| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460 | #include <math.h>#include "kaldi-native-fbank/csrc/feature-fbank.h"#include "kaldi-native-fbank/csrc/feature-window.h"#include "ggml.h"#include "fairseq2.h"#include <unordered_map>#include <algorithm>#include <iostream>#include <fnmatch.h>void ggml_detach(ggml_tensor* a) {    a->op = GGML_OP_NONE;    std::fill(a->src, a->src + GGML_MAX_SRC, nullptr);}/// allocate the fairseq2 model and hyperparametersextern "C" fairseq2_model* fairseq2_model_alloc() {    // pre-allocate some memory to write hyperparameters and tensors pointers    auto* model = new fairseq2_model;    model->tensors_ctx = nullptr;    return model;}extern "C" void fairseq2_kv_cache_alloc(const fairseq2_model& model, int beam_size, int max_seq_len) {    // Note: we only allocate the cache for the decoder attention.    // For encoder attention since we compute it all at once,    // the allocation is delayed to the first forward pass, to not over allocate.    auto attn_glob = "*decoder.*_attn.k_proj.weight";    auto self_attn_glob = "*decoder.*self_attn.k_proj.weight";    ggml_tensor* self_attn_mask = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, max_seq_len, max_seq_len);    self_attn_mask = ggml_diag_mask_inf_inplace(model.ctx, self_attn_mask, 0);    ggml_format_name(self_attn_mask, "self_attn_mask[%d]", max_seq_len);    for (auto named_tensor : model.tensors) {        const std::string& name = named_tensor.first;        if (::fnmatch(attn_glob, name.c_str(), 0) == FNM_NOMATCH)            continue;        // create a cache entry without the ".k_proj.weight" suffix        const std::string& shortname = name.substr(0, name.size() - 14);        KeyValueTensor& kv = model.kv_cache[shortname];        kv.step_nr = 0;        if (::fnmatch(self_attn_glob, name.c_str(), 0) == FNM_NOMATCH) {            // enc_dec_attn            // the tensors will be allocated during the first forward            continue;        }        // self_attn        ggml_tensor* k_proj = named_tensor.second;        int model_dim = k_proj->ne[0];        kv.full_k = ggml_new_tensor_3d(model.ctx, k_proj->type, model_dim, max_seq_len, beam_size);        kv.full_v = ggml_new_tensor_3d(model.ctx, k_proj->type, model_dim, max_seq_len, beam_size);        kv.self_attn_mask = self_attn_mask;        ggml_format_name(kv.full_k, "%s.k_cache", shortname.c_str());        ggml_format_name(kv.full_v, "%s.v_cache", shortname.c_str());    }}extern "C" void fairseq2_kv_cache_reset(const fairseq2_model& model) {    // TODO: use a dedicated allocator, so that kv_cache.clear actually frees the memory    model.kv_cache.clear();}bool has_kv_cache(const fairseq2_model& model) {    return model.kv_cache.size() > 0;}// copy k and v to kv cache// kv.full_k[step_nr] = k;// kv.full_v[step_nr] = v;void append_to_prev_kv(const fairseq2_model& model, const std::string& prefix, ggml_tensor** k, ggml_tensor** v, ggml_tensor** self_attn_mask) {    KeyValueTensor& kv = model.kv_cache[prefix];    GGML_ASSERT(kv.full_k != nullptr); // key not found !    int step_nr = kv.step_nr;    ggml_tensor* full_k = kv.full_k;    ggml_tensor* full_v = kv.full_v;    // (N, S_kv, K_proj)    GGML_ASSERT((*k)->ne[1] == 1);  // TODO I think we could handle adding a full prefix sequence    ggml_tensor* updated_k = ggml_set_2d_inplace(model.ctx, full_k, *k, full_k->nb[2], full_k->nb[1] * step_nr);    ggml_tensor* updated_v = ggml_set_2d_inplace(model.ctx, full_v, *v, full_v->nb[2], full_v->nb[1] * step_nr);    *k = ggml_slice(model.ctx, updated_k, 1, 0, step_nr + 1);    *v = ggml_slice(model.ctx, updated_v, 1, 0, step_nr + 1);    ggml_format_name(*k, "%s (step=%d)", full_k->name, step_nr);    ggml_format_name(*v, "%s (step=%d)", full_v->name, step_nr);    // qk is (B * H, Sq, Sk) == (B*H, 1, Sk) in incremental mode    // we return the Sq slice of the (Sq, Sk) attention mask    *self_attn_mask = ggml_slice(        model.ctx,        ggml_slice(model.ctx, kv.self_attn_mask, 0, 0, step_nr + 1),        1,        step_nr,        step_nr + 1    );    kv.step_nr = step_nr + 1;}// variant of ggml_get_rows that allows for a with more than 2 dims.ggml_tensor* ggml_get_rows2(ggml_context* ctx, ggml_tensor* a, ggml_tensor* b) {    int flattened = 0;    GGML_ASSERT(a->n_dims <= 3);    if (a->n_dims == 3) {        flattened = a->ne[0];        a = ggml_flatten_1d(ctx, a, 0);    }    a = ggml_get_rows(ctx, a, b);    if (flattened) {        a = ggml_unflatten_1d(ctx, a, 0, flattened);    }    return a;}void _reorder_kv_cache(ggml_context* ctx, ggml_cgraph* gf, KeyValueTensor& kv, ggml_tensor* new_order) {    if (kv.full_k != nullptr) {        ggml_detach(kv.full_k);        kv.full_k = ggml_get_rows2(ctx, kv.full_k, new_order);        ggml_build_forward_expand(gf, kv.full_k);    }    if (kv.full_v != nullptr) {        ggml_detach(kv.full_v);        kv.full_v = ggml_get_rows2(ctx, kv.full_v, new_order);        ggml_build_forward_expand(gf, kv.full_v);    }}void reorder_kv_cache(const fairseq2_model& model, ggml_cgraph* gf, ggml_tensor* new_order) {    ggml_context* ctx = model.ctx;    for (auto& named_kv : model.kv_cache) {        _reorder_kv_cache(ctx, gf, named_kv.second, new_order);    }}inline double model_layer_config_d(const fairseq2_model& model, std::string name) {    const std::int64_t* data = &model.layer_config.at(name);    double val = *(const double*)data;    return val;}extern "C" double fairseq2_model_layer_config_double(const fairseq2_model& model, const char* name) {    return model_layer_config_d(model, std::string(name));}extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, const char* name) {    return model.layer_config.at(std::string(name));}extern "C" void fairseq2_model_free(fairseq2_model* model) {    if (model->tensors_ctx) ggml_free(model->tensors_ctx);    delete model;}extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {    model->ctx = ctx;}extern "C" std::string* std_string_alloc(char* c_str) {    return new std::string(c_str);}extern "C" void std_string_free(std::string* str) {    delete str;}bool has_layer(fairseq2_model& model, const std::string& name) {    return model.tensors.find(name) != model.tensors.end();}extern "C" ggml_tensor* Linear_forward(    fairseq2_model& model,    const std::string &prefix,    ggml_tensor* input  // (d_in)) {    // Note: for now we assumed un-batched input    ggml_tensor* weight = model.tensors[prefix + ".weight"];  // (d_in, d_out)    GGML_ASSERT(weight != nullptr);    ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input);  // (d_out)    ggml_tensor* bias = model.tensors[prefix + ".bias"];  // (d_out)    if (bias == nullptr) return out;    return ggml_add_inplace(model.ctx, out, bias);}extern "C" ggml_tensor* LayerNorm_forward(    fairseq2_model& model,    const std::string &prefix,    ggml_tensor* input) {    ggml_tensor* weight = model.tensors[prefix + ".weight"];    GGML_ASSERT(weight != nullptr);    ggml_tensor* bias = model.tensors[prefix + ".bias"];    GGML_ASSERT(bias != nullptr);    auto ctx = model.ctx;    double eps = model_layer_config_d(model, prefix + ".eps");    input = ggml_norm(ctx, input, /*eps*/eps);    return ggml_add_inplace(        ctx,        ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),        ggml_repeat(ctx, bias, input)    );}extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs) {    seqs = Linear_forward(model, prefix + ".inner_proj", seqs);    // inner_activation = ReLu // TODO: allow other activation    seqs = ggml_relu_inplace(model.ctx, seqs);    if (has_layer(model, prefix + ".inner_layer_norm")) {        seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);    }    seqs = Linear_forward(model, prefix + ".output_proj", seqs);    return seqs;}extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs) {    seqs = Linear_forward(model, prefix + ".inner_proj", seqs);    seqs = ggml_silu(model.ctx, seqs);    if (has_layer(model, prefix + ".inner_layer_norm")) {        seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);    }    seqs = Linear_forward(model, prefix + ".output_proj", seqs);    return seqs;}ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {    int n_dims = x->n_dims;    GGML_ASSERT(dim >= 0);    GGML_ASSERT(dim < n_dims);    GGML_ASSERT(ggml_is_contiguous(x));    // Nothing to do    if (dim == n_dims - 1) return x;    if (n_dims == 2) {        return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);    } else if (n_dims == 3) {        if (dim == 0) {            return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);        } else { // dim == 1            return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);        }    } else { // n_dims == 4        if (dim == 0) {            return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);        } else if (dim == 1) {            return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);        } else { // dim == 2            return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);        }    }}ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {    int n_dims = x->n_dims;    GGML_ASSERT(dim >= 0);    GGML_ASSERT(dim < n_dims);    GGML_ASSERT(n_dims < 4);    GGML_ASSERT(x->ne[dim] % num_el == 0);    GGML_ASSERT(x->nb[dim + 1] == x->nb[dim] * x->ne[dim]);  // `x` isn't contiguous along `dim`    if (n_dims == 1) {        return ggml_view_2d(ctx, x, num_el, x->ne[0] / num_el, x->nb[0] * num_el, 0);    } else if (n_dims == 2) {        if (dim == 0) {            return ggml_view_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->nb[0] * num_el, x->nb[1], 0);        } else { // dim == 1            return ggml_view_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->nb[1], num_el * x->nb[1], 0);        }    } else { // (n_dims == 3)        if (dim == 0) {            return ggml_view_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2], x->nb[0] * num_el, x->nb[1], x->nb[2], 0);        } else if (dim == 1) {            return ggml_view_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2], x->nb[1], num_el * x->nb[1], x->nb[2], 0);        } else { // dim == 2            return ggml_view_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el, x->nb[1], x->nb[2], num_el * x->nb[2], 0);        }    }}ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {    // (B, S, dim) -> (B, S, H, H_dim)    x = ggml_unflatten_1d(ctx, x, 0, head_dim);    x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)    x = ggml_cont(ctx, x);    x = ggml_flatten_1d(ctx, x, 2);  // (B * H, S, H_dim)    return x;}/// (B, Sk, dim) -> // (B?, H, H_dim, Sk)ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {    // (B, Sk, dim) -> (B, Sk, H, H_dim)    v = ggml_unflatten_1d(ctx, v, 0, head_dim);    v = ggml_permute(ctx, v, 1, 2, 0, 3);  // (B?, H, H_dim, Sk)    v = ggml_cont(ctx, v);    v = ggml_flatten_1d(ctx, v, 2);  // (B * H, S, H_dim)    return v;}// flash_attn doesn't work for cross attention because it assumes Q <= K// and it seems to yield slightly different scores than expected, and thus a different beam search# define UNITY_FLASH_ATTN 0extern "C" ggml_tensor* MultiheadAttention_forward(    fairseq2_model& model,    const std::string &prefix,    ggml_tensor* queries,  // (slen, d_in)    ggml_tensor* keys,  // (klen, d_in)    ggml_tensor* values,  // (klen, d_out)    ggml_tensor* attn_mask // (klen, slen)) {    int model_dim = queries->ne[0];    int num_heads = model.layer_config.at(prefix + ".num_heads");    int head_dim = model_dim / num_heads;    GGML_ASSERT(model_dim % num_heads == 0);    ggml_context* ctx = model.ctx;    ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)    ggml_set_name(q, "q");    q = _reshape_num_head(ctx, q, head_dim);  // (B * H, S, H_dim)    ggml_tensor *k, *v;    if (!has_kv_cache(model)) {        k = Linear_forward(model, prefix + ".k_proj", keys);        ggml_set_name(k, "k");        v = Linear_forward(model, prefix + ".v_proj", values);        ggml_set_name(v, "v");    } else {        bool encoder_decoder_attn = keys == values && keys != queries;        if (encoder_decoder_attn) {            // The K and V tensors of an encoder-decoder attention (i.e. the            // projected encoder outputs) remain static during evaluation.            KeyValueTensor& kv_cache = model.kv_cache[prefix];            if (kv_cache.step_nr == 0) {                k = Linear_forward(model, prefix + ".k_proj", keys);                ggml_format_name(k, "%s.k_cache", prefix.c_str());                v = Linear_forward(model, prefix + ".v_proj", values);                ggml_format_name(v, "%s.v_cache", prefix.c_str());                // TODO: encoder_padding_mask                kv_cache.full_k = k;                kv_cache.full_v = v;                kv_cache.step_nr = keys->ne[1];            } else {                k = kv_cache.full_k;                v = kv_cache.full_v;                // This is a cache collision. TODO: fairseq2_kv_cache_reset                GGML_ASSERT(keys->ne[1] == k->ne[1]);                GGML_ASSERT(values->ne[1] == v->ne[1]);            }        } else { // self attention            // (1, K) -> (N, 1, K_proj)            k = Linear_forward(model, prefix + ".k_proj", keys);            ggml_set_name(k, "k");            // (1, V) -> (N, 1, V_proj)            v = Linear_forward(model, prefix + ".v_proj", values);            ggml_set_name(v, "v");            append_to_prev_kv(model, prefix, &k, &v, &attn_mask);        }    }    k = _reshape_num_head(ctx, k, head_dim);  // (B * H, Sk, H_dim)    v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)    v = ggml_cont(ctx, v);#if UNITY_FLASH_ATTN    // For flash_attn, we assume either no masks, or triangular masks.    ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr);  // (B * H, S, H_dim)    ggml_set_name(attn, "attn");    attn = ggml_unflatten_1d(ctx, attn, 2, num_heads);  // (B, H, H_dim, S)    attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)#else    // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)    ggml_tensor* qk = ggml_mul_mat(ctx, k, q);    ggml_set_name(qk, "qk");    ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);    ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));    qk = ggml_scale(ctx, qk, qk_scale);    ggml_set_name(qk, "qk_scaled");    // TODO: Should we replace this by ggml_diag_mask_inf ?    if (attn_mask) qk = ggml_add_inplace(ctx, qk, attn_mask);    // TODO: upgrade qk to float32 if needed    ggml_tensor* attn_weights = ggml_soft_max(ctx, qk);  // (B * H, S, Sk)    ggml_set_name(attn_weights, "attn_weights");    // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)    ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);    ggml_set_name(attn, "attn");    attn = ggml_unflatten_1d(ctx, attn, 2, num_heads);  // (B, H, H_dim, S)    attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)#endif  // UNITY_FLASH_ATTN    attn = ggml_cont(ctx, attn);    attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)    // out -> (B, S, d_out)    ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);    ggml_set_name(out, "out");    return out;}extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs,    ggml_tensor* padding_mask) {    ggml_context* ctx = model.ctx;    auto norm_order = model.layer_config.at(prefix + ".norm_order");    // _forward_self_attn(seqs, padding_mask)    auto residual = seqs;    if (norm_order != TRANSFORMER_NORM_ORDER_POST)        seqs =  LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);    // TODO: add padding_mask to MultiheadAttention_forward    GGML_ASSERT(padding_mask == nullptr);    seqs = MultiheadAttention_forward(        model,        prefix + ".self_attn",        seqs,        seqs,        seqs,        /*attn_mask=*/nullptr    );    if (has_layer(model, prefix + ".self_attn_norm"))        seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);    seqs = ggml_add(ctx, seqs, residual);    if (norm_order == TRANSFORMER_NORM_ORDER_POST)        seqs =  LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);    // _forward_ffn(seqs)    residual = seqs;    if (norm_order != TRANSFORMER_NORM_ORDER_POST)        seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);    seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);    // TODO: if self.residual_scale is not None:    // residual = self.residual_scale * residual    seqs = ggml_add(ctx, seqs, residual);    if (norm_order == TRANSFORMER_NORM_ORDER_POST)        seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);    return seqs;}extern "C" ggml_tensor* WaveformToFbank_forward(    fairseq2_model& model,    const std::string &prefix,    ggml_tensor* waveform) {    // Hardcoding: num_bins 80, sample rate 16k, always standardize    ggml_context* ctx = model.ctx;    knf::MelBanksOptions mel_opts{};    mel_opts.num_bins = 80;    knf::FrameExtractionOptions frame_opts{};    frame_opts.samp_freq = 16000;    knf::FbankOptions opts{};    opts.frame_opts = frame_opts;    opts.mel_opts = mel_opts;    std::vector<float_t> signal_frame{};    std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);    struct ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames);    knf::FbankComputer native_(opts);    knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());    for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {        signal_frame.resize(0);        // Extract the frame from the waveform tensor.        knf::ExtractWindow(            /*sample_offset=*/0,            (float *)(waveform->data),            waveform->ne[0],            frame_nr,            frame_opts,            window_fn_,            &signal_frame);        native_.Compute(            /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));    }    output = ggml_dup(ctx, ggml_transpose(ctx, output));    output = ggml_norm(ctx, output, 1e-5);    output = ggml_dup(ctx, ggml_transpose(ctx, output));    if (output->ne[1] % 2 == 1) {        struct ggml_tensor * remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);        for (int i = 0; i < output->ne[1]-1; ++i) {            ((int32_t *) remove_last->data)[i] = i;        }        output = ggml_get_rows(ctx, output, remove_last);    }    output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);    return output;}// TODO: Check if it's possible to merge with standard MHAextern "C" ggml_tensor* RelativePositionMHA_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs) {    ggml_context* ctx = model.ctx;    ggml_tensor* residual = seqs;    seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);    // self_attn: qkv    struct ggml_tensor * Qcur = Linear_forward(model, prefix + ".q_proj", seqs);    struct ggml_tensor * Kcur = Linear_forward(model, prefix + ".k_proj", seqs);    struct ggml_tensor * Vcur = Linear_forward(model, prefix + ".v_proj", seqs);    // self_attn: rel_pos SDPA    int32_t S = seqs->ne[1];    int32_t H = 16; // TODO: Make this configurable    int32_t n_ctx = 4096;    int32_t K_h = seqs->ne[0] / H;    int32_t start_index = n_ctx - S;    int32_t end_index = n_ctx + S - 1;    int num_indices = end_index - start_index;    struct ggml_tensor *rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices);    rows->data = malloc(ggml_nbytes(rows));    for (int i = 0; i < num_indices; i++) {        ((int32_t *)rows->data)[i] = start_index + i;    }    // self_attn: load pos_enc weights & compute_r    // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,    // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.    struct ggml_tensor * r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);    r = ggml_mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);    r = ggml_dup(ctx, ggml_permute(ctx,                        ggml_cpy(ctx,                            r,                            ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S*2-1)),                        0, 2, 1, 3));    struct ggml_tensor * u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);    struct ggml_tensor * v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);    // self_attn: Permute QKV    struct ggml_tensor * Q =                ggml_dup(ctx, ggml_permute(ctx,                        ggml_cpy(ctx,                            Qcur,                            ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),                        0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)    struct ggml_tensor * K =                ggml_dup(ctx, ggml_permute(ctx,                        ggml_cpy(ctx,                            Kcur,                            ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),                        0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)    struct ggml_tensor * V =                ggml_dup(ctx, ggml_permute(ctx,                        ggml_cpy(ctx,                            Vcur,                            ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),                        1, 2, 0, 3)); // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)    struct ggml_tensor * q_with_u_bias = ggml_add(ctx, Q, u_bias); // (K_h, S, H)    struct ggml_tensor * q_with_v_bias = ggml_add(ctx, Q, v_bias); // (K_h, S, H)    struct ggml_tensor * ac = ggml_mul_mat(ctx, K, q_with_u_bias);    struct ggml_tensor * bd = ggml_mul_mat(ctx, r, q_with_v_bias);    // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161    bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1    struct ggml_tensor * pad = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1);    pad->data = malloc(ggml_nbytes(pad));    pad = ggml_set_f32(pad, 0.0);    bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)    bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)    bd = ggml_dup(ctx, ggml_reshape_3d(ctx, bd, S, 2*S, H));  // (S, 2S, H)    bd = ggml_remove_head_row(ctx, bd); // A custom operator introduced to reduce 1st row (in the 2nd dim)    bd = ggml_reshape_3d(ctx, bd, 2*S-1, S, H);    bd = ggml_get_first_cols_by_rows(ctx, bd); // A custom operator introduced to get first #rows cols.    // self_attn: compute attn / weights    struct ggml_tensor * attn_weights = ggml_add(ctx, ac, bd);    struct ggml_tensor * attn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);    attn_scale->data = malloc(ggml_nbytes(attn_scale));    ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));    attn_weights = ggml_mul(ctx, ggml_repeat(ctx, attn_scale, attn_weights), attn_weights);    attn_weights = ggml_soft_max(ctx, attn_weights);    struct ggml_tensor * attn = ggml_mul_mat(ctx, V, attn_weights); // K_h, S, H    attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));    struct ggml_tensor * attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);    struct ggml_tensor * attn_out = ggml_mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);    attn_out = ggml_add(ctx,            ggml_repeat(ctx,                model.tensors[prefix + ".output_proj.bias"],                attn_out),            attn_out);    attn_out = ggml_add(ctx, residual, attn_out);    return attn_out;}extern "C" ggml_tensor* ConvModule_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs) {        ggml_context* ctx = model.ctx;        ggml_tensor* residual = seqs;        seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);        // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case        seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);        // conv: GLU        seqs = ggml_glu(ctx, seqs);        seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));        // S x C -> (S+K-1) x C -> K x S x C -> S x C        seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);        // conv: Custom implementation of batch norm        seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);        // conv: SiLU actvation        seqs = ggml_silu(ctx, seqs);        seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));        // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case        seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);        // conv: + residual        seqs = ggml_add(ctx, seqs, residual);        return seqs;}extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs,    ggml_tensor* padding_mask) {    ggml_context* ctx = model.ctx;    struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);    ffn_scale->data = malloc(ggml_nbytes(ffn_scale));    ggml_set_f32(ffn_scale, 0.5f);    struct ggml_tensor * residual = seqs;    seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);    seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);    seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);    seqs = ggml_add(ctx, seqs, residual);    seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);    seqs = ConvModule_forward(model, prefix + ".conv", seqs);    residual = seqs;    seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);    seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);    seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);    seqs = ggml_add(ctx, seqs, residual);    seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);    return seqs;}extern "C" ggml_tensor* StandardConformerEncoder_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs,    ggml_tensor* padding_mask) { // TODO: Implement this!    ggml_context* ctx = model.ctx;    seqs = WaveformToFbank_forward(model, prefix, seqs);    seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);    seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);    int layer_idx = 0;    std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);    while (has_layer(model, layer_name)) {        seqs = StandardConformerEncoderLayer_forward(            model, layer_name, seqs, padding_mask        );        ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());        layer_idx += 1;        layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);    }    seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);    ggml_tensor* residual = seqs;    seqs = Linear_forward(model, prefix + ".proj1", seqs);    seqs = ggml_relu_inplace(ctx, seqs);    seqs = Linear_forward(model, prefix + ".proj2", seqs);    struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);    ffn_scale->data = malloc(ggml_nbytes(ffn_scale));    ggml_set_f32(ffn_scale, 0.5f);    seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);    seqs = ggml_add(ctx, seqs, residual);    layer_idx = 0;    layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);    while (has_layer(model, layer_name)) {        seqs = StandardConformerEncoderAdaptorLayer_forward(            model, layer_name, seqs, padding_mask        );        ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());        layer_idx += 1;        layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);    }    seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);    return seqs;}extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs,    ggml_tensor* padding_mask) {    ggml_context* ctx = model.ctx;    struct ggml_tensor * residual = seqs;    residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);    residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));    residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);    residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));    residual = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);    residual = ggml_glu(ctx, residual);    seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);    seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));    seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);    seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));    seqs = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs), seqs);    seqs = ggml_glu(ctx, seqs);    seqs = MultiheadAttention_forward(        model,        prefix + ".self_attn",        seqs,        seqs,        seqs,        /*attention masks=*/nullptr    );    seqs = ggml_add(ctx, seqs, residual);    residual = seqs;    seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);    seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);    seqs = ggml_add(ctx, seqs, residual);    return seqs;}/// ggml_slice(X, -1, start, end) is equivalent to X[start:end]/// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]struct ggml_tensor * ggml_slice(    struct ggml_context * ctx,    struct ggml_tensor  * a,    int axis,    int64_t start,    int64_t end) {    int64_t ne[4];    std::copy(a->ne, a->ne + 4, ne);    if (axis < 0) axis = a->n_dims + axis;    if (start < 0) start = ne[axis] + start;    if (end < 0) end = ne[axis] + end;    GGML_ASSERT(0 <= start);    GGML_ASSERT(start <= end);    GGML_ASSERT(end <= ne[axis]);    ne[axis] = end - start;    size_t offset = a->nb[axis] * start;    size_t* nb = a->nb;    ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);    ggml_format_name(result, "%s [(%d)%ld:%ld]", a->name, axis, start, end);    result->n_dims = a->n_dims;    return result;}struct ggml_tensor * ggml_select(    struct ggml_context * ctx,    struct ggml_tensor  * a,    int axis,    int64_t index) {    int64_t ne[GGML_MAX_DIMS];    std::copy(a->ne, a->ne + GGML_MAX_DIMS, ne);    if (axis < 0) axis = a->n_dims + axis;    if (index < 0) index = ne[axis] + index;    GGML_ASSERT(0 <= index);    GGML_ASSERT(index < ne[axis]);    std::copy(a->ne + axis + 1, a->ne + GGML_MAX_DIMS, ne + axis);    size_t offset = a->nb[axis] * index;    size_t* nb = a->nb;    GGML_ASSERT(GGML_MAX_DIMS == 4);    ggml_tensor* result = ggml_view_3d(ctx, a, ne[0], ne[1], ne[2], nb[1], nb[2], offset);    ggml_format_name(result, "%s [(%d)%ld]", a->name, axis, index);    result->n_dims = a->n_dims - 1;    return result;}extern "C" ggml_tensor* PositionalEmbedding_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* embeds) {    // This only work with the simple pos encoders    int seq_len = embeds->ne[1];    ggml_tensor* full_pos_embeds = model.tensors[prefix];    int start_step = 0;    if (has_kv_cache(model)) {        start_step = model.kv_cache[prefix].step_nr++;    }    ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, start_step, seq_len + start_step);    return ggml_add(model.ctx, embeds, pos_embeds);}extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs) {    GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);    ggml_context* ctx = model.ctx;    ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];    GGML_ASSERT(embed_weights != nullptr);    ggml_tensor* embeds;    if (seqs->n_dims == 1) {        embeds = ggml_get_rows(ctx, embed_weights, seqs);    } else {        // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.        ggml_tensor* flat_seqs = seqs;        if (!ggml_is_contiguous(seqs)) {            flat_seqs->type = GGML_TYPE_F32;            flat_seqs = ggml_cont(ctx, flat_seqs);        }        flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));        flat_seqs->type = GGML_TYPE_I32;        embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);        embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);        embeds->n_dims = seqs->n_dims + 1;    }    // padding mask ?    // padding_mask = to_padding_mask(embeds, seq_lens)    if (has_layer(model, prefix + ".pos_encoder")) {        embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);    }    if (has_layer(model, prefix + ".layer_norm")) {        embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);    }    return embeds;}extern "C" ggml_tensor* StandardTransformerEncoder_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs,    ggml_tensor* padding_mask) {    int layer_idx = 0;    std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);    while (has_layer(model, layer_name)) {        seqs = StandardTransformerEncoderLayer_forward(            model, layer_name, seqs, padding_mask        );        ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());        layer_idx += 1;        layer_name = prefix + ".layers." + std::to_string(layer_idx);    }    if (has_layer(model, prefix + ".layer_norm"))        seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);    return seqs;}extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs,    ggml_tensor* self_attn_mask,    ggml_tensor* encoder_output,    ggml_tensor* encoder_padding_mask) {    ggml_context* ctx = model.ctx;    auto norm_order = model.layer_config.at(prefix + ".norm_order");    // _forward_self_attn(seqs, padding_mask)    auto residual = seqs;    if (norm_order != TRANSFORMER_NORM_ORDER_POST)        seqs =  LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);    seqs = MultiheadAttention_forward(        model,        prefix + ".self_attn",        seqs,        seqs,        seqs,        /*attn_mask=*/self_attn_mask    );    if (has_layer(model, prefix + ".self_attn_norm"))        seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);    seqs = ggml_add(ctx, seqs, residual);    if (norm_order == TRANSFORMER_NORM_ORDER_POST)        seqs =  LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);    // _forward_encoder_decoder_attn    if (! has_layer(model, prefix + ".encoder_decoder_attn")) {        // `encoder_output` must be `None` for decoder-only attention.        GGML_ASSERT(encoder_output == nullptr);        return seqs;    }    // `encoder_output` must not be `None` for encoder-decoder attention.    GGML_ASSERT(encoder_output != nullptr);    residual = seqs;    if (norm_order != TRANSFORMER_NORM_ORDER_POST)        seqs =  LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);    seqs = MultiheadAttention_forward(        model,        prefix + ".encoder_decoder_attn",        seqs,        encoder_output,        encoder_output,        /*attention masks=*/encoder_padding_mask    );    seqs = ggml_add(ctx, seqs, residual);    if (norm_order == TRANSFORMER_NORM_ORDER_POST)        seqs =  LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);    // _forward_ffn(seqs)    residual = seqs;    if (norm_order != TRANSFORMER_NORM_ORDER_POST)        seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);    seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);    // TODO:    // if self.residual_scale is not None:    // residual = self.residual_scale * residual    seqs = ggml_add(ctx, seqs, residual);    if (norm_order == TRANSFORMER_NORM_ORDER_POST)        seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);    return seqs;}extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {    auto seq_len = seqs->ne[1];    // TODO: allow other ggml_type    ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);    return ggml_diag_mask_inf(ctx, mask, 0);}extern "C" ggml_tensor* StandardTransformerDecoder_forward(    fairseq2_model& model,    const std::string& prefix,    ggml_tensor* seqs,    ggml_tensor* padding_mask,    ggml_tensor* encoder_output,    ggml_tensor* encoder_padding_mask) {    int layer_idx = 0;    std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);    ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);    while (has_layer(model, layer_name)) {        seqs = StandardTransformerDecoderLayer_forward(            model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask        );        ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());        layer_idx += 1;        layer_name = prefix + ".layers." + std::to_string(layer_idx);    }    if (has_layer(model, prefix + ".layer_norm"))        seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);    return seqs;}int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {    auto opts = job.opts;    int max_seq_len = -1;    if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {        max_seq_len = opts.hard_max_seq_len;    } else {        max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);    }    if (opts.min_seq_len > max_seq_len) {        printf(            "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",            opts.min_seq_len,            max_seq_len        );        GGML_ASSERT(opts.min_seq_len <= max_seq_len);    }    int prefix_seq_len = job.prefix_seq->ne[0];    if (prefix_seq_len >= max_seq_len) {        printf(            "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",            prefix_seq_len,            max_seq_len        );        GGML_ASSERT(prefix_seq_len < max_seq_len);    }    return max_seq_len;}void _fan_out_encoder_output(    ggml_context* ctx,    ggml_tensor** encoder_output_out,    ggml_tensor** encoder_padding_mask_out,    int beam_size) {    // (S_enc, M)    ggml_tensor* encoder_output = *encoder_output_out;    ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;    // (B, S_enc, M)    ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);    // (S_enc, M) -> (B, S_enc, M)    *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);    // (S_enc) -> (B, S_enc)    if (encoder_padding_mask != nullptr) {        ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);        *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);    }}ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {    // TODO: this isn't the most precise way of doing this    return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));}ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {    ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);    ggml_type true_type = x->type;    x->type = GGML_TYPE_F32;    ggml_tensor* y = ggml_repeat(ctx, x, shape);    y->type = true_type;    return y;}extern "C" void _bootstrap_seqs_and_scores(    fairseq2_model& model,    const SequenceGeneratorJob& job,    ggml_tensor* full_seqs,    ggml_tensor* scores,    ggml_tensor* encoder_output,    ggml_tensor* encoder_padding_mask) {    int prefix_seq_len = job.prefix_seq->ne[0];    int max_seq_len = scores->ne[0];    int beam_size = scores->ne[1];    GGML_ASSERT(prefix_seq_len > 0);    if (prefix_seq_len == 1)        return;    ggml_context* ctx = model.ctx;    // full_seqs[:, : prefix_seq_len] = job.prefix_seq;    full_seqs->type = GGML_TYPE_F32;    job.prefix_seq->type = GGML_TYPE_F32;    ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);    seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);    // We have to bootstrap the model with the already fanned-out encoder    // output to correctly initialize its incremental state.    // Note: we don't start decoding the last prefix token just yet.    seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);    seqs->type = GGML_TYPE_I32;    // Bootstrap the model state with prefix sequence.    seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);    ggml_tensor* decoder_output = StandardTransformerDecoder_forward(        model,        "text_decoder",        seqs,        /*padding_mask*/ nullptr,        encoder_output,        encoder_padding_mask    );    // TODO state_bag.increment_step(prefix_seq_len - 1)    // logits, lprobs: (N, S_pfx - 1, V)    ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);    int vocab_size = logits->ne[0];    ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));    ggml_cgraph gf = ggml_build_forward(lprobs);    ggml_graph_compute_with_ctx(ctx, &gf, 1);    full_seqs->type = GGML_TYPE_I32;    job.prefix_seq->type = GGML_TYPE_I32;    // Fetch scores of next steps from "lprobs"    float p_score = 0;    for (int i = 1; i < prefix_seq_len; ++i) {        int p = ggml_get_i32_1d(job.prefix_seq, i);        p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);        for (int b = 0; b < beam_size; ++b) {            // scores: (N, S)            // Note: First step (e.g. BOS)'s score is always 0.            ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);        }    }}/// Finds the topk indices, and write the winning indices in "candidate_indices" array.int topk(    ggml_tensor* lprobs,  // (B, V)    std::int64_t k,    ggml_tensor* candidate_indices) {    // Take the best 2 x `beam_size` predictions. We'll choose the first    // `beam_size` of these which don't predict EOS to continue with.    // (N, 2 x B)    // `vocab_size` - 1 to never select PAD.    std::int64_t K = std::min(k, ggml_nelements(lprobs));    auto comp = [lprobs](std::int32_t a, std::int32_t b) {        return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);    };    GGML_ASSERT(ggml_nelements(candidate_indices) >= k);    auto cand = (std::int32_t*)candidate_indices->data;    std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);    return K;}/// Copies the sequence and scores of a given candidate beam.void _finalize_hypothesis(    const SequenceGeneratorJob& job,    ggml_context* ctx,    int step_nr,    std::int32_t beam,    std::int32_t token,    float eos_score,    ggml_tensor* seqs, // (beam_size, seq_len)    ggml_tensor* scores, // (beam_size, seq_len)    Hypothesis* hypothesis) {    ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);    hypothesis->seq = seq;    ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);    hypothesis->step_scores = step_scores;    auto tok = (std::int32_t*)seq->data;    for (int i = 0; i < step_nr + 1; ++i) {        tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);    }    tok[step_nr + 1] = token;    // Convert from cumulative to per-step scores.    auto sc = (float*)step_scores->data;    float last_score = eos_score;    for (int i = step_nr; i >= 0; --i) {        float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);        sc[i + 1] = last_score - sc0;        last_score = sc0;    }    sc[0] = 0;    if (job.opts.normalize_scores)        // Skip first EOS since it is always 0 and skews normalization.        eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);    hypothesis->score = eos_score;}// Uses ggml_context to store any object.#define GGML_CTX_ALLOC(ctx, Type, n) \    (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);/// Generates a translation for a single sequence// TODO: clean ups// * replace manual tensor tweaking with ggml_set_*d (a ggml_set_slice could be useful)extern "C" Hypothesis* generate_sequence(    fairseq2_model& model,    const SequenceGeneratorJob& job,    ggml_tensor* encoder_output,    ggml_tensor* encoder_padding_mask,    ggml_context* result_ctx) {    ggml_context* ctx = model.ctx;    size_t eos_idx = job.eos_idx;    auto pad_idx = job.pad_idx;    ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];    size_t vocab_size = embed->ne[1];    std::size_t beam_size = job.opts.beam_size;    int source_seq_len = encoder_output->ne[1];    int max_seq_len = _determine_max_seq_len(job, source_seq_len);    fairseq2_kv_cache_alloc(model, beam_size, max_seq_len);    // (S_enc, M) -> (B, S_enc, M)    _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);    // Allocate results in the context provided by the caller.    Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);    Hypothesis* finished_searches = finished_searches_begin;    for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};    Hypothesis* finished_searches_end = finished_searches + beam_size;    // Initialize buffers. (B, S)    ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);    ggml_set_i32(seqs, 0);    ggml_set_name(seqs, "seqs_0");    ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);    ggml_set_name(scores, "scores_0");    ggml_set_f32(scores, 0.0);    _bootstrap_seqs_and_scores(        model, job, seqs, scores, encoder_output, encoder_padding_mask    );    int prefix_seq_len = job.prefix_seq->ne[0];    int start_step = prefix_seq_len - 1;    // Holds the indices of beams (a beam can occur more than once) that we    // should continue with in the next step.    ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);    ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);    ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);    // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore    ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);    for (std::size_t i = 0; i < vocab_size * beam_size; ++i)        ((int32_t *)(candidate_indices->data))[i] = i;    // TODO: memory management, there should be a per-step ggml_context for intermediary results    for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {        ggml_tensor* prev_token = ggml_slice(ctx, seqs, 0, step_nr, step_nr + 1);        ggml_tensor* decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", prev_token);        ggml_tensor* decoder_output = StandardTransformerDecoder_forward(            model,            "text_decoder",            decoder_input,            nullptr,  // We never generate PAD.            encoder_output,            encoder_padding_mask        ); // (B, 1, D)        // Just look at the last token.        decoder_output = ggml_flatten_1d(ctx, decoder_output, 0);  // (B, model_dim)        ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);  // (B, vocab_size)        ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);        // Compute lprobs here so we can modify it in place in the lprob tweaking phase        // TODO: use ggml properly compute the tweaks        ggml_cgraph gf = ggml_build_forward(lprobs);        printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);        ggml_graph_compute_with_ctx(ctx, &gf, 1);        ggml_detach(lprobs);        // // Do not allow EOS before reaching the minimum sequence length.        if (step_nr < job.opts.min_seq_len) {            // lprobs[:, :, self.eos_idx] = -INFINITY;            for (size_t i = 0; i < beam_size; ++i)                ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);        }        // If we have reached the maximum length, force the last step to be EOS.        if (step_nr == max_seq_len - 2) {            // lprobs[:, :, : self.eos_idx]       = -torch.inf            // lprobs[:, :,   self.eos_idx + 1 :] = -torch.inf            for (size_t b = 0; b < beam_size; ++b) {                size_t t = 0;                for (t = 0; t < eos_idx; ++t)                    ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);                for (t = eos_idx + 1; t < vocab_size; ++t)                    ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);            }        }        // Never allow PAD.        for (size_t i = 0; i < beam_size; ++i)            ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);        // Apply UNK penalty.        if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {            // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty            auto lprobs_raw = ggml_get_data_f32(lprobs);            for (size_t i = 0; i < beam_size; ++i)                lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;        }        ggml_tensor* last_scores = ggml_slice(ctx, scores, 0, step_nr, step_nr+1);        if (step_nr == start_step) {            // At the initial step, all hypotheses are equally likely, so we use            // only the first beam.            lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);            lprobs = ggml_cont(ctx, lprobs);            // The first step always indicates the beginning of the sequence and has no score.            if (step_nr > 0) {                last_scores = ggml_slice(ctx, last_scores, 1, 0, 1);                lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));            }        } else {            // Make probabilities contain cumulative scores for each hypothesis.            lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));        }        gf = ggml_build_forward(lprobs);        ggml_graph_compute_with_ctx(ctx, &gf, 1);        // Determine (beam, token) candidates for the next step.        // (N, 2 x B)        std::int64_t K = topk(            lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices        );        std::size_t ongoing_beams = 0;        for (std::int32_t i = 0; i < K; ++i) {            int c = ggml_get_f32_1d(candidate_indices, i);            std::int32_t beam = c / vocab_size;            std::int32_t token = c % vocab_size;            float tok_score = ggml_get_f32_1d(lprobs, c);            // Detect beams that reached the minimum length and that end with an EOS.            bool eos = token == job.eos_idx;            eos &= tok_score != -INFINITY;            if (eos) {                _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);                if (finished_searches == finished_searches_end)                    goto end_of_beam_search;                continue;            }            ggml_set_f32_1d(beam_indices, ongoing_beams, beam);            ggml_set_f32_1d(next_tokens, ongoing_beams, token);            ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);            ongoing_beams += 1;            if (ongoing_beams >= beam_size) break;        }        // Reorder beams in the `seq` and `score` buffers. The same beam can        // be selected more than once.        ggml_tensor* new_seqs = seqs;        ggml_tensor* new_scores = scores;        if (step_nr > start_step) {            // (B, S), (B) -> (B, S)            // ggml_get_rows and ggml_set only work with floats ...            new_seqs->type = GGML_TYPE_F32;            new_seqs = ggml_get_rows(ctx, seqs, beam_indices);            new_scores = ggml_get_rows(ctx, scores, beam_indices);            ggml_cgraph gf_reorder = ggml_build_forward(new_seqs);            ggml_build_forward_expand(&gf_reorder, new_scores);            reorder_kv_cache(model, &gf_reorder, beam_indices);            ggml_graph_compute_with_ctx(ctx, &gf_reorder, 1);            ggml_detach(new_seqs);            ggml_detach(new_scores);            new_seqs->type = GGML_TYPE_I32;        }        // new_seqs[:, step_nr + 1] = next_tokens        // new_scores[:, step_nr + 1] = next_scores        for (std::size_t i = 0; i < beam_size; ++i) {            ((std::int32_t*)new_seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);            ((float*)new_scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);        }        // TODO the old seqs and score buffers could be reused for next step        seqs = new_seqs;        scores = new_scores;    }end_of_beam_search:    // Ensure that hypotheses are sorted by decreasing scores before returning.    std::sort(        finished_searches_begin,        finished_searches_end,        [](Hypothesis a, Hypothesis b) { return a.score > b.score; }    );    fairseq2_kv_cache_reset(model);    return finished_searches_begin;}extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {    Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);    result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};    ggml_set_i32_1d(result[0].seq, 0, 314);    result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};    ggml_set_i32_1d(result[1].seq, 0, 421);    return result;}
 |