLOC(ctx, Type, n) \
  889. (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
  890. /// Generates a translation for a single sequence
  891. // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
  892. // TODO: clean ups
  893. // * replace manual tensor tweaking with ggml_set_*d (a ggml_set_slice could be useful)
  894. extern "C" Hypothesis* generate_sequence(
  895. fairseq2_model& model,
  896. const SequenceGeneratorJob& job,
  897. ggml_tensor* encoder_output,
  898. ggml_tensor* encoder_padding_mask,
  899. ggml_context* result_ctx
  900. ) {
  901. ggml_context* ctx = model.ctx;
  902. size_t eos_idx = job.eos_idx;
  903. auto pad_idx = job.pad_idx;
  904. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  905. size_t vocab_size = embed->ne[1];
  906. std::size_t beam_size = job.opts.beam_size;
  907. int source_seq_len = encoder_output->ne[1];
  908. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  909. // (S_enc, M) -> (B, S_enc, M)
  910. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  911. // Allocate results in the context provided by the caller.
  912. Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
  913. Hypothesis* finished_searches = finished_searches_begin;
  914. for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
  915. Hypothesis* finished_searches_end = finished_searches + beam_size;
  916. // Initialize buffers. (B, S)
  917. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  918. ggml_set_i32(seqs, 0);
  919. ggml_set_name(seqs, "seqs_0");
  920. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  921. ggml_set_name(scores, "scores_0");
  922. ggml_set_f32(scores, 0.0);
  923. IncrementalStateBag state_bag = {};
  924. _bootstrap_seqs_and_scores(
  925. model, job, seqs, scores, encoder_output, encoder_padding_mask, state_bag
  926. );
  927. int prefix_seq_len = job.prefix_seq->ne[0];
  928. int start_step = prefix_seq_len - 1;
  929. // Holds the indices of beams (a beam can occur more than once) that we
  930. // should continue with in the next step.
  931. ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  932. ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  933. ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
  934. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  935. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  936. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  937. ((int32_t *)(candidate_indices->data))[i] = i;
  938. // TODO: memory management, there should be a per-step ggml_context for intermediary results
  939. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  940. // because of no IncrementalStateBag we pass input from the start
  941. // decoder_input = seqs[:, 0 : step_nr + 1]
  942. ggml_tensor* decoder_input = ggml_slice(ctx, seqs, 0, 0, step_nr + 1);
  943. decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", decoder_input);
  944. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  945. model,
  946. "text_decoder",
  947. decoder_input,
  948. nullptr, // We never generate PAD.
  949. encoder_output,
  950. encoder_padding_mask
  951. // state_bag=state_bag,
  952. ); // (B, S, D)
  953. // state_bag.increment_step()
  954. // Because of no IncrementalStateBag decoder_output here is of shape (B, S, D)
  955. // Just look at the last token.
  956. decoder_output = ggml_slice(ctx, decoder_output, 1, step_nr, step_nr+1);
  957. decoder_output = ggml_cont(ctx, decoder_output);
  958. decoder_output = ggml_flatten_1d(ctx, decoder_output, 0); // (B, model_dim)
  959. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
  960. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  961. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  962. // TODO: use ggml properly compute the tweaks
  963. ggml_cgraph gf = ggml_build_forward(lprobs);
  964. printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
  965. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  966. ggml_detach(lprobs);
  967. // // Do not allow EOS before reaching the minimum sequence length.
  968. if (step_nr < job.opts.min_seq_len) {
  969. // lprobs[:, :, self.eos_idx] = -INFINITY;
  970. for (size_t i = 0; i < beam_size; ++i)
  971. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  972. }
  973. // If we have reached the maximum length, force the last step to be EOS.
  974. if (step_nr == max_seq_len - 2) {
  975. // lprobs[:, :, : self.eos_idx] = -torch.inf
  976. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  977. for (size_t b = 0; b < beam_size; ++b) {
  978. size_t t = 0;
  979. for (t = 0; t < eos_idx; ++t)
  980. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  981. for (t = eos_idx + 1; t < vocab_size; ++t)
  982. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  983. }
  984. }
  985. // Never allow PAD.
  986. for (size_t i = 0; i < beam_size; ++i)
  987. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  988. // Apply UNK penalty.
  989. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  990. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  991. auto lprobs_raw = ggml_get_data_f32(lprobs);
  992. for (size_t i = 0; i < beam_size; ++i)
  993. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  994. }
  995. ggml_tensor* last_scores = ggml_slice(ctx, scores, 0, step_nr, step_nr+1);
  996. if (step_nr == start_step) {
  997. // At the initial step, all hypotheses are equally likely, so we use
  998. // only the first beam.
  999. lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
  1000. lprobs = ggml_cont(ctx, lprobs);
  1001. // The first step always indicates the beginning of the sequence and has no score.
  1002. if (step_nr > 0) {
  1003. last_scores = ggml_slice(ctx, last_scores, 1, 0, 1);
  1004. lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1005. }
  1006. } else {
  1007. // Make probabilities contain cumulative scores for each hypothesis.
  1008. lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1009. }
  1010. gf = ggml_build_forward(lprobs);
  1011. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1012. // Determine (beam, token) candidates for the next step.
  1013. // (N, 2 x B)
  1014. std::int64_t K = topk(
  1015. lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
  1016. );
  1017. std::size_t ongoing_beams = 0;
  1018. for (std::int32_t i = 0; i < K; ++i) {
  1019. int c = ggml_get_f32_1d(candidate_indices, i);
  1020. std::int32_t beam = c / vocab_size;
  1021. std::int32_t token = c % vocab_size;
  1022. float tok_score = ggml_get_f32_1d(lprobs, c);
  1023. // Detect beams that reached the minimum length and that end with an EOS.
  1024. bool eos = token == job.eos_idx;
  1025. eos &= tok_score != -INFINITY;
  1026. if (eos) {
  1027. _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);
  1028. if (finished_searches == finished_searches_end)
  1029. goto end_of_beam_search;
  1030. continue;
  1031. }
  1032. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  1033. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  1034. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  1035. ongoing_beams += 1;
  1036. if (ongoing_beams >= beam_size) break;
  1037. }
  1038. // Reorder beams in the `seq` and `score` buffers. The same beam can
  1039. // be selected more than once.
  1040. ggml_tensor* new_seqs = seqs;
  1041. ggml_tensor* new_scores = scores;
  1042. if (step_nr > start_step) {
  1043. // (B, S), (B) -> (B, S)
  1044. // ggml_get_rows and ggml_set only work with floats ...
  1045. new_seqs->type = GGML_TYPE_F32;
  1046. new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
  1047. new_scores = ggml_get_rows(ctx, scores, beam_indices);
  1048. gf = ggml_build_forward(new_seqs);
  1049. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1050. ggml_detach(new_seqs);
  1051. new_seqs->type = GGML_TYPE_I32;
  1052. gf = ggml_build_forward(new_scores);
  1053. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1054. ggml_detach(new_scores);
  1055. }
  1056. // new_seqs[:, step_nr + 1] = next_tokens
  1057. // new_scores[:, step_nr + 1] = next_scores
  1058. for (std::size_t i = 0; i < beam_size; ++i) {
  1059. ((std::int32_t*)new_seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
  1060. ((float*)new_scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
  1061. }
  1062. // TODO the old seqs and score buffers could be reused for next step
  1063. seqs = new_seqs;
  1064. scores = new_scores;
  1065. }
  1066. end_of_beam_search:
  1067. // Ensure that hypotheses are sorted by decreasing scores before returning.
  1068. std::sort(
  1069. finished_searches_begin,
  1070. finished_searches_end,
  1071. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  1072. );
  1073. return finished_searches_begin;
  1074. }
  1075. extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
  1076. Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
  1077. result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
  1078. ggml_set_i32_1d(result[0].seq, 0, 314);
  1079. result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
  1080. ggml_set_i32_1d(result[1].seq, 0, 421);
  1081. return result;
  1082. }