fairseq2.cpp 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460
  1. #include <math.h>
  2. #include "kaldi-native-fbank/csrc/feature-fbank.h"
  3. #include "kaldi-native-fbank/csrc/feature-window.h"
  4. #include "ggml.h"
  5. #include "fairseq2.h"
  6. #include <unordered_map>
  7. #include <algorithm>
  8. #include <iostream>
  9. #include <fnmatch.h>
  10. void ggml_detach(ggml_tensor* a) {
  11. a->op = GGML_OP_NONE;
  12. std::fill(a->src, a->src + GGML_MAX_SRC, nullptr);
  13. }
  14. /// allocate the fairseq2 model and hyperparameters
  15. extern "C" fairseq2_model* fairseq2_model_alloc() {
  16. // pre-allocate some memory to write hyperparameters and tensors pointers
  17. auto* model = new fairseq2_model;
  18. model->tensors_ctx = nullptr;
  19. return model;
  20. }
  21. extern "C" void fairseq2_kv_cache_alloc(const fairseq2_model& model, int beam_size, int max_seq_len) {
  22. // Note: we only allocate the cache for the decoder attention.
  23. // For encoder attention since we compute it all at once,
  24. // the allocation is delayed to the first forward pass, to not over allocate.
  25. auto attn_glob = "*decoder.*_attn.k_proj.weight";
  26. auto self_attn_glob = "*decoder.*self_attn.k_proj.weight";
  27. ggml_tensor* self_attn_mask = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, max_seq_len, max_seq_len);
  28. self_attn_mask = ggml_diag_mask_inf_inplace(model.ctx, self_attn_mask, 0);
  29. ggml_format_name(self_attn_mask, "self_attn_mask[%d]", max_seq_len);
  30. for (auto named_tensor : model.tensors) {
  31. const std::string& name = named_tensor.first;
  32. if (::fnmatch(attn_glob, name.c_str(), 0) == FNM_NOMATCH)
  33. continue;
  34. // create a cache entry without the ".k_proj.weight" suffix
  35. const std::string& shortname = name.substr(0, name.size() - 14);
  36. KeyValueTensor& kv = model.kv_cache[shortname];
  37. kv.step_nr = 0;
  38. if (::fnmatch(self_attn_glob, name.c_str(), 0) == FNM_NOMATCH) {
  39. // enc_dec_attn
  40. // the tensors will be allocated during the first forward
  41. continue;
  42. }
  43. // self_attn
  44. ggml_tensor* k_proj = named_tensor.second;
  45. int model_dim = k_proj->ne[0];
  46. kv.full_k = ggml_new_tensor_3d(model.ctx, k_proj->type, model_dim, max_seq_len, beam_size);
  47. kv.full_v = ggml_new_tensor_3d(model.ctx, k_proj->type, model_dim, max_seq_len, beam_size);
  48. kv.self_attn_mask = self_attn_mask;
  49. ggml_format_name(kv.full_k, "%s.k_cache", shortname.c_str());
  50. ggml_format_name(kv.full_v, "%s.v_cache", shortname.c_str());
  51. }
  52. }
  53. extern "C" void fairseq2_kv_cache_reset(const fairseq2_model& model) {
  54. // TODO: use a dedicated allocator, so that kv_cache.clear actually frees the memory
  55. model.kv_cache.clear();
  56. }
  57. bool has_kv_cache(const fairseq2_model& model) {
  58. return model.kv_cache.size() > 0;
  59. }
  60. // copy k and v to kv cache
  61. // kv.full_k[step_nr] = k;
  62. // kv.full_v[step_nr] = v;
  63. void append_to_prev_kv(const fairseq2_model& model, const std::string& prefix, ggml_tensor** k, ggml_tensor** v, ggml_tensor** self_attn_mask) {
  64. KeyValueTensor& kv = model.kv_cache[prefix];
  65. GGML_ASSERT(kv.full_k != nullptr); // key not found !
  66. int step_nr = kv.step_nr;
  67. ggml_tensor* full_k = kv.full_k;
  68. ggml_tensor* full_v = kv.full_v;
  69. // (N, S_kv, K_proj)
  70. GGML_ASSERT((*k)->ne[1] == 1); // TODO I think we could handle adding a full prefix sequence
  71. ggml_tensor* updated_k = ggml_set_2d_inplace(model.ctx, full_k, *k, full_k->nb[2], full_k->nb[1] * step_nr);
  72. ggml_tensor* updated_v = ggml_set_2d_inplace(model.ctx, full_v, *v, full_v->nb[2], full_v->nb[1] * step_nr);
  73. *k = ggml_slice(model.ctx, updated_k, 1, 0, step_nr + 1);
  74. *v = ggml_slice(model.ctx, updated_v, 1, 0, step_nr + 1);
  75. ggml_format_name(*k, "%s (step=%d)", full_k->name, step_nr);
  76. ggml_format_name(*v, "%s (step=%d)", full_v->name, step_nr);
  77. // qk is (B * H, Sq, Sk) == (B*H, 1, Sk) in incremental mode
  78. // we return the Sq slice of the (Sq, Sk) attention mask
  79. *self_attn_mask = ggml_slice(
  80. model.ctx,
  81. ggml_slice(model.ctx, kv.self_attn_mask, 0, 0, step_nr + 1),
  82. 1,
  83. step_nr,
  84. step_nr + 1
  85. );
  86. kv.step_nr = step_nr + 1;
  87. }
  88. // variant of ggml_get_rows that allows for a with more than 2 dims.
  89. ggml_tensor* ggml_get_rows2(ggml_context* ctx, ggml_tensor* a, ggml_tensor* b) {
  90. int flattened = 0;
  91. GGML_ASSERT(a->n_dims <= 3);
  92. if (a->n_dims == 3) {
  93. flattened = a->ne[0];
  94. a = ggml_flatten_1d(ctx, a, 0);
  95. }
  96. a = ggml_get_rows(ctx, a, b);
  97. if (flattened) {
  98. a = ggml_unflatten_1d(ctx, a, 0, flattened);
  99. }
  100. return a;
  101. }
  102. void _reorder_kv_cache(ggml_context* ctx, ggml_cgraph* gf, KeyValueTensor& kv, ggml_tensor* new_order) {
  103. if (kv.full_k != nullptr) {
  104. ggml_detach(kv.full_k);
  105. kv.full_k = ggml_get_rows2(ctx, kv.full_k, new_order);
  106. ggml_build_forward_expand(gf, kv.full_k);
  107. }
  108. if (kv.full_v != nullptr) {
  109. ggml_detach(kv.full_v);
  110. kv.full_v = ggml_get_rows2(ctx, kv.full_v, new_order);
  111. ggml_build_forward_expand(gf, kv.full_v);
  112. }
  113. }
  114. void reorder_kv_cache(const fairseq2_model& model, ggml_cgraph* gf, ggml_tensor* new_order) {
  115. ggml_context* ctx = model.ctx;
  116. for (auto& named_kv : model.kv_cache) {
  117. _reorder_kv_cache(ctx, gf, named_kv.second, new_order);
  118. }
  119. }
  120. inline double model_layer_config_d(const fairseq2_model& model, std::string name) {
  121. const std::int64_t* data = &model.layer_config.at(name);
  122. double val = *(const double*)data;
  123. return val;
  124. }
  125. extern "C" double fairseq2_model_layer_config_double(const fairseq2_model& model, const char* name) {
  126. return model_layer_config_d(model, std::string(name));
  127. }
  128. extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, const char* name) {
  129. return model.layer_config.at(std::string(name));
  130. }
  131. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  132. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  133. delete model;
  134. }
  135. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  136. model->ctx = ctx;
  137. }
  138. extern "C" std::string* std_string_alloc(char* c_str) {
  139. return new std::string(c_str);
  140. }
  141. extern "C" void std_string_free(std::string* str) {
  142. delete str;
  143. }
  144. bool has_layer(fairseq2_model& model, const std::string& name) {
  145. return model.tensors.find(name) != model.tensors.end();
  146. }
  147. extern "C" ggml_tensor* Linear_forward(
  148. fairseq2_model& model,
  149. const std::string &prefix,
  150. ggml_tensor* input // (d_in)
  151. ) {
  152. // Note: for now we assumed un-batched input
  153. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  154. GGML_ASSERT(weight != nullptr);
  155. ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
  156. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  157. if (bias == nullptr) return out;
  158. return ggml_add_inplace(model.ctx, out, bias);
  159. }
  160. extern "C" ggml_tensor* LayerNorm_forward(
  161. fairseq2_model& model,
  162. const std::string &prefix,
  163. ggml_tensor* input
  164. ) {
  165. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  166. GGML_ASSERT(weight != nullptr);
  167. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  168. GGML_ASSERT(bias != nullptr);
  169. auto ctx = model.ctx;
  170. double eps = model_layer_config_d(model, prefix + ".eps");
  171. input = ggml_norm(ctx, input, /*eps*/eps);
  172. return ggml_add_inplace(
  173. ctx,
  174. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  175. ggml_repeat(ctx, bias, input)
  176. );
  177. }
  178. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  179. fairseq2_model& model,
  180. const std::string& prefix,
  181. ggml_tensor* seqs
  182. ) {
  183. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  184. // inner_activation = ReLu // TODO: allow other activation
  185. seqs = ggml_relu_inplace(model.ctx, seqs);
  186. if (has_layer(model, prefix + ".inner_layer_norm")) {
  187. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  188. }
  189. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  190. return seqs;
  191. }
  192. extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
  193. fairseq2_model& model,
  194. const std::string& prefix,
  195. ggml_tensor* seqs
  196. ) {
  197. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  198. seqs = ggml_silu(model.ctx, seqs);
  199. if (has_layer(model, prefix + ".inner_layer_norm")) {
  200. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  201. }
  202. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  203. return seqs;
  204. }
  205. ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
  206. int n_dims = x->n_dims;
  207. GGML_ASSERT(dim >= 0);
  208. GGML_ASSERT(dim < n_dims);
  209. GGML_ASSERT(ggml_is_contiguous(x));
  210. // Nothing to do
  211. if (dim == n_dims - 1) return x;
  212. if (n_dims == 2) {
  213. return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
  214. } else if (n_dims == 3) {
  215. if (dim == 0) {
  216. return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
  217. } else { // dim == 1
  218. return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
  219. }
  220. } else { // n_dims == 4
  221. if (dim == 0) {
  222. return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
  223. } else if (dim == 1) {
  224. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
  225. } else { // dim == 2
  226. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
  227. }
  228. }
  229. }
  230. ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
  231. int n_dims = x->n_dims;
  232. GGML_ASSERT(dim >= 0);
  233. GGML_ASSERT(dim < n_dims);
  234. GGML_ASSERT(n_dims < 4);
  235. GGML_ASSERT(x->ne[dim] % num_el == 0);
  236. GGML_ASSERT(x->nb[dim + 1] == x->nb[dim] * x->ne[dim]); // `x` isn't contiguous along `dim`
  237. if (n_dims == 1) {
  238. return ggml_view_2d(ctx, x, num_el, x->ne[0] / num_el, x->nb[0] * num_el, 0);
  239. } else if (n_dims == 2) {
  240. if (dim == 0) {
  241. return ggml_view_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->nb[0] * num_el, x->nb[1], 0);
  242. } else { // dim == 1
  243. return ggml_view_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->nb[1], num_el * x->nb[1], 0);
  244. }
  245. } else { // (n_dims == 3)
  246. if (dim == 0) {
  247. return ggml_view_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2], x->nb[0] * num_el, x->nb[1], x->nb[2], 0);
  248. } else if (dim == 1) {
  249. return ggml_view_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2], x->nb[1], num_el * x->nb[1], x->nb[2], 0);
  250. } else { // dim == 2
  251. return ggml_view_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el, x->nb[1], x->nb[2], num_el * x->nb[2], 0);
  252. }
  253. }
  254. }
  255. ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
  256. // (B, S, dim) -> (B, S, H, H_dim)
  257. x = ggml_unflatten_1d(ctx, x, 0, head_dim);
  258. x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
  259. x = ggml_cont(ctx, x);
  260. x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
  261. return x;
  262. }
  263. /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
  264. ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
  265. // (B, Sk, dim) -> (B, Sk, H, H_dim)
  266. v = ggml_unflatten_1d(ctx, v, 0, head_dim);
  267. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
  268. v = ggml_cont(ctx, v);
  269. v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
  270. return v;
  271. }
  272. // flash_attn doesn't work for cross attention because it assumes Q <= K
  273. // and it seems to yield slightly different scores than expected, and thus a different beam search
  274. # define UNITY_FLASH_ATTN 0
  275. extern "C" ggml_tensor* MultiheadAttention_forward(
  276. fairseq2_model& model,
  277. const std::string &prefix,
  278. ggml_tensor* queries, // (slen, d_in)
  279. ggml_tensor* keys, // (klen, d_in)
  280. ggml_tensor* values, // (klen, d_out)
  281. ggml_tensor* attn_mask // (klen, slen)
  282. ) {
  283. int model_dim = queries->ne[0];
  284. int num_heads = model.layer_config.at(prefix + ".num_heads");
  285. int head_dim = model_dim / num_heads;
  286. GGML_ASSERT(model_dim % num_heads == 0);
  287. ggml_context* ctx = model.ctx;
  288. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
  289. ggml_set_name(q, "q");
  290. q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
  291. ggml_tensor *k, *v;
  292. if (!has_kv_cache(model)) {
  293. k = Linear_forward(model, prefix + ".k_proj", keys);
  294. ggml_set_name(k, "k");
  295. v = Linear_forward(model, prefix + ".v_proj", values);
  296. ggml_set_name(v, "v");
  297. } else {
  298. bool encoder_decoder_attn = keys == values && keys != queries;
  299. if (encoder_decoder_attn) {
  300. // The K and V tensors of an encoder-decoder attention (i.e. the
  301. // projected encoder outputs) remain static during evaluation.
  302. KeyValueTensor& kv_cache = model.kv_cache[prefix];
  303. if (kv_cache.step_nr == 0) {
  304. k = Linear_forward(model, prefix + ".k_proj", keys);
  305. ggml_format_name(k, "%s.k_cache", prefix.c_str());
  306. v = Linear_forward(model, prefix + ".v_proj", values);
  307. ggml_format_name(v, "%s.v_cache", prefix.c_str());
  308. // TODO: encoder_padding_mask
  309. kv_cache.full_k = k;
  310. kv_cache.full_v = v;
  311. kv_cache.step_nr = keys->ne[1];
  312. } else {
  313. k = kv_cache.full_k;
  314. v = kv_cache.full_v;
  315. // This is a cache collision. TODO: fairseq2_kv_cache_reset
  316. GGML_ASSERT(keys->ne[1] == k->ne[1]);
  317. GGML_ASSERT(values->ne[1] == v->ne[1]);
  318. }
  319. } else { // self attention
  320. // (1, K) -> (N, 1, K_proj)
  321. k = Linear_forward(model, prefix + ".k_proj", keys);
  322. ggml_set_name(k, "k");
  323. // (1, V) -> (N, 1, V_proj)
  324. v = Linear_forward(model, prefix + ".v_proj", values);
  325. ggml_set_name(v, "v");
  326. append_to_prev_kv(model, prefix, &k, &v, &attn_mask);
  327. }
  328. }
  329. k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
  330. v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
  331. v = ggml_cont(ctx, v);
  332. #if UNITY_FLASH_ATTN
  333. // For flash_attn, we assume either no masks, or triangular masks.
  334. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
  335. ggml_set_name(attn, "attn");
  336. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  337. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
  338. #else
  339. // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
  340. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  341. ggml_set_name(qk, "qk");
  342. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  343. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  344. qk = ggml_scale(ctx, qk, qk_scale);
  345. ggml_set_name(qk, "qk_scaled");
  346. // TODO: Should we replace this by ggml_diag_mask_inf ?
  347. if (attn_mask) qk = ggml_add_inplace(ctx, qk, attn_mask);
  348. // TODO: upgrade qk to float32 if needed
  349. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
  350. ggml_set_name(attn_weights, "attn_weights");
  351. // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
  352. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  353. ggml_set_name(attn, "attn");
  354. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  355. attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
  356. #endif // UNITY_FLASH_ATTN
  357. attn = ggml_cont(ctx, attn);
  358. attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
  359. // out -> (B, S, d_out)
  360. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  361. ggml_set_name(out, "out");
  362. return out;
  363. }
  364. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  365. fairseq2_model& model,
  366. const std::string& prefix,
  367. ggml_tensor* seqs,
  368. ggml_tensor* padding_mask
  369. ) {
  370. ggml_context* ctx = model.ctx;
  371. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  372. // _forward_self_attn(seqs, padding_mask)
  373. auto residual = seqs;
  374. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  375. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  376. // TODO: add padding_mask to MultiheadAttention_forward
  377. GGML_ASSERT(padding_mask == nullptr);
  378. seqs = MultiheadAttention_forward(
  379. model,
  380. prefix + ".self_attn",
  381. seqs,
  382. seqs,
  383. seqs,
  384. /*attn_mask=*/nullptr
  385. );
  386. if (has_layer(model, prefix + ".self_attn_norm"))
  387. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  388. seqs = ggml_add(ctx, seqs, residual);
  389. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  390. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  391. // _forward_ffn(seqs)
  392. residual = seqs;
  393. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  394. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  395. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  396. // TODO: if self.residual_scale is not None:
  397. // residual = self.residual_scale * residual
  398. seqs = ggml_add(ctx, seqs, residual);
  399. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  400. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  401. return seqs;
  402. }
  403. extern "C" ggml_tensor* WaveformToFbank_forward(
  404. fairseq2_model& model,
  405. const std::string &prefix,
  406. ggml_tensor* waveform
  407. ) {
  408. // Hardcoding: num_bins 80, sample rate 16k, always standardize
  409. ggml_context* ctx = model.ctx;
  410. knf::MelBanksOptions mel_opts{};
  411. mel_opts.num_bins = 80;
  412. knf::FrameExtractionOptions frame_opts{};
  413. frame_opts.samp_freq = 16000;
  414. knf::FbankOptions opts{};
  415. opts.frame_opts = frame_opts;
  416. opts.mel_opts = mel_opts;
  417. std::vector<float_t> signal_frame{};
  418. std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
  419. struct ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames);
  420. knf::FbankComputer native_(opts);
  421. knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
  422. for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
  423. signal_frame.resize(0);
  424. // Extract the frame from the waveform tensor.
  425. knf::ExtractWindow(
  426. /*sample_offset=*/0,
  427. (float *)(waveform->data),
  428. waveform->ne[0],
  429. frame_nr,
  430. frame_opts,
  431. window_fn_,
  432. &signal_frame);
  433. native_.Compute(
  434. /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
  435. }
  436. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  437. output = ggml_norm(ctx, output, 1e-5);
  438. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  439. if (output->ne[1] % 2 == 1) {
  440. struct ggml_tensor * remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);
  441. for (int i = 0; i < output->ne[1]-1; ++i) {
  442. ((int32_t *) remove_last->data)[i] = i;
  443. }
  444. output = ggml_get_rows(ctx, output, remove_last);
  445. }
  446. output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
  447. return output;
  448. }
  449. // TODO: Check if it's possible to merge with standard MHA
  450. extern "C" ggml_tensor* RelativePositionMHA_forward(
  451. fairseq2_model& model,
  452. const std::string& prefix,
  453. ggml_tensor* seqs
  454. ) {
  455. ggml_context* ctx = model.ctx;
  456. ggml_tensor* residual = seqs;
  457. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  458. // self_attn: qkv
  459. struct ggml_tensor * Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
  460. struct ggml_tensor * Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
  461. struct ggml_tensor * Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
  462. // self_attn: rel_pos SDPA
  463. int32_t S = seqs->ne[1];
  464. int32_t H = 16; // TODO: Make this configurable
  465. int32_t n_ctx = 4096;
  466. int32_t K_h = seqs->ne[0] / H;
  467. int32_t start_index = n_ctx - S;
  468. int32_t end_index = n_ctx + S - 1;
  469. int num_indices = end_index - start_index;
  470. struct ggml_tensor *rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices);
  471. rows->data = malloc(ggml_nbytes(rows));
  472. for (int i = 0; i < num_indices; i++) {
  473. ((int32_t *)rows->data)[i] = start_index + i;
  474. }
  475. // self_attn: load pos_enc weights & compute_r
  476. // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
  477. // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
  478. struct ggml_tensor * r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
  479. r = ggml_mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
  480. r = ggml_dup(ctx, ggml_permute(ctx,
  481. ggml_cpy(ctx,
  482. r,
  483. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S*2-1)),
  484. 0, 2, 1, 3));
  485. struct ggml_tensor * u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
  486. struct ggml_tensor * v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
  487. // self_attn: Permute QKV
  488. struct ggml_tensor * Q =
  489. ggml_dup(ctx, ggml_permute(ctx,
  490. ggml_cpy(ctx,
  491. Qcur,
  492. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  493. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  494. struct ggml_tensor * K =
  495. ggml_dup(ctx, ggml_permute(ctx,
  496. ggml_cpy(ctx,
  497. Kcur,
  498. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  499. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  500. struct ggml_tensor * V =
  501. ggml_dup(ctx, ggml_permute(ctx,
  502. ggml_cpy(ctx,
  503. Vcur,
  504. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  505. 1, 2, 0, 3)); // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
  506. struct ggml_tensor * q_with_u_bias = ggml_add(ctx, Q, u_bias); // (K_h, S, H)
  507. struct ggml_tensor * q_with_v_bias = ggml_add(ctx, Q, v_bias); // (K_h, S, H)
  508. struct ggml_tensor * ac = ggml_mul_mat(ctx, K, q_with_u_bias);
  509. struct ggml_tensor * bd = ggml_mul_mat(ctx, r, q_with_v_bias);
  510. // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
  511. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
  512. struct ggml_tensor * pad = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1);
  513. pad->data = malloc(ggml_nbytes(pad));
  514. pad = ggml_set_f32(pad, 0.0);
  515. bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
  516. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
  517. bd = ggml_dup(ctx, ggml_reshape_3d(ctx, bd, S, 2*S, H)); // (S, 2S, H)
  518. bd = ggml_remove_head_row(ctx, bd); // A custom operator introduced to reduce 1st row (in the 2nd dim)
  519. bd = ggml_reshape_3d(ctx, bd, 2*S-1, S, H);
  520. bd = ggml_get_first_cols_by_rows(ctx, bd); // A custom operator introduced to get first #rows cols.
  521. // self_attn: compute attn / weights
  522. struct ggml_tensor * attn_weights = ggml_add(ctx, ac, bd);
  523. struct ggml_tensor * attn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  524. attn_scale->data = malloc(ggml_nbytes(attn_scale));
  525. ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
  526. attn_weights = ggml_mul(ctx, ggml_repeat(ctx, attn_scale, attn_weights), attn_weights);
  527. attn_weights = ggml_soft_max(ctx, attn_weights);
  528. struct ggml_tensor * attn = ggml_mul_mat(ctx, V, attn_weights); // K_h, S, H
  529. attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
  530. struct ggml_tensor * attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
  531. struct ggml_tensor * attn_out = ggml_mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
  532. attn_out = ggml_add(ctx,
  533. ggml_repeat(ctx,
  534. model.tensors[prefix + ".output_proj.bias"],
  535. attn_out),
  536. attn_out);
  537. attn_out = ggml_add(ctx, residual, attn_out);
  538. return attn_out;
  539. }
  540. extern "C" ggml_tensor* ConvModule_forward(
  541. fairseq2_model& model,
  542. const std::string& prefix,
  543. ggml_tensor* seqs
  544. ) {
  545. ggml_context* ctx = model.ctx;
  546. ggml_tensor* residual = seqs;
  547. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  548. // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
  549. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
  550. // conv: GLU
  551. seqs = ggml_glu(ctx, seqs);
  552. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  553. // S x C -> (S+K-1) x C -> K x S x C -> S x C
  554. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);
  555. // conv: Custom implementation of batch norm
  556. seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
  557. // conv: SiLU actvation
  558. seqs = ggml_silu(ctx, seqs);
  559. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  560. // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
  561. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
  562. // conv: + residual
  563. seqs = ggml_add(ctx, seqs, residual);
  564. return seqs;
  565. }
  566. extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
  567. fairseq2_model& model,
  568. const std::string& prefix,
  569. ggml_tensor* seqs,
  570. ggml_tensor* padding_mask
  571. ) {
  572. ggml_context* ctx = model.ctx;
  573. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  574. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  575. ggml_set_f32(ffn_scale, 0.5f);
  576. struct ggml_tensor * residual = seqs;
  577. seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
  578. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
  579. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  580. seqs = ggml_add(ctx, seqs, residual);
  581. seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
  582. seqs = ConvModule_forward(model, prefix + ".conv", seqs);
  583. residual = seqs;
  584. seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
  585. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
  586. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  587. seqs = ggml_add(ctx, seqs, residual);
  588. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  589. return seqs;
  590. }
  591. extern "C" ggml_tensor* StandardConformerEncoder_forward(
  592. fairseq2_model& model,
  593. const std::string& prefix,
  594. ggml_tensor* seqs,
  595. ggml_tensor* padding_mask
  596. ) { // TODO: Implement this!
  597. ggml_context* ctx = model.ctx;
  598. seqs = WaveformToFbank_forward(model, prefix, seqs);
  599. seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
  600. seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
  601. int layer_idx = 0;
  602. std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  603. while (has_layer(model, layer_name)) {
  604. seqs = StandardConformerEncoderLayer_forward(
  605. model, layer_name, seqs, padding_mask
  606. );
  607. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  608. layer_idx += 1;
  609. layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  610. }
  611. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  612. ggml_tensor* residual = seqs;
  613. seqs = Linear_forward(model, prefix + ".proj1", seqs);
  614. seqs = ggml_relu_inplace(ctx, seqs);
  615. seqs = Linear_forward(model, prefix + ".proj2", seqs);
  616. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  617. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  618. ggml_set_f32(ffn_scale, 0.5f);
  619. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  620. seqs = ggml_add(ctx, seqs, residual);
  621. layer_idx = 0;
  622. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  623. while (has_layer(model, layer_name)) {
  624. seqs = StandardConformerEncoderAdaptorLayer_forward(
  625. model, layer_name, seqs, padding_mask
  626. );
  627. ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
  628. layer_idx += 1;
  629. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  630. }
  631. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  632. return seqs;
  633. }
  634. extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
  635. fairseq2_model& model,
  636. const std::string& prefix,
  637. ggml_tensor* seqs,
  638. ggml_tensor* padding_mask
  639. ) {
  640. ggml_context* ctx = model.ctx;
  641. struct ggml_tensor * residual = seqs;
  642. residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
  643. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  644. residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);
  645. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  646. residual = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
  647. residual = ggml_glu(ctx, residual);
  648. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  649. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  650. seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);
  651. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  652. seqs = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs), seqs);
  653. seqs = ggml_glu(ctx, seqs);
  654. seqs = MultiheadAttention_forward(
  655. model,
  656. prefix + ".self_attn",
  657. seqs,
  658. seqs,
  659. seqs,
  660. /*attention masks=*/nullptr
  661. );
  662. seqs = ggml_add(ctx, seqs, residual);
  663. residual = seqs;
  664. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  665. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  666. seqs = ggml_add(ctx, seqs, residual);
  667. return seqs;
  668. }
  669. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  670. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  671. struct ggml_tensor * ggml_slice(
  672. struct ggml_context * ctx,
  673. struct ggml_tensor * a,
  674. int axis,
  675. int64_t start,
  676. int64_t end
  677. ) {
  678. int64_t ne[4];
  679. std::copy(a->ne, a->ne + 4, ne);
  680. if (axis < 0) axis = a->n_dims + axis;
  681. if (start < 0) start = ne[axis] + start;
  682. if (end < 0) end = ne[axis] + end;
  683. GGML_ASSERT(0 <= start);
  684. GGML_ASSERT(start <= end);
  685. GGML_ASSERT(end <= ne[axis]);
  686. ne[axis] = end - start;
  687. size_t offset = a->nb[axis] * start;
  688. size_t* nb = a->nb;
  689. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  690. ggml_format_name(result, "%s [(%d)%ld:%ld]", a->name, axis, start, end);
  691. result->n_dims = a->n_dims;
  692. return result;
  693. }
  694. struct ggml_tensor * ggml_select(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a,
  697. int axis,
  698. int64_t index
  699. ) {
  700. int64_t ne[GGML_MAX_DIMS];
  701. std::copy(a->ne, a->ne + GGML_MAX_DIMS, ne);
  702. if (axis < 0) axis = a->n_dims + axis;
  703. if (index < 0) index = ne[axis] + index;
  704. GGML_ASSERT(0 <= index);
  705. GGML_ASSERT(index < ne[axis]);
  706. std::copy(a->ne + axis + 1, a->ne + GGML_MAX_DIMS, ne + axis);
  707. size_t offset = a->nb[axis] * index;
  708. size_t* nb = a->nb;
  709. GGML_ASSERT(GGML_MAX_DIMS == 4);
  710. ggml_tensor* result = ggml_view_3d(ctx, a, ne[0], ne[1], ne[2], nb[1], nb[2], offset);
  711. ggml_format_name(result, "%s [(%d)%ld]", a->name, axis, index);
  712. result->n_dims = a->n_dims - 1;
  713. return result;
  714. }
  715. extern "C" ggml_tensor* PositionalEmbedding_forward(
  716. fairseq2_model& model,
  717. const std::string& prefix,
  718. ggml_tensor* embeds
  719. ) {
  720. // This only work with the simple pos encoders
  721. int seq_len = embeds->ne[1];
  722. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  723. int start_step = 0;
  724. if (has_kv_cache(model)) {
  725. start_step = model.kv_cache[prefix].step_nr++;
  726. }
  727. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, start_step, seq_len + start_step);
  728. return ggml_add(model.ctx, embeds, pos_embeds);
  729. }
  730. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  731. fairseq2_model& model,
  732. const std::string& prefix,
  733. ggml_tensor* seqs
  734. ) {
  735. GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
  736. ggml_context* ctx = model.ctx;
  737. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  738. GGML_ASSERT(embed_weights != nullptr);
  739. ggml_tensor* embeds;
  740. if (seqs->n_dims == 1) {
  741. embeds = ggml_get_rows(ctx, embed_weights, seqs);
  742. } else {
  743. // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
  744. ggml_tensor* flat_seqs = seqs;
  745. if (!ggml_is_contiguous(seqs)) {
  746. flat_seqs->type = GGML_TYPE_F32;
  747. flat_seqs = ggml_cont(ctx, flat_seqs);
  748. }
  749. flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
  750. flat_seqs->type = GGML_TYPE_I32;
  751. embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
  752. embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
  753. embeds->n_dims = seqs->n_dims + 1;
  754. }
  755. // padding mask ?
  756. // padding_mask = to_padding_mask(embeds, seq_lens)
  757. if (has_layer(model, prefix + ".pos_encoder")) {
  758. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  759. }
  760. if (has_layer(model, prefix + ".layer_norm")) {
  761. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  762. }
  763. return embeds;
  764. }
  765. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  766. fairseq2_model& model,
  767. const std::string& prefix,
  768. ggml_tensor* seqs,
  769. ggml_tensor* padding_mask
  770. ) {
  771. int layer_idx = 0;
  772. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  773. while (has_layer(model, layer_name)) {
  774. seqs = StandardTransformerEncoderLayer_forward(
  775. model, layer_name, seqs, padding_mask
  776. );
  777. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  778. layer_idx += 1;
  779. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  780. }
  781. if (has_layer(model, prefix + ".layer_norm"))
  782. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  783. return seqs;
  784. }
  785. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  786. fairseq2_model& model,
  787. const std::string& prefix,
  788. ggml_tensor* seqs,
  789. ggml_tensor* self_attn_mask,
  790. ggml_tensor* encoder_output,
  791. ggml_tensor* encoder_padding_mask
  792. ) {
  793. ggml_context* ctx = model.ctx;
  794. auto norm_order = model.layer_config.at(prefix + ".norm_order");
  795. // _forward_self_attn(seqs, padding_mask)
  796. auto residual = seqs;
  797. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  798. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  799. seqs = MultiheadAttention_forward(
  800. model,
  801. prefix + ".self_attn",
  802. seqs,
  803. seqs,
  804. seqs,
  805. /*attn_mask=*/self_attn_mask
  806. );
  807. if (has_layer(model, prefix + ".self_attn_norm"))
  808. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  809. seqs = ggml_add(ctx, seqs, residual);
  810. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  811. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  812. // _forward_encoder_decoder_attn
  813. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  814. // `encoder_output` must be `None` for decoder-only attention.
  815. GGML_ASSERT(encoder_output == nullptr);
  816. return seqs;
  817. }
  818. // `encoder_output` must not be `None` for encoder-decoder attention.
  819. GGML_ASSERT(encoder_output != nullptr);
  820. residual = seqs;
  821. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  822. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  823. seqs = MultiheadAttention_forward(
  824. model,
  825. prefix + ".encoder_decoder_attn",
  826. seqs,
  827. encoder_output,
  828. encoder_output,
  829. /*attention masks=*/encoder_padding_mask
  830. );
  831. seqs = ggml_add(ctx, seqs, residual);
  832. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  833. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  834. // _forward_ffn(seqs)
  835. residual = seqs;
  836. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  837. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  838. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  839. // TODO:
  840. // if self.residual_scale is not None:
  841. // residual = self.residual_scale * residual
  842. seqs = ggml_add(ctx, seqs, residual);
  843. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  844. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  845. return seqs;
  846. }
  847. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  848. auto seq_len = seqs->ne[1];
  849. // TODO: allow other ggml_type
  850. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  851. return ggml_diag_mask_inf(ctx, mask, 0);
  852. }
  853. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  854. fairseq2_model& model,
  855. const std::string& prefix,
  856. ggml_tensor* seqs,
  857. ggml_tensor* padding_mask,
  858. ggml_tensor* encoder_output,
  859. ggml_tensor* encoder_padding_mask
  860. ) {
  861. int layer_idx = 0;
  862. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  863. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  864. while (has_layer(model, layer_name)) {
  865. seqs = StandardTransformerDecoderLayer_forward(
  866. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  867. );
  868. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  869. layer_idx += 1;
  870. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  871. }
  872. if (has_layer(model, prefix + ".layer_norm"))
  873. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  874. return seqs;
  875. }
  876. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  877. auto opts = job.opts;
  878. int max_seq_len = -1;
  879. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  880. max_seq_len = opts.hard_max_seq_len;
  881. } else {
  882. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
  883. }
  884. if (opts.min_seq_len > max_seq_len) {
  885. printf(
  886. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  887. opts.min_seq_len,
  888. max_seq_len
  889. );
  890. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  891. }
  892. int prefix_seq_len = job.prefix_seq->ne[0];
  893. if (prefix_seq_len >= max_seq_len) {
  894. printf(
  895. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  896. prefix_seq_len,
  897. max_seq_len
  898. );
  899. GGML_ASSERT(prefix_seq_len < max_seq_len);
  900. }
  901. return max_seq_len;
  902. }
  903. void _fan_out_encoder_output(
  904. ggml_context* ctx,
  905. ggml_tensor** encoder_output_out,
  906. ggml_tensor** encoder_padding_mask_out,
  907. int beam_size
  908. ) {
  909. // (S_enc, M)
  910. ggml_tensor* encoder_output = *encoder_output_out;
  911. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  912. // (B, S_enc, M)
  913. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  914. // (S_enc, M) -> (B, S_enc, M)
  915. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  916. // (S_enc) -> (B, S_enc)
  917. if (encoder_padding_mask != nullptr) {
  918. ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
  919. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  920. }
  921. }
  922. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  923. // TODO: this isn't the most precise way of doing this
  924. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  925. }
  926. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  927. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  928. ggml_type true_type = x->type;
  929. x->type = GGML_TYPE_F32;
  930. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  931. y->type = true_type;
  932. return y;
  933. }
  934. extern "C" void _bootstrap_seqs_and_scores(
  935. fairseq2_model& model,
  936. const SequenceGeneratorJob& job,
  937. ggml_tensor* full_seqs,
  938. ggml_tensor* scores,
  939. ggml_tensor* encoder_output,
  940. ggml_tensor* encoder_padding_mask
  941. ) {
  942. int prefix_seq_len = job.prefix_seq->ne[0];
  943. int max_seq_len = scores->ne[0];
  944. int beam_size = scores->ne[1];
  945. GGML_ASSERT(prefix_seq_len > 0);
  946. if (prefix_seq_len == 1)
  947. return;
  948. ggml_context* ctx = model.ctx;
  949. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  950. full_seqs->type = GGML_TYPE_F32;
  951. job.prefix_seq->type = GGML_TYPE_F32;
  952. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  953. seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
  954. // We have to bootstrap the model with the already fanned-out encoder
  955. // output to correctly initialize its incremental state.
  956. // Note: we don't start decoding the last prefix token just yet.
  957. seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
  958. seqs->type = GGML_TYPE_I32;
  959. // Bootstrap the model state with prefix sequence.
  960. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  961. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  962. model,
  963. "text_decoder",
  964. seqs,
  965. /*padding_mask*/ nullptr,
  966. encoder_output,
  967. encoder_padding_mask
  968. );
  969. // TODO state_bag.increment_step(prefix_seq_len - 1)
  970. // logits, lprobs: (N, S_pfx - 1, V)
  971. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  972. int vocab_size = logits->ne[0];
  973. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  974. ggml_cgraph gf = ggml_build_forward(lprobs);
  975. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  976. full_seqs->type = GGML_TYPE_I32;
  977. job.prefix_seq->type = GGML_TYPE_I32;
  978. // Fetch scores of next steps from "lprobs"
  979. float p_score = 0;
  980. for (int i = 1; i < prefix_seq_len; ++i) {
  981. int p = ggml_get_i32_1d(job.prefix_seq, i);
  982. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  983. for (int b = 0; b < beam_size; ++b) {
  984. // scores: (N, S)
  985. // Note: First step (e.g. BOS)'s score is always 0.
  986. ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
  987. }
  988. }
  989. }
  990. /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
  991. int topk(
  992. ggml_tensor* lprobs, // (B, V)
  993. std::int64_t k,
  994. ggml_tensor* candidate_indices
  995. ) {
  996. // Take the best 2 x `beam_size` predictions. We'll choose the first
  997. // `beam_size` of these which don't predict EOS to continue with.
  998. // (N, 2 x B)
  999. // `vocab_size` - 1 to never select PAD.
  1000. std::int64_t K = std::min(k, ggml_nelements(lprobs));
  1001. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  1002. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  1003. };
  1004. GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
  1005. auto cand = (std::int32_t*)candidate_indices->data;
  1006. std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
  1007. return K;
  1008. }
  1009. /// Copies the sequence and scores of a given candidate beam.
  1010. void _finalize_hypothesis(
  1011. const SequenceGeneratorJob& job,
  1012. ggml_context* ctx,
  1013. int step_nr,
  1014. std::int32_t beam,
  1015. std::int32_t token,
  1016. float eos_score,
  1017. ggml_tensor* seqs, // (beam_size, seq_len)
  1018. ggml_tensor* scores, // (beam_size, seq_len)
  1019. Hypothesis* hypothesis
  1020. ) {
  1021. ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  1022. hypothesis->seq = seq;
  1023. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  1024. hypothesis->step_scores = step_scores;
  1025. auto tok = (std::int32_t*)seq->data;
  1026. for (int i = 0; i < step_nr + 1; ++i) {
  1027. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  1028. }
  1029. tok[step_nr + 1] = token;
  1030. // Convert from cumulative to per-step scores.
  1031. auto sc = (float*)step_scores->data;
  1032. float last_score = eos_score;
  1033. for (int i = step_nr; i >= 0; --i) {
  1034. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  1035. sc[i + 1] = last_score - sc0;
  1036. last_score = sc0;
  1037. }
  1038. sc[0] = 0;
  1039. if (job.opts.normalize_scores)
  1040. // Skip first EOS since it is always 0 and skews normalization.
  1041. eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  1042. hypothesis->score = eos_score;
  1043. }
  1044. // Uses ggml_context to store any object.
  1045. #define GGML_CTX_ALLOC(ctx, Type, n) \
  1046. (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
  1047. /// Generates a translation for a single sequence
  1048. // TODO: clean ups
  1049. // * replace manual tensor tweaking with ggml_set_*d (a ggml_set_slice could be useful)
  1050. extern "C" Hypothesis* generate_sequence(
  1051. fairseq2_model& model,
  1052. const SequenceGeneratorJob& job,
  1053. ggml_tensor* encoder_output,
  1054. ggml_tensor* encoder_padding_mask,
  1055. ggml_context* result_ctx
  1056. ) {
  1057. ggml_context* ctx = model.ctx;
  1058. size_t eos_idx = job.eos_idx;
  1059. auto pad_idx = job.pad_idx;
  1060. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  1061. size_t vocab_size = embed->ne[1];
  1062. std::size_t beam_size = job.opts.beam_size;
  1063. int source_seq_len = encoder_output->ne[1];
  1064. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  1065. fairseq2_kv_cache_alloc(model, beam_size, max_seq_len);
  1066. // (S_enc, M) -> (B, S_enc, M)
  1067. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  1068. // Allocate results in the context provided by the caller.
  1069. Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
  1070. Hypothesis* finished_searches = finished_searches_begin;
  1071. for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
  1072. Hypothesis* finished_searches_end = finished_searches + beam_size;
  1073. // Initialize buffers. (B, S)
  1074. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  1075. ggml_set_i32(seqs, 0);
  1076. ggml_set_name(seqs, "seqs_0");
  1077. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  1078. ggml_set_name(scores, "scores_0");
  1079. ggml_set_f32(scores, 0.0);
  1080. _bootstrap_seqs_and_scores(
  1081. model, job, seqs, scores, encoder_output, encoder_padding_mask
  1082. );
  1083. int prefix_seq_len = job.prefix_seq->ne[0];
  1084. int start_step = prefix_seq_len - 1;
  1085. // Holds the indices of beams (a beam can occur more than once) that we
  1086. // should continue with in the next step.
  1087. ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  1088. ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  1089. ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
  1090. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  1091. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  1092. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  1093. ((int32_t *)(candidate_indices->data))[i] = i;
  1094. // TODO: memory management, there should be a per-step ggml_context for intermediary results
  1095. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  1096. ggml_tensor* prev_token = ggml_slice(ctx, seqs, 0, step_nr, step_nr + 1);
  1097. ggml_tensor* decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", prev_token);
  1098. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  1099. model,
  1100. "text_decoder",
  1101. decoder_input,
  1102. nullptr, // We never generate PAD.
  1103. encoder_output,
  1104. encoder_padding_mask
  1105. ); // (B, 1, D)
  1106. // Just look at the last token.
  1107. decoder_output = ggml_flatten_1d(ctx, decoder_output, 0); // (B, model_dim)
  1108. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
  1109. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  1110. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  1111. // TODO: use ggml properly compute the tweaks
  1112. ggml_cgraph gf = ggml_build_forward(lprobs);
  1113. printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
  1114. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1115. ggml_detach(lprobs);
  1116. // // Do not allow EOS before reaching the minimum sequence length.
  1117. if (step_nr < job.opts.min_seq_len) {
  1118. // lprobs[:, :, self.eos_idx] = -INFINITY;
  1119. for (size_t i = 0; i < beam_size; ++i)
  1120. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  1121. }
  1122. // If we have reached the maximum length, force the last step to be EOS.
  1123. if (step_nr == max_seq_len - 2) {
  1124. // lprobs[:, :, : self.eos_idx] = -torch.inf
  1125. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  1126. for (size_t b = 0; b < beam_size; ++b) {
  1127. size_t t = 0;
  1128. for (t = 0; t < eos_idx; ++t)
  1129. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1130. for (t = eos_idx + 1; t < vocab_size; ++t)
  1131. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  1132. }
  1133. }
  1134. // Never allow PAD.
  1135. for (size_t i = 0; i < beam_size; ++i)
  1136. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  1137. // Apply UNK penalty.
  1138. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  1139. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  1140. auto lprobs_raw = ggml_get_data_f32(lprobs);
  1141. for (size_t i = 0; i < beam_size; ++i)
  1142. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  1143. }
  1144. ggml_tensor* last_scores = ggml_slice(ctx, scores, 0, step_nr, step_nr+1);
  1145. if (step_nr == start_step) {
  1146. // At the initial step, all hypotheses are equally likely, so we use
  1147. // only the first beam.
  1148. lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
  1149. lprobs = ggml_cont(ctx, lprobs);
  1150. // The first step always indicates the beginning of the sequence and has no score.
  1151. if (step_nr > 0) {
  1152. last_scores = ggml_slice(ctx, last_scores, 1, 0, 1);
  1153. lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1154. }
  1155. } else {
  1156. // Make probabilities contain cumulative scores for each hypothesis.
  1157. lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1158. }
  1159. gf = ggml_build_forward(lprobs);
  1160. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1161. // Determine (beam, token) candidates for the next step.
  1162. // (N, 2 x B)
  1163. std::int64_t K = topk(
  1164. lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
  1165. );
  1166. std::size_t ongoing_beams = 0;
  1167. for (std::int32_t i = 0; i < K; ++i) {
  1168. int c = ggml_get_f32_1d(candidate_indices, i);
  1169. std::int32_t beam = c / vocab_size;
  1170. std::int32_t token = c % vocab_size;
  1171. float tok_score = ggml_get_f32_1d(lprobs, c);
  1172. // Detect beams that reached the minimum length and that end with an EOS.
  1173. bool eos = token == job.eos_idx;
  1174. eos &= tok_score != -INFINITY;
  1175. if (eos) {
  1176. _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);
  1177. if (finished_searches == finished_searches_end)
  1178. goto end_of_beam_search;
  1179. continue;
  1180. }
  1181. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  1182. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  1183. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  1184. ongoing_beams += 1;
  1185. if (ongoing_beams >= beam_size) break;
  1186. }
  1187. // Reorder beams in the `seq` and `score` buffers. The same beam can
  1188. // be selected more than once.
  1189. ggml_tensor* new_seqs = seqs;
  1190. ggml_tensor* new_scores = scores;
  1191. if (step_nr > start_step) {
  1192. // (B, S), (B) -> (B, S)
  1193. // ggml_get_rows and ggml_set only work with floats ...
  1194. new_seqs->type = GGML_TYPE_F32;
  1195. new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
  1196. new_scores = ggml_get_rows(ctx, scores, beam_indices);
  1197. ggml_cgraph gf_reorder = ggml_build_forward(new_seqs);
  1198. ggml_build_forward_expand(&gf_reorder, new_scores);
  1199. reorder_kv_cache(model, &gf_reorder, beam_indices);
  1200. ggml_graph_compute_with_ctx(ctx, &gf_reorder, 1);
  1201. ggml_detach(new_seqs);
  1202. ggml_detach(new_scores);
  1203. new_seqs->type = GGML_TYPE_I32;
  1204. }
  1205. // new_seqs[:, step_nr + 1] = next_tokens
  1206. // new_scores[:, step_nr + 1] = next_scores
  1207. for (std::size_t i = 0; i < beam_size; ++i) {
  1208. ((std::int32_t*)new_seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
  1209. ((float*)new_scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
  1210. }
  1211. // TODO the old seqs and score buffers could be reused for next step
  1212. seqs = new_seqs;
  1213. scores = new_scores;
  1214. }
  1215. end_of_beam_search:
  1216. // Ensure that hypotheses are sorted by decreasing scores before returning.
  1217. std::sort(
  1218. finished_searches_begin,
  1219. finished_searches_end,
  1220. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  1221. );
  1222. fairseq2_kv_cache_reset(model);
  1223. return finished_searches_begin;
  1224. }
  1225. extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
  1226. Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
  1227. result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
  1228. ggml_set_i32_1d(result[0].seq, 0, 314);
  1229. result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
  1230. ggml_set_i32_1d(result[1].seq, 0, 421);
  1231. return result;
  1232. }