| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809 | #define _USE_MATH_DEFINES // for M_PI#include "common.h"// third-party utilities// use your favorite implementations#define DR_WAV_IMPLEMENTATION#include "dr_wav.h"#include <cmath>#include <cstring>#include <fstream>#include <regex>#include <locale>#include <codecvt>#include <sstream>#if defined(_MSC_VER)#pragma warning(disable: 4244 4267) // possible loss of data#endif// Function to check if the next argument existsstd::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {    if (i + 1 < argc && argv[i + 1][0] != '-') {        return argv[++i];    } else {        fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());        gpt_print_usage(argc, argv, params);        exit(0);    }}bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {    for (int i = 1; i < argc; i++) {        std::string arg = argv[i];        if (arg == "-s" || arg == "--seed") {            params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "-t" || arg == "--threads") {            params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {            params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "-p" || arg == "--prompt") {            params.prompt = get_next_arg(i, argc, argv, arg, params);        } else if (arg == "-n" || arg == "--n_predict") {            params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "--top_k") {            params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "--top_p") {            params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "--temp") {            params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "--repeat-last-n") {            params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "--repeat-penalty") {            params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "-b" || arg == "--batch_size") {            params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "-m" || arg == "--model") {            params.model = get_next_arg(i, argc, argv, arg, params);        } else if (arg == "-i" || arg == "--interactive") {            params.interactive = true;        } else if (arg == "-ip" || arg == "--interactive-port") {            params.interactive = true;            params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));        } else if (arg == "-h" || arg == "--help") {            gpt_print_usage(argc, argv, params);            exit(0);        } else if (arg == "-f" || arg == "--file") {            get_next_arg(i, argc, argv, arg, params);            std::ifstream file(argv[i]);            if (!file) {                fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);                break;            }            std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));            if (params.prompt.back() == '\n') {                params.prompt.pop_back();            }        } else if (arg == "-tt" || arg == "--token_test") {            params.token_test = get_next_arg(i, argc, argv, arg, params);        }        else {            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());            gpt_print_usage(argc, argv, params);            exit(0);        }    }    return true;}void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {    fprintf(stderr, "usage: %s [options]\n", argv[0]);    fprintf(stderr, "\n");    fprintf(stderr, "options:\n");    fprintf(stderr, "  -h, --help            show this help message and exit\n");    fprintf(stderr, "  -s SEED, --seed SEED  RNG seed (default: -1)\n");    fprintf(stderr, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);    fprintf(stderr, "  -ngl N, --gpu-layers N  number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);    fprintf(stderr, "  -p PROMPT, --prompt PROMPT\n");    fprintf(stderr, "                        prompt to start generation with (default: random)\n");    fprintf(stderr, "  -f FNAME, --file FNAME\n");    fprintf(stderr, "                        load prompt from a file\n");    fprintf(stderr, "  -tt TOKEN_TEST, --token_test TOKEN_TEST\n");    fprintf(stderr, "                        test tokenization\n");    fprintf(stderr, "  -n N, --n_predict N   number of tokens to predict (default: %d)\n", params.n_predict);    fprintf(stderr, "  --top_k N             top-k sampling (default: %d)\n", params.top_k);    fprintf(stderr, "  --top_p N             top-p sampling (default: %.1f)\n", params.top_p);    fprintf(stderr, "  --temp N              temperature (default: %.1f)\n", params.temp);    fprintf(stderr, "  --repeat-last-n N     last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);    fprintf(stderr, "  --repeat-penalty N    penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);    fprintf(stderr, "  -b N, --batch_size N  batch size for prompt processing (default: %d)\n", params.n_batch);    fprintf(stderr, "  -m FNAME, --model FNAME\n");    fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());    fprintf(stderr, "\n");}std::string gpt_random_prompt(std::mt19937 & rng) {    const int r = rng() % 10;    switch (r) {        case 0: return "So";        case 1: return "Once upon a time";        case 2: return "When";        case 3: return "The";        case 4: return "After";        case 5: return "If";        case 6: return "import";        case 7: return "He";        case 8: return "She";        case 9: return "They";        default: return "To";    }    return "The";}std::string trim(const std::string & s) {    std::regex e("^\\s+|\\s+$");    return std::regex_replace(s, e, "");}std::string replace(const std::string & s, const std::string & from, const std::string & to) {    std::string result = s;    size_t pos = 0;    while ((pos = result.find(from, pos)) != std::string::npos) {        result.replace(pos, from.length(), to);        pos += to.length();    }    return result;}void gpt_vocab::add_special_token(const std::string & token) {    special_tokens.push_back(token);}std::map<std::string, int32_t> json_parse(const std::string & fname) {    std::map<std::string, int32_t> result;    // read file into string    std::string json;    {        std::ifstream ifs(fname);        if (!ifs) {            fprintf(stderr, "Failed to open %s\n", fname.c_str());            exit(1);        }        json = std::string((std::istreambuf_iterator<char>(ifs)),                (std::istreambuf_iterator<char>()));    }    if (json[0] != '{') {        return result;    }    // parse json    {        bool has_key  = false;        bool in_token = false;        std::string str_key = "";        std::string str_val = "";        int n = json.size();        for (int i = 1; i < n; ++i) {            if (!in_token) {                if (json[i] == ' ') continue;                if (json[i] == '"') {                    in_token = true;                    continue;                }            } else {                if (json[i] == '\\' && i+1 < n) {                    if (has_key == false) {                        str_key += json[i];                    } else {                        str_val += json[i];                    }                    ++i;                } else if (json[i] == '"') {                    if (has_key == false) {                        has_key = true;                        ++i;                        while (json[i] == ' ') ++i;                        ++i; // :                        while (json[i] == ' ') ++i;                        if (json[i] != '\"') {                            while (json[i] != ',' && json[i] != '}') {                                str_val += json[i++];                            }                            has_key = false;                        } else {                            in_token = true;                            continue;                        }                    } else {                        has_key = false;                    }                    str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space                    str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line                    str_key = ::replace(str_key, "\\\"",    "\""); // \\\"   -> "                    try {                        result[str_key] = std::stoi(str_val);                    } catch (...) {                        //fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());                    }                    str_key = "";                    str_val = "";                    in_token = false;                    continue;                }                if (has_key == false) {                    str_key += json[i];                } else {                    str_val += json[i];                }            }        }    }    return result;}std::string convert_to_utf8(const std::wstring & input) {    std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;    return converter.to_bytes(input);}std::wstring convert_to_wstring(const std::string & input) {    std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;    return converter.from_bytes(input);}void gpt_split_words(std::string str, std::vector<std::string>& words) {    const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";    const std::regex re(pattern);    std::smatch m;    while (std::regex_search(str, m, re)) {        for (auto x : m) {            words.push_back(x);        }        str = m.suffix();    }}std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {    std::vector<std::string> words;    // first split the text into words    {        std::string str = text;        // Generate the subpattern from the special_tokens vector if it's not empty        if (!vocab.special_tokens.empty()) {            const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");            std::string special_tokens_subpattern;            for (const auto & token : vocab.special_tokens) {                if (!special_tokens_subpattern.empty()) {                    special_tokens_subpattern += "|";                }                special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");            }            std::regex re(special_tokens_subpattern);            std::smatch m;            // Split the text by special tokens.            while (std::regex_search(str, m, re)) {                // Split the substrings in-between special tokens into words.                gpt_split_words(m.prefix(), words);                // Add matched special tokens as words.                for (auto x : m) {                    words.push_back(x);                }                str = m.suffix();            }            // Remaining text without special tokens will be handled below.        }        gpt_split_words(str, words);    }    // find the longest token that forms each word in words:    std::vector<gpt_vocab::id> tokens;    for (const auto & word : words) {        for (int i = 0; i < (int) word.size(); ){            for (int j = word.size() - 1; j >= i; j--){                auto cand = word.substr(i, j-i+1);                auto it = vocab.token_to_id.find(cand);                if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab                    tokens.push_back(it->second);                    i = j + 1;                    break;                }                else if (j == i){ // word.substr(i, 1) has no matching                    fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());                    i++;                }            }        }    }    return tokens;}std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {    std::vector<gpt_vocab::id> output;    std::stringstream ss(input);    std::string token;    while (std::getline(ss, token, delimiter)) {        output.push_back(std::stoi(token));    }    return output;}std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){    if (fpath_test.empty()){        fprintf(stderr, "%s : No test file found.\n", __func__);        return std::map<std::string, std::vector<gpt_vocab::id>>();    }    std::map<std::string, std::vector<gpt_vocab::id>> tests;    auto fin = std::ifstream(fpath_test, std::ios_base::in);    const char * delimeter = " => ";    const char del_tok = ',';    std::string line;    while (std::getline(fin, line)) {        size_t delimiterPos = line.find(delimeter);        if (delimiterPos != std::string::npos) {            std::string text = line.substr(0, delimiterPos);            std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));            tests[text] = parse_tokens_from_string(s_tokens, del_tok);        }    }    return tests;}void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){    std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);    size_t n_fails = 0;    for (const auto & test : tests) {        std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);        if (tokens != test.second){            n_fails++;            // print out failure cases            fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());            fprintf(stderr, "%s : tokens in hf:   ", __func__);            for (const auto & t : test.second) {                fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);            }            fprintf(stderr, "\n");            fprintf(stderr, "%s : tokens in ggml: ", __func__);            for (const auto & t : tokens) {                fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);            }            fprintf(stderr, "\n");        }    }    fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());}bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {    printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());    vocab.token_to_id = ::json_parse(fname);    for (const auto & kv : vocab.token_to_id) {        vocab.id_to_token[kv.second] = kv.first;    }    printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());    // print the vocabulary    //for (auto kv : vocab.token_to_id) {    //    printf("'%s' -> %d\n", kv.first.data(), kv.second);    //}    return true;}gpt_vocab::id gpt_sample_top_k_top_p(        const gpt_vocab & vocab,        const float * logits,        int    top_k,        double top_p,        double temp,        std::mt19937 & rng) {    int n_logits = vocab.id_to_token.size();    std::vector<std::pair<double, gpt_vocab::id>> logits_id;    logits_id.reserve(n_logits);    {        const double scale = 1.0/temp;        for (int i = 0; i < n_logits; ++i) {            logits_id.push_back(std::make_pair(logits[i]*scale, i));        }    }    // find the top K tokens    std::partial_sort(            logits_id.begin(),            logits_id.begin() + top_k, logits_id.end(),            [](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {        return a.first > b.first;    });    logits_id.resize(top_k);    double maxl = -INFINITY;    for (const auto & kv : logits_id) {        maxl = std::max(maxl, kv.first);    }    // compute probs for the top K tokens    std::vector<double> probs;    probs.reserve(logits_id.size());    double sum = 0.0;    for (const auto & kv : logits_id) {        double p = exp(kv.first - maxl);        probs.push_back(p);        sum += p;    }    // normalize the probs    for (auto & p : probs) {        p /= sum;    }    if (top_p < 1.0f) {        double cumsum = 0.0f;        for (int i = 0; i < top_k; i++) {            cumsum += probs[i];            if (cumsum >= top_p) {                top_k = i + 1;                probs.resize(top_k);                logits_id.resize(top_k);                break;            }        }        cumsum = 1.0/cumsum;        for (int i = 0; i < (int) probs.size(); i++) {            probs[i] *= cumsum;        }    }    //printf("\n");    //for (int i = 0; i < (int) probs.size(); i++) {    //    printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);    //}    //exit(0);    std::discrete_distribution<> dist(probs.begin(), probs.end());    int idx = dist(rng);    return logits_id[idx].second;}gpt_vocab::id gpt_sample_top_k_top_p_repeat(        const gpt_vocab & vocab,        const float * logits,        const int32_t * last_n_tokens_data,        size_t last_n_tokens_data_size,        int    top_k,        double top_p,        double temp,        int repeat_last_n,        float repeat_penalty,        std::mt19937 & rng) {    int n_logits = vocab.id_to_token.size();    const auto * plogits = logits;    const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);    if (temp <= 0) {        // select the token with the highest logit directly        float max_logit = plogits[0];        gpt_vocab::id max_id = 0;        for (int i = 1; i < n_logits; ++i) {            if (plogits[i] > max_logit) {                max_logit = plogits[i];                max_id = i;            }        }        return max_id;    }    std::vector<std::pair<double, gpt_vocab::id>> logits_id;    logits_id.reserve(n_logits);    {        const float scale = 1.0f/temp;        for (int i = 0; i < n_logits; ++i) {            // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)            // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main            if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {                // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability                if (plogits[i] < 0.0f) {                    logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));                } else {                    logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));                }            } else {                logits_id.push_back(std::make_pair(plogits[i]*scale, i));            }        }    }    // find the top K tokens    std::partial_sort(            logits_id.begin(),            logits_id.begin() + top_k, logits_id.end(),            [](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {        return a.first > b.first;    });    logits_id.resize(top_k);    double maxl = -INFINITY;    for (const auto & kv : logits_id) {        maxl = std::max(maxl, kv.first);    }    // compute probs for the top K tokens    std::vector<double> probs;    probs.reserve(logits_id.size());    double sum = 0.0;    for (const auto & kv : logits_id) {        double p = exp(kv.first - maxl);        probs.push_back(p);        sum += p;    }    // normalize the probs    for (auto & p : probs) {        p /= sum;    }    if (top_p < 1.0f) {        double cumsum = 0.0f;        for (int i = 0; i < top_k; i++) {            cumsum += probs[i];            if (cumsum >= top_p) {                top_k = i + 1;                probs.resize(top_k);                logits_id.resize(top_k);                break;            }        }        cumsum = 1.0/cumsum;        for (int i = 0; i < (int) probs.size(); i++) {            probs[i] *= cumsum;        }    }//    printf("\n");//    for (int i = 0; i < (int) probs.size(); i++) {//    for (int i = 0; i < 10; i++) {//        printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);//    }    std::discrete_distribution<> dist(probs.begin(), probs.end());    int idx = dist(rng);    return logits_id[idx].second;}bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {    drwav wav;    std::vector<uint8_t> wav_data; // used for pipe input from stdin    if (fname == "-") {        {            uint8_t buf[1024];            while (true)            {                const size_t n = fread(buf, 1, sizeof(buf), stdin);                if (n == 0) {                    break;                }                wav_data.insert(wav_data.end(), buf, buf + n);            }        }        if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {            fprintf(stderr, "error: failed to open WAV file from stdin\n");            return false;        }        fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());    }    else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {        fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());        return false;    }    if (wav.channels != 1 && wav.channels != 2) {        fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());        return false;    }    if (stereo && wav.channels != 2) {        fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());        return false;    }    if (wav.sampleRate != COMMON_SAMPLE_RATE) {        fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);        return false;    }    if (wav.bitsPerSample != 16) {        fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());        return false;    }    const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);    std::vector<int16_t> pcm16;    pcm16.resize(n*wav.channels);    drwav_read_pcm_frames_s16(&wav, n, pcm16.data());    drwav_uninit(&wav);    // convert to mono, float    pcmf32.resize(n);    if (wav.channels == 1) {        for (uint64_t i = 0; i < n; i++) {            pcmf32[i] = float(pcm16[i])/32768.0f;        }    } else {        for (uint64_t i = 0; i < n; i++) {            pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;        }    }    if (stereo) {        // convert to stereo, float        pcmf32s.resize(2);        pcmf32s[0].resize(n);        pcmf32s[1].resize(n);        for (uint64_t i = 0; i < n; i++) {            pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;            pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;        }    }    return true;}void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {    const float rc = 1.0f / (2.0f * M_PI * cutoff);    const float dt = 1.0f / sample_rate;    const float alpha = dt / (rc + dt);    float y = data[0];    for (size_t i = 1; i < data.size(); i++) {        y = alpha * (y + data[i] - data[i - 1]);        data[i] = y;    }}bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {    const int n_samples      = pcmf32.size();    const int n_samples_last = (sample_rate * last_ms) / 1000;    if (n_samples_last >= n_samples) {        // not enough samples - assume no speech        return false;    }    if (freq_thold > 0.0f) {        high_pass_filter(pcmf32, freq_thold, sample_rate);    }    float energy_all  = 0.0f;    float energy_last = 0.0f;    for (int i = 0; i < n_samples; i++) {        energy_all += fabsf(pcmf32[i]);        if (i >= n_samples - n_samples_last) {            energy_last += fabsf(pcmf32[i]);        }    }    energy_all  /= n_samples;    energy_last /= n_samples_last;    if (verbose) {        fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);    }    if (energy_last > vad_thold*energy_all) {        return false;    }    return true;}float similarity(const std::string & s0, const std::string & s1) {    const size_t len0 = s0.size() + 1;    const size_t len1 = s1.size() + 1;    std::vector<int> col(len1, 0);    std::vector<int> prevCol(len1, 0);    for (size_t i = 0; i < len1; i++) {        prevCol[i] = i;    }    for (size_t i = 0; i < len0; i++) {        col[0] = i;        for (size_t j = 1; j < len1; j++) {            col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (i > 0 && s0[i - 1] == s1[j - 1] ? 0 : 1));        }        col.swap(prevCol);    }    const float dist = prevCol[len1 - 1];    return 1.0f - (dist / std::max(s0.size(), s1.size()));}bool sam_params_parse(int argc, char ** argv, sam_params & params) {    for (int i = 1; i < argc; i++) {        std::string arg = argv[i];        if (arg == "-s" || arg == "--seed") {            params.seed = std::stoi(argv[++i]);        } else if (arg == "-t" || arg == "--threads") {            params.n_threads = std::stoi(argv[++i]);        } else if (arg == "-m" || arg == "--model") {            params.model = argv[++i];        } else if (arg == "-i" || arg == "--inp") {            params.fname_inp = argv[++i];        } else if (arg == "-o" || arg == "--out") {            params.fname_out = argv[++i];        } else if (arg == "-h" || arg == "--help") {            sam_print_usage(argc, argv, params);            exit(0);        } else {            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());            sam_print_usage(argc, argv, params);            exit(0);        }    }    return true;}void sam_print_usage(int /*argc*/, char ** argv, const sam_params & params) {    fprintf(stderr, "usage: %s [options]\n", argv[0]);    fprintf(stderr, "\n");    fprintf(stderr, "options:\n");    fprintf(stderr, "  -h, --help            show this help message and exit\n");    fprintf(stderr, "  -s SEED, --seed SEED  RNG seed (default: -1)\n");    fprintf(stderr, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);    fprintf(stderr, "  -m FNAME, --model FNAME\n");    fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());    fprintf(stderr, "  -i FNAME, --inp FNAME\n");    fprintf(stderr, "                        input file (default: %s)\n", params.fname_inp.c_str());    fprintf(stderr, "  -o FNAME, --out FNAME\n");    fprintf(stderr, "                        output file (default: %s)\n", params.fname_out.c_str());    fprintf(stderr, "\n");}
 |