convert-cerebras-to-ggml.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. # Convert Cerebras models to ggml format
  2. #
  3. # ref: https://www.cerebras.net/blog/cerebras-gpt-a-family-of-open-compute-efficient-large-language-models/
  4. #
  5. import sys
  6. import struct
  7. import json
  8. import torch
  9. import numpy as np
  10. import re
  11. from transformers import AutoModelForCausalLM
  12. # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
  13. def bytes_to_unicode():
  14. """
  15. Returns list of utf-8 byte and a corresponding list of unicode strings.
  16. The reversible bpe codes work on unicode strings.
  17. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
  18. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
  19. This is a signficant percentage of your normal, say, 32K bpe vocab.
  20. To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
  21. And avoids mapping to whitespace/control characters the bpe code barfs on.
  22. """
  23. bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
  24. cs = bs[:]
  25. n = 0
  26. for b in range(2**8):
  27. if b not in bs:
  28. bs.append(b)
  29. cs.append(2**8+n)
  30. n += 1
  31. cs = [chr(n) for n in cs]
  32. return dict(zip(bs, cs))
  33. if len(sys.argv) < 2:
  34. print("Usage: convert-cerebras-to-ggml.py dir-model [use-f32]\n")
  35. sys.exit(1)
  36. # output in the same directory as the model
  37. dir_model = sys.argv[1]
  38. fname_out = sys.argv[1] + "/ggml-model-f16.bin"
  39. with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
  40. encoder = json.load(f)
  41. with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
  42. hparams = json.load(f)
  43. # use 16-bit or 32-bit floats
  44. use_f16 = True
  45. if len(sys.argv) > 2:
  46. use_f16 = False
  47. fname_out = sys.argv[1] + "/ggml-model-f32.bin"
  48. model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True)
  49. #print (model)
  50. list_vars = model.state_dict()
  51. #print (list_vars)
  52. print(hparams)
  53. fout = open(fname_out, "wb")
  54. fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
  55. fout.write(struct.pack("i", hparams["vocab_size"]))
  56. fout.write(struct.pack("i", hparams["n_positions"]))
  57. fout.write(struct.pack("i", hparams["n_embd"]))
  58. fout.write(struct.pack("i", hparams["n_head"]))
  59. fout.write(struct.pack("i", hparams["n_layer"]))
  60. fout.write(struct.pack("i", use_f16))
  61. byte_encoder = bytes_to_unicode()
  62. byte_decoder = {v:k for k, v in byte_encoder.items()}
  63. fout.write(struct.pack("i", len(encoder)))
  64. for key in encoder:
  65. text = bytearray([byte_decoder[c] for c in key])
  66. fout.write(struct.pack("i", len(text)))
  67. fout.write(text)
  68. for name in list_vars.keys():
  69. data = list_vars[name].squeeze().numpy()
  70. print("Processing variable: " + name + " with shape: ", data.shape)
  71. # rename headers to keep compatibility
  72. if name == "transformer.ln_f.weight":
  73. name = "model/ln_f/g"
  74. elif name == "transformer.ln_f.bias":
  75. name = "model/ln_f/b"
  76. elif name == "transformer.wte.weight":
  77. name = "model/wte"
  78. elif name == "transformer.wpe.weight":
  79. name = "model/wpe"
  80. elif name == "lm_head.weight":
  81. name = "model/lm_head"
  82. elif re.match(r"transformer.h\.\d+\.ln_1\.weight", name):
  83. i = re.findall("\d+", name)[0]
  84. name = f"model/h{i}/ln_1/g"
  85. elif re.match(r"transformer.h\.\d+\.ln_1\.bias", name):
  86. i = re.findall("\d+", name)[0]
  87. name = f"model/h{i}/ln_1/b"
  88. elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.weight", name):
  89. i = re.findall("\d+", name)[0]
  90. name = f"model/h{i}/attn/c_attn/w"
  91. elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.bias", name):
  92. i = re.findall("\d+", name)[0]
  93. name = f"model/h{i}/attn/c_attn/b"
  94. elif re.match(r"transformer.h\.\d+\.attn\.c_proj\.weight", name):
  95. i = re.findall("\d+", name)[0]
  96. name = f"model/h{i}/attn/c_proj/w"
  97. elif re.match(r"transformer.h.\d+.attn.c_proj.bias", name):
  98. i = re.findall("\d+", name)[0]
  99. name = f"model/h{i}/attn/c_proj/b"
  100. elif re.match(r"transformer.h.\d+.ln_2.weight", name):
  101. i = re.findall("\d+", name)[0]
  102. name = f"model/h{i}/ln_2/g"
  103. elif re.match(r"transformer.h.\d+.ln_2.bias", name):
  104. i = re.findall("\d+", name)[0]
  105. name = f"model/h{i}/ln_2/b"
  106. elif re.match(r"transformer.h.\d+.mlp.c_fc.weight", name):
  107. i = re.findall("\d+", name)[0]
  108. name = f"model/h{i}/mlp/c_fc/w"
  109. elif re.match(r"transformer.h.\d+.mlp.c_fc.bias", name):
  110. i = re.findall("\d+", name)[0]
  111. name = f"model/h{i}/mlp/c_fc/b"
  112. elif re.match(r"transformer.h.\d+.mlp.c_proj.weight", name):
  113. i = re.findall("\d+", name)[0]
  114. name = f"model/h{i}/mlp/c_proj/w"
  115. elif re.match(r"transformer.h.\d+.mlp.c_proj.bias", name):
  116. i = re.findall("\d+", name)[0]
  117. name = f"model/h{i}/mlp/c_proj/b"
  118. else:
  119. print("Unrecognized variable name. %s", name)
  120. # we don't need these
  121. if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
  122. print(" Skipping variable: " + name)
  123. continue
  124. n_dims = len(data.shape);
  125. # ftype == 0 -> float32, ftype == 1 -> float16
  126. ftype = 0;
  127. if use_f16:
  128. if (name == "model/wte" or name == "model/lm_head" or name[-2:] == "/g" or name[-2:] == "/w") and n_dims == 2:
  129. print(" Converting to float16")
  130. data = data.astype(np.float16)
  131. ftype = 1
  132. else:
  133. print(" Converting to float32")
  134. data = data.astype(np.float32)
  135. ftype = 0
  136. # for efficiency - transpose the projection matrices
  137. # "model/h.*/attn/c_attn/w"
  138. # "model/h.*/attn/c_proj/w"
  139. # "model/h.*/mlp/c_fc/w"
  140. # "model/h.*/mlp/c_proj/w"
  141. if name[-14:] == "/attn/c_attn/w" or \
  142. name[-14:] == "/attn/c_proj/w" or \
  143. name[-11:] == "/mlp/c_fc/w" or \
  144. name[-13:] == "/mlp/c_proj/w":
  145. print(" Transposing")
  146. data = data.transpose()
  147. # header
  148. str = name.encode('utf-8')
  149. fout.write(struct.pack("iii", n_dims, len(str), ftype))
  150. for i in range(n_dims):
  151. fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
  152. fout.write(str);
  153. # data
  154. data.tofile(fout)
  155. fout.close()
  156. print("Done. Output file: " + fname_out)
  157. print("")