unity.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677
  1. #include "ggml/ggml.h"
  2. #include "ggml/ggml-alloc.h"
  3. #include "common.h"
  4. #include "common-ggml.h"
  5. #include <cassert>
  6. #include <cmath>
  7. #include <cstdio>
  8. #include <cstring>
  9. #include <fstream>
  10. #include <map>
  11. #include <string>
  12. #include <vector>
  13. #include <iostream>
  14. // default hparams
  15. struct unity_hparams {
  16. int32_t n_text_vocab = 256206;
  17. int32_t n_unit_vocab = 10084;
  18. int32_t n_audio_enc_dim = 1024;
  19. int32_t n_audio_enc_ffn_dim = 4096;
  20. int32_t n_audio_enc_feat_dim = 160;
  21. int32_t n_audio_enc_layer = 24;
  22. int32_t n_audio_enc_head = 16;
  23. int32_t ftype = 1;
  24. float eps = 1e-5f;
  25. };
  26. // layer def
  27. struct audio_enc_layer {
  28. struct ggml_tensor * self_attn_layer_norm_w;
  29. struct ggml_tensor * self_attn_layer_norm_b;
  30. struct ggml_tensor * self_attn_linear_k_w;
  31. struct ggml_tensor * self_attn_linear_k_b;
  32. struct ggml_tensor * self_attn_linear_q_w;
  33. struct ggml_tensor * self_attn_linear_q_b;
  34. struct ggml_tensor * self_attn_linear_v_w;
  35. struct ggml_tensor * self_attn_linear_v_b;
  36. struct ggml_tensor * self_attn_linear_out_w;
  37. struct ggml_tensor * self_attn_linear_out_b;
  38. struct ggml_tensor * self_attn_linear_pos_w;
  39. struct ggml_tensor * self_attn_pos_bias_u;
  40. struct ggml_tensor * self_attn_pos_bias_v;
  41. struct ggml_tensor * conv_layer_norm_w;
  42. struct ggml_tensor * conv_layer_norm_b;
  43. struct ggml_tensor * conv_pointwise_conv1_w;
  44. struct ggml_tensor * conv_depthwise_conv_w;
  45. struct ggml_tensor * conv_batch_norm_w;
  46. struct ggml_tensor * conv_batch_norm_b;
  47. struct ggml_tensor * conv_batch_norm_running_mean;
  48. struct ggml_tensor * conv_batch_norm_running_var;
  49. struct ggml_tensor * conv_batch_norm_num_batches_tracked;
  50. struct ggml_tensor * conv_pointwise_conv2_w;
  51. struct ggml_tensor * ffn1_layer_norm_w;
  52. struct ggml_tensor * ffn1_layer_norm_b;
  53. struct ggml_tensor * ffn1_w1;
  54. struct ggml_tensor * ffn1_b1;
  55. struct ggml_tensor * ffn1_w2;
  56. struct ggml_tensor * ffn1_b2;
  57. struct ggml_tensor * ffn2_layer_norm_w;
  58. struct ggml_tensor * ffn2_layer_norm_b;
  59. struct ggml_tensor * ffn2_w1;
  60. struct ggml_tensor * ffn2_b1;
  61. struct ggml_tensor * ffn2_w2;
  62. struct ggml_tensor * ffn2_b2;
  63. struct ggml_tensor * final_layer_norm_w;
  64. struct ggml_tensor * final_layer_norm_b;
  65. };
  66. // struct ggml_tensor * conv_ln;
  67. // struct ggml_tensor * conv_pool_1d;
  68. // model def
  69. struct unity_model {
  70. unity_hparams hparams;
  71. // audio encoder
  72. struct ggml_tensor * post_extract_proj_w;
  73. struct ggml_tensor * post_extract_proj_b;
  74. struct ggml_tensor * audio_enc_pos_conv_wg;
  75. struct ggml_tensor * audio_enc_pos_conv_wv;
  76. struct ggml_tensor * audio_enc_pos_conv_b;
  77. struct ggml_tensor * audio_enc_layer_norm_w;
  78. struct ggml_tensor * audio_enc_layer_norm_b;
  79. struct ggml_tensor * audio_enc_pos_enc_w;
  80. struct ggml_tensor * layer_norm_w;
  81. struct ggml_tensor * layer_norm_b;
  82. struct ggml_tensor * memory_k;
  83. struct ggml_tensor * memory_v;
  84. std::vector<audio_enc_layer> audio_enc_layers;
  85. // text encoder
  86. // std::vector<text_enc_layer> text_enc_layers;
  87. // adaptor
  88. // std::vector<adapter_layer> adapter_layers;
  89. // text decoder
  90. // std::vector<text_dec_layer> text_dec_layers;
  91. // unit decoder
  92. // std::vector<unit_dec_layer> unit_dec_layers;
  93. //
  94. struct ggml_context * ctx;
  95. std::map<std::string, struct ggml_tensor *> tensors;
  96. };
  97. // model load
  98. bool unity_model_load(const std::string & fname, unity_model & model, gpt_vocab & vocab) {
  99. printf("%s: loading model from '%s'\n", __func__, fname.c_str());
  100. auto fin = std::ifstream(fname, std::ios::binary);
  101. if (!fin) {
  102. fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
  103. return false;
  104. }
  105. // verify magic
  106. {
  107. uint32_t magic;
  108. fin.read((char *) &magic, sizeof(magic));
  109. if (magic != GGML_FILE_MAGIC) {
  110. fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
  111. return false;
  112. }
  113. }
  114. // load hparams
  115. {
  116. auto & hparams = model.hparams;
  117. fin.read((char *) &hparams.n_text_vocab, sizeof(hparams.n_text_vocab));
  118. fin.read((char *) &hparams.n_audio_enc_dim, sizeof(hparams.n_audio_enc_dim));
  119. fin.read((char *) &hparams.n_audio_enc_ffn_dim, sizeof(hparams.n_audio_enc_ffn_dim));
  120. fin.read((char *) &hparams.n_audio_enc_feat_dim, sizeof(hparams.n_audio_enc_feat_dim));
  121. fin.read((char *) &hparams.n_audio_enc_layer, sizeof(hparams.n_audio_enc_layer));
  122. fin.read((char *) &hparams.n_audio_enc_head, sizeof(hparams.n_audio_enc_head));
  123. fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
  124. const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
  125. printf("%s: n_text_vocab = %d\n", __func__, hparams.n_text_vocab);
  126. printf("%s: n_audio_enc_dim = %d\n", __func__, hparams.n_audio_enc_dim);
  127. printf("%s: n_audio_enc_ffn_dim = %d\n", __func__, hparams.n_audio_enc_ffn_dim);
  128. printf("%s: n_audio_enc_feat_dim = %d\n", __func__, hparams.n_audio_enc_feat_dim);
  129. printf("%s: n_audio_enc_layer = %d\n", __func__, hparams.n_audio_enc_layer);
  130. printf("%s: n_audio_enc_head = %d\n", __func__, hparams.n_audio_enc_head);
  131. printf("%s: ftype = %d\n", __func__, hparams.ftype);
  132. printf("%s: qntvr = %d\n", __func__, qntvr);
  133. hparams.ftype %= GGML_QNT_VERSION_FACTOR;
  134. }
  135. // for the big tensors, we have the option to store the data in 16-bit floats or quantized
  136. // in order to save memory and also to speed up the computation
  137. ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
  138. if (wtype == GGML_TYPE_COUNT) {
  139. fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
  140. __func__, fname.c_str(), model.hparams.ftype);
  141. return false;
  142. }
  143. auto & ctx = model.ctx;
  144. size_t ctx_size = 0;
  145. {
  146. const auto & hparams = model.hparams;
  147. const int n_audio_enc_dim = hparams.n_audio_enc_dim;
  148. const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
  149. const int n_audio_enc_layer = hparams.n_audio_enc_layer;
  150. const int n_ctx = 4096; // 20ms * 4096 = 80s
  151. // const int n_text_vocab = hparams.n_text_vocab;
  152. const int kernel_size = 31;
  153. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm_w
  154. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm_b
  155. ctx_size += n_audio_enc_layer*(5*n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // self_attn_w
  156. ctx_size += n_audio_enc_layer*(4*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // self_attn_b
  157. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm_w
  158. ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm_b
  159. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*2*ggml_type_sizef(wtype)); // conv_pointwise_conv1_w
  160. ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_w
  161. ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_b
  162. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*kernel_size*ggml_type_sizef(wtype)); // conv_depthwise_conv_w
  163. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // conv_pointwise_conv2_w
  164. ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm_w
  165. ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm_b
  166. ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * n_audio_enc_ffn_dim * ggml_type_sizef(wtype)); // ffn{1,2}_w{1,2}
  167. ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_b{1,2}
  168. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm_w
  169. ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm_b
  170. ctx_size += n_ctx*n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // memory_k
  171. ctx_size += n_ctx*n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // memory_v
  172. // Adaptor
  173. // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_ln
  174. // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_pool_1d
  175. // object overhead might differ depending on the structure and other miscellaneous factors
  176. ctx_size += (6 + 12*n_audio_enc_layer)*512; // updated object overhead
  177. printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
  178. printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
  179. }
  180. // create the ggml context
  181. {
  182. struct ggml_init_params params = {
  183. /*.mem_size =*/ ctx_size,
  184. /*.mem_buffer =*/ NULL,
  185. /*.no_alloc =*/ false,
  186. };
  187. model.ctx = ggml_init(params);
  188. if (!model.ctx) {
  189. fprintf(stderr, "%s: ggml_init() failed\n", __func__);
  190. return false;
  191. }
  192. }
  193. // prepare memory for the weights
  194. {
  195. const auto & hparams = model.hparams;
  196. const int n_audio_enc_dim = hparams.n_audio_enc_dim;
  197. const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
  198. const int n_audio_enc_feat_dim = hparams.n_audio_enc_feat_dim;
  199. const int n_audio_enc_layer = hparams.n_audio_enc_layer;
  200. const int n_audio_enc_head = hparams.n_audio_enc_head;
  201. const int n_ctx = 4096; // 20ms * 4096 = 80s
  202. const int pos_conv_kernel_size = 128;
  203. // const int n_text_vocab = hparams.n_text_vocab;
  204. model.audio_enc_layers.resize(n_audio_enc_layer);
  205. model.audio_enc_pos_enc_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_ctx * 2 - 1);
  206. model.tensors["model/enc/pos_enc/w"] = model.audio_enc_pos_enc_w;
  207. model.post_extract_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim, n_audio_enc_dim);
  208. model.post_extract_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  209. model.tensors["model/post_extract_proj/w"] = model.post_extract_proj_w;
  210. model.tensors["model/post_extract_proj/b"] = model.post_extract_proj_b;
  211. model.audio_enc_pos_conv_wg = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, pos_conv_kernel_size);
  212. model.audio_enc_pos_conv_wv = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, pos_conv_kernel_size, 64, n_audio_enc_dim);
  213. model.audio_enc_pos_conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  214. model.tensors["model/enc/pos_conv/w_g"] = model.audio_enc_pos_conv_wg;
  215. model.tensors["model/enc/pos_conv/w_v"] = model.audio_enc_pos_conv_wv;
  216. model.tensors["model/enc/pos_conv/b"] = model.audio_enc_pos_conv_b;
  217. model.audio_enc_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  218. model.audio_enc_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  219. model.tensors["model/enc/layer_norm/w"] = model.audio_enc_layer_norm_w;
  220. model.tensors["model/enc/layer_norm/b"] = model.audio_enc_layer_norm_b;
  221. model.layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim);
  222. model.layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_feat_dim);
  223. model.tensors["model/layer_norm/w"] = model.layer_norm_w;
  224. model.tensors["model/layer_norm/b"] = model.layer_norm_b;
  225. for (int i = 0; i < n_audio_enc_layer; ++i) {
  226. auto & layer = model.audio_enc_layers[i];
  227. layer.self_attn_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  228. layer.self_attn_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  229. layer.self_attn_linear_k_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  230. layer.self_attn_linear_k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  231. layer.self_attn_linear_q_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  232. layer.self_attn_linear_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  233. layer.self_attn_linear_v_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  234. layer.self_attn_linear_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  235. layer.self_attn_linear_out_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  236. layer.self_attn_linear_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  237. layer.self_attn_linear_pos_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  238. layer.self_attn_pos_bias_u = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim / n_audio_enc_head, n_audio_enc_head);
  239. layer.self_attn_pos_bias_v = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim / n_audio_enc_head, n_audio_enc_head);
  240. layer.conv_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  241. layer.conv_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  242. layer.conv_pointwise_conv1_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, 2*n_audio_enc_dim);
  243. layer.conv_depthwise_conv_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 31, n_audio_enc_dim);
  244. layer.conv_batch_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  245. layer.conv_batch_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  246. layer.conv_batch_norm_running_mean = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  247. layer.conv_batch_norm_running_var = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  248. layer.conv_batch_norm_num_batches_tracked = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  249. layer.conv_pointwise_conv2_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
  250. layer.ffn1_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  251. layer.ffn1_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  252. layer.ffn1_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
  253. layer.ffn1_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
  254. layer.ffn1_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
  255. layer.ffn1_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  256. layer.ffn2_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  257. layer.ffn2_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  258. layer.ffn2_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
  259. layer.ffn2_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
  260. layer.ffn2_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
  261. layer.ffn2_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  262. layer.final_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  263. layer.final_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
  264. // map by name
  265. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_layer_norm/w"] = layer.self_attn_layer_norm_w;
  266. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_layer_norm/b"] = layer.self_attn_layer_norm_b;
  267. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_k/w"] = layer.self_attn_linear_k_w;
  268. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_k/b"] = layer.self_attn_linear_k_b;
  269. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_q/w"] = layer.self_attn_linear_q_w;
  270. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_q/b"] = layer.self_attn_linear_q_b;
  271. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_v/w"] = layer.self_attn_linear_v_w;
  272. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_v/b"] = layer.self_attn_linear_v_b;
  273. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_out/w"] = layer.self_attn_linear_out_w;
  274. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_out/b"] = layer.self_attn_linear_out_b;
  275. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_linear_pos/w"] = layer.self_attn_linear_pos_w;
  276. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_pos_bias/u"] = layer.self_attn_pos_bias_u;
  277. model.tensors["model/enc/h" + std::to_string(i) + "/self_attn_pos_bias/v"] = layer.self_attn_pos_bias_v;
  278. model.tensors["model/enc/h" + std::to_string(i) + "/conv_layer_norm/w"] = layer.conv_layer_norm_w;
  279. model.tensors["model/enc/h" + std::to_string(i) + "/conv_layer_norm/b"] = layer.conv_layer_norm_b;
  280. model.tensors["model/enc/h" + std::to_string(i) + "/conv_pointwise_conv1/w"] = layer.conv_pointwise_conv1_w;
  281. model.tensors["model/enc/h" + std::to_string(i) + "/conv_depthwise_conv/w"] = layer.conv_depthwise_conv_w;
  282. model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/w"] = layer.conv_batch_norm_w;
  283. model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/b"] = layer.conv_batch_norm_b;
  284. model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/m"] = layer.conv_batch_norm_running_mean;
  285. model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/v"] = layer.conv_batch_norm_running_var;
  286. model.tensors["model/enc/h" + std::to_string(i) + "/conv_batch_norm/n"] = layer.conv_batch_norm_num_batches_tracked;
  287. model.tensors["model/enc/h" + std::to_string(i) + "/conv_pointwise_conv2/w"] = layer.conv_pointwise_conv2_w;
  288. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_layer_norm/w"] = layer.ffn1_layer_norm_w;
  289. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_layer_norm/b"] = layer.ffn1_layer_norm_b;
  290. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_1/w"] = layer.ffn1_w1;
  291. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_1/b"] = layer.ffn1_b1;
  292. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_2/w"] = layer.ffn1_w2;
  293. model.tensors["model/enc/h" + std::to_string(i) + "/ffn1_w_2/b"] = layer.ffn1_b2;
  294. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_layer_norm/w"] = layer.ffn2_layer_norm_w;
  295. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_layer_norm/b"] = layer.ffn2_layer_norm_b;
  296. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_1/w"] = layer.ffn2_w1;
  297. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_1/b"] = layer.ffn2_b1;
  298. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_2/w"] = layer.ffn2_w2;
  299. model.tensors["model/enc/h" + std::to_string(i) + "/ffn2_w_2/b"] = layer.ffn2_b2;
  300. model.tensors["model/enc/h" + std::to_string(i) + "/final_layer_norm/w"] = layer.final_layer_norm_w;
  301. model.tensors["model/enc/h" + std::to_string(i) + "/final_layer_norm/b"] = layer.final_layer_norm_b;
  302. }
  303. }
  304. // load weights
  305. {
  306. size_t total_size = 0;
  307. while (true) {
  308. int32_t n_dims;
  309. int32_t length;
  310. int32_t ttype;
  311. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  312. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  313. fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
  314. if (fin.eof()) {
  315. break;
  316. }
  317. int32_t nelements = 1;
  318. int32_t ne[3] = { 1, 1, 1};
  319. for (int i = 0; i < n_dims; ++i) {
  320. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  321. nelements *= ne[i];
  322. }
  323. std::string name(length, 0);
  324. fin.read(&name[0], length);
  325. std::cout << "loading " << name << " " << n_dims << std::endl;
  326. if (model.tensors.find(name) == model.tensors.end()) {
  327. fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
  328. return false;
  329. }
  330. auto tensor = model.tensors[name];
  331. if (ggml_nelements(tensor) != nelements) {
  332. std::cout << ggml_nelements(tensor) << std::endl;
  333. std::cout << nelements << std::endl;
  334. fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
  335. return false;
  336. }
  337. if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
  338. fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
  339. __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
  340. return false;
  341. }
  342. // for debugging
  343. if (0) {
  344. printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
  345. }
  346. const size_t bpe = ggml_type_size(ggml_type(ttype));
  347. if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
  348. fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
  349. __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
  350. return false;
  351. }
  352. fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
  353. // for (int i = 0; i < 10; ++i) {
  354. // std::cout << ((float *)(tensor->data))[i] << std::endl;
  355. // } // debug
  356. total_size += ggml_nbytes(tensor);
  357. }
  358. printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
  359. }
  360. fin.close();
  361. return true;
  362. }
  363. // build the computation graph
  364. struct ggml_cgraph * unity_graph(
  365. const unity_model & model,
  366. struct ggml_allocr * allocr) {
  367. const auto & hparams = model.hparams;
  368. const int n_audio_enc_dim = hparams.n_audio_enc_dim;
  369. const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
  370. const int n_audio_enc_layer = hparams.n_audio_enc_layer;
  371. // const int n_text_vocab = hparams.n_text_vocab;
  372. const int kernel_size = 31;
  373. // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data
  374. static size_t buf_size = ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead();
  375. static std::vector<uint8_t> buf(buf_size);
  376. struct ggml_init_params params = {
  377. /*.mem_size =*/ buf_size,
  378. /*.mem_buffer =*/ buf.data(),
  379. /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
  380. };
  381. struct ggml_context * ctx0 = ggml_init(params);
  382. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  383. /// For dev, load an example input before conformer blocks
  384. auto file = std::ifstream("/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_conformer_block.bin", std::ios::binary);
  385. if (!file) {
  386. std::cerr << "Failed to open binary file." << std::endl;
  387. }
  388. struct ggml_tensor * inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1024, 137);
  389. inpL->data = malloc(ggml_nbytes(inpL));
  390. file.read(reinterpret_cast<char *>(inpL->data), ggml_nbytes(inpL));
  391. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, 1);
  392. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  393. ggml_set_f32(ffn_scale, 0.5f);
  394. for (int il = 0; il < n_audio_enc_layer; ++il) {
  395. struct ggml_tensor * cur = inpL;
  396. struct ggml_tensor * residual = cur;
  397. const audio_enc_layer layer = model.audio_enc_layers[il];
  398. // FFN1: layernorm
  399. cur = ggml_norm(ctx0, cur, hparams.eps);
  400. cur = ggml_add(ctx0,
  401. ggml_mul(ctx0,
  402. ggml_repeat(ctx0, layer.ffn1_layer_norm_w, cur),
  403. cur),
  404. ggml_repeat(ctx0, layer.ffn1_layer_norm_b, cur));
  405. // FFN1: proj
  406. cur = ggml_mul_mat(ctx0, layer.ffn1_w1, cur);
  407. cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.ffn1_b1, cur), cur);
  408. cur = ggml_silu(ctx0, cur);
  409. cur = ggml_mul_mat(ctx0, layer.ffn1_w2, cur);
  410. cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.ffn1_b2, cur), cur);
  411. // FFN1: * 0.5
  412. cur = ggml_mul(ctx0, ggml_repeat(ctx0, ffn_scale, cur), cur);
  413. // FFN1: + residual
  414. cur = ggml_add(ctx0, cur, residual);
  415. // TODO: Opportunity to optimize attn calculation (1) For num_threads > 1 (2) Flash attn. See https://github.com/ggerganov/ggml/blob/main/examples/gpt-2/main.cpp
  416. // self_attn: layernorm
  417. cur = ggml_norm(ctx0, cur, hparams.eps);
  418. cur = ggml_add(ctx0,
  419. ggml_mul(ctx0,
  420. ggml_repeat(ctx0, layer.self_attn_layer_norm_w, cur),
  421. cur),
  422. ggml_repeat(ctx0, layer.self_attn_layer_norm_b, cur));
  423. // self_attn: qkv
  424. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0,
  425. layer.self_attn_linear_q_w,
  426. cur);
  427. Qcur = ggml_add(ctx0,
  428. ggml_repeat(ctx0,
  429. layer.self_attn_linear_q_b,
  430. Qcur),
  431. Qcur);
  432. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0,
  433. layer.self_attn_linear_k_w,
  434. cur);
  435. Kcur = ggml_add(ctx0,
  436. ggml_repeat(ctx0,
  437. layer.self_attn_linear_k_b,
  438. Kcur),
  439. Kcur);
  440. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0,
  441. layer.self_attn_linear_v_w,
  442. cur);
  443. Vcur = ggml_add(ctx0,
  444. ggml_repeat(ctx0,
  445. layer.self_attn_linear_v_b,
  446. Vcur),
  447. Vcur);
  448. // self_attn: rel_pos SDPA (WIP)
  449. int32_t start_index = 4096 - 137;
  450. int32_t end_index = 4096 + 136;
  451. int num_indices = end_index - start_index + 1;
  452. struct ggml_tensor *rows = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_indices);
  453. rows->data = malloc(ggml_nbytes(rows));
  454. for (int i = 0; i < num_indices; i++) {
  455. ((int32_t *)rows->data)[i] = start_index + i;
  456. }
  457. // Load positional encoding weights
  458. struct ggml_tensor * pos_enc = ggml_get_rows(ctx0, model.audio_enc_pos_enc_w, rows);
  459. // conv
  460. // ffn2
  461. // norm
  462. inpL = cur;
  463. break; // debug
  464. }
  465. ggml_build_forward_expand(gf, inpL);
  466. ggml_free(ctx0);
  467. return gf;
  468. }
  469. bool unity_eval(
  470. const unity_model & model,
  471. struct ggml_allocr * allocr,
  472. const int n_threads) {
  473. const auto & hparams = model.hparams;
  474. // reset the allocator to free all the memory allocated during the previous inference
  475. ggml_allocr_reset(allocr);
  476. struct ggml_cgraph * gf = unity_graph(model, allocr);
  477. // allocate tensors
  478. ggml_allocr_alloc_graph(allocr, gf);
  479. // run the computation
  480. struct ggml_cplan plan = ggml_graph_plan(gf, n_threads);
  481. static std::vector<uint8_t> work_buffer;
  482. work_buffer.resize(plan.work_size);
  483. plan.work_data = work_buffer.data();
  484. ggml_graph_compute(gf, &plan);
  485. // in this case, the output tensor is the last one in the graph
  486. struct ggml_tensor * inpL = gf->nodes[gf->n_nodes - 1];
  487. for (int i = 0; i < 10; ++i) {
  488. printf("%8.4f ", ((float *)(inpL->data))[i]);
  489. }
  490. return true;
  491. }
  492. int main(int argc, char ** argv) {
  493. // ggml_time_init();
  494. // const int64_t t_main_start_us = ggml_time_us();
  495. gpt_params params;
  496. if (gpt_params_parse(argc, argv, params) == false) {
  497. return 1;
  498. }
  499. if (params.seed < 0) {
  500. params.seed = time(NULL);
  501. }
  502. printf("%s: seed = %d\n", __func__, params.seed);
  503. std::mt19937 rng(params.seed);
  504. if (params.prompt.empty()) {
  505. params.prompt = gpt_random_prompt(rng);
  506. }
  507. gpt_vocab vocab;
  508. unity_model model;
  509. // load the model
  510. {
  511. if (!unity_model_load(params.model, model, vocab)) {
  512. fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
  513. return 1;
  514. }
  515. }
  516. // keep this buffer alive while evaluating the model
  517. std::vector<uint8_t> compute_buffer;
  518. struct ggml_allocr * allocr = NULL;
  519. // allocate the compute buffer
  520. {
  521. allocr = ggml_allocr_new_measure(GGML_MEM_ALIGN);
  522. struct ggml_cgraph * gf = unity_graph(model, allocr);
  523. // compute the required memory
  524. size_t mem_size = ggml_allocr_alloc_graph(allocr, gf) + GGML_MEM_ALIGN;
  525. // recreate the allocator with the required memory
  526. ggml_allocr_free(allocr);
  527. compute_buffer.resize(mem_size);
  528. allocr = ggml_allocr_new(compute_buffer.data(), mem_size, GGML_MEM_ALIGN);
  529. fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0/1024.0);
  530. }
  531. if (!unity_eval(model, allocr, 1)) {
  532. printf("Failed to predict\n");
  533. return 1;
  534. }
  535. ggml_free(model.ctx);
  536. return 0;
  537. }