mt.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # All rights reserved.
  3. # This source code is licensed under the license found in the
  4. # MIT_LICENSE file in the root directory of this source tree.
  5. #
  6. # This script contains the builder and loader for the MT models. It has some
  7. # overlaps with fairseq2.models.nllb, except for a few subtle changes
  8. # in the tokenizer, patches of layers, etc.
  9. from pathlib import Path
  10. from typing import Any, Mapping, Optional, Literal
  11. import torch
  12. from torch.nn.parameter import Parameter
  13. from fairseq2.assets import InProcAssetMetadataProvider, asset_store, download_manager
  14. from fairseq2.generation.beam_search import BeamSearchSeq2SeqGenerator
  15. from fairseq2.nn.embedding import StandardEmbedding
  16. from fairseq2.models.nllb.builder import NllbBuilder, NllbConfig
  17. from fairseq2.models.nllb.loader import load_nllb_config
  18. from fairseq2.nn.projection import TiedProjection
  19. from fairseq2.models.transformer.model import TransformerModel
  20. from fairseq2.models.utils import ModelLoader
  21. from fairseq2.typing import Device, DataType
  22. from fairseq2.models.utils.checkpoint import convert_fairseq_checkpoint
  23. import sentencepiece as spm
  24. class MTBuilder(NllbBuilder):
  25. def build_embedding(self) -> StandardEmbedding:
  26. return StandardEmbedding(
  27. num_embeddings=self.config.vocab_info.size,
  28. embedding_dim=self.config.model_dim,
  29. pad_idx=self.config.vocab_info.pad_idx,
  30. init_fn=lambda x: x,
  31. device=self.device,
  32. dtype=self.dtype,
  33. ).requires_grad_(False)
  34. def build_model(self) -> TransformerModel:
  35. """Build a model."""
  36. encoder_embed = self.build_embedding()
  37. decoder_embed = self.build_embedding()
  38. encoder_frontend = self.build_frontend(encoder_embed)
  39. decoder_frontend = self.build_frontend(decoder_embed)
  40. encoder = self.build_encoder()
  41. decoder = self.build_decoder()
  42. # Unlike NLLB, in MT we de-couple
  43. new_weight = Parameter(torch.zeros_like(
  44. encoder_embed.weight, requires_grad=False)
  45. )
  46. final_proj = TiedProjection(new_weight, bias=None)
  47. return TransformerModel(
  48. encoder_frontend,
  49. encoder,
  50. decoder_frontend,
  51. decoder,
  52. final_proj,
  53. self.config.vocab_info,
  54. )
  55. def create_mt_model(
  56. config: NllbConfig,
  57. *,
  58. device: Optional[Device] = None,
  59. dtype: Optional[DataType] = None,
  60. ) -> TransformerModel:
  61. return MTBuilder(config, device=device, dtype=dtype).build_model()
  62. def convert_mt_checkpoint(
  63. ckpt: Mapping[str, Any], config: NllbConfig,
  64. ) -> Mapping[str, Any]:
  65. global_key_map = {
  66. # fmt: off
  67. r"^encoder\.embed_tokens\.": r"encoder_frontend.embed.",
  68. r"^decoder\.embed_tokens\.": r"decoder_frontend.embed.",
  69. r"^encoder\.embed_positions.weights": r"encoder_frontend.pos_encoder.freqs",
  70. r"^decoder\.embed_positions.weights": r"decoder_frontend.pos_encoder.freqs",
  71. r"^encoder\.layernorm_embedding\.": r"encoder_frontend.layer_norm.",
  72. r"^decoder\.layernorm_embedding\.": r"decoder_frontend.layer_norm.",
  73. r"^decoder\.layers\.([0-9]+)\.self_attn\.out_proj\.": r"decoder.layers.\1.self_attn.output_proj.",
  74. r"^encoder\.layers\.([0-9]+)\.self_attn\.out_proj\.": r"encoder.layers.\1.self_attn.output_proj.",
  75. r"^decoder\.layers\.([0-9]+)\.encoder_attn\.out_proj\.": r"decoder.layers.\1.encoder_decoder_attn.output_proj.",
  76. r"^decoder\.layers\.([0-9]+)\.encoder_attn\.": r"decoder.layers.\1.encoder_decoder_attn.",
  77. r"^decoder\.layers\.([0-9]+)\.encoder_attn_layer_norm\.": r"decoder.layers.\1.encoder_decoder_attn_layer_norm.",
  78. r"^encoder\.layers\.([0-9]+)\.fc1\.": r"encoder.layers.\1.ffn.inner_proj.",
  79. r"^decoder\.layers\.([0-9]+)\.fc1\.": r"decoder.layers.\1.ffn.inner_proj.",
  80. r"^encoder\.layers\.([0-9]+)\.fc2\.": r"encoder.layers.\1.ffn.output_proj.",
  81. r"^decoder\.layers\.([0-9]+)\.fc2\.": r"decoder.layers.\1.ffn.output_proj.",
  82. r"^encoder\.layers\.([0-9]+)\.final_layer_norm\.": r"encoder.layers.\1.ffn_layer_norm.",
  83. r"^decoder\.layers\.([0-9]+)\.final_layer_norm\.": r"decoder.layers.\1.ffn_layer_norm.",
  84. r"^decoder\.output_projection\.": r"final_proj.",
  85. # fmt: on
  86. }
  87. return convert_fairseq_checkpoint(ckpt, global_key_map)
  88. def load_vocab(model_dir: str, mode: Literal["src", "tgt"]):
  89. vocab_file = f"{model_dir}/{mode}.spm"
  90. spmp = spm.SentencePieceProcessor(vocab_file)
  91. return [
  92. (spmp.id_to_piece(id).replace("▁", " "), spmp.get_score(id))
  93. for id in range(spmp.get_piece_size())
  94. ], spmp
  95. def load_mt_model(model_dir: str):
  96. """
  97. Load MT model and the vocabulary processors (spm) for source and target languages
  98. Args:
  99. model_dir: Directory of the model. It must contain files averaged_checkpoint.pt, src.spm and tgt.spm
  100. """
  101. # Create a fairseq2 model card on the fly. This must ensure that we do not have any other fairseq2
  102. # environment resolvers and always return
  103. model_dir = Path(model_dir)
  104. model_card_info = [
  105. {
  106. "name": "mt_model",
  107. "model_type": "nllb", # Re-use the same encoder-decoder arch of NLLB
  108. "model_arch": "dense_600m", # Dummy value to pass fairseq2 asset's valdilation logic
  109. "checkpoint": "file://" + str(model_dir / "averaged_checkpoint.pt"),
  110. "model_config": {
  111. "model_dim": 512,
  112. "num_encoder_layers": 4,
  113. "num_decoder_layers": 2,
  114. "ffn_inner_dim": 2048,
  115. "vocab_info": {
  116. "size": 10000,
  117. "unk_idx": 3,
  118. "bos_idx": 0,
  119. "eos_idx": 2,
  120. "pad_idx": 1,
  121. }
  122. }
  123. }
  124. ]
  125. asset_store.metadata_providers.append(
  126. InProcAssetMetadataProvider(model_card_info)
  127. )
  128. mt_card = asset_store.retrieve_card("mt_model")
  129. return ModelLoader[TransformerModel, NllbConfig](
  130. asset_store,
  131. download_manager,
  132. load_nllb_config,
  133. create_mt_model,
  134. convert_mt_checkpoint,
  135. restrict_checkpoints=False,
  136. )(mt_card)
  137. def test_mt(
  138. model: TransformerModel,
  139. src_spm: spm.SentencePieceProcessor,
  140. tgt_spm: spm.SentencePieceProcessor,
  141. ):
  142. from fairseq2.nn.padding import pad_seqs
  143. # Tokens of "This is an example"
  144. src_tokens = torch.LongTensor([688, 153, 62, 4581, 2])
  145. src_seqs, src_padding_mask = pad_seqs(src_tokens, src_spm.pad_id())
  146. # Force the developer begins with the EOS <s> token
  147. prompt_tokens = torch.LongTensor([[2]])
  148. generator = BeamSearchSeq2SeqGenerator(model)
  149. output = generator(src_seqs, src_padding_mask, prompt_tokens, None)
  150. print(output.hypotheses[0][0].seq)
  151. tgt_tokens = output.hypotheses[0][0].seq.tolist()
  152. out_text = tgt_spm.decode(tgt_tokens)
  153. # assert out_text == "Este es un ejemplo"
  154. print(out_text)