123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- # Convert GPT-2 h5 transformer model to ggml format
- #
- # Load the model using GPT2Model.
- # Iterate over all variables and write them to a binary file.
- #
- # For each variable, write the following:
- # - Number of dimensions (int)
- # - Name length (int)
- # - Dimensions (int[n_dims])
- # - Name (char[name_length])
- # - Data (float[n_dims])
- #
- # By default, the bigger matrices are converted to 16-bit floats.
- # This can be disabled by adding the "use-f32" CLI argument.
- #
- # At the start of the ggml file we write the model parameters
- # and vocabulary.
- #
- import sys
- import struct
- import json
- import numpy as np
- import re
- from transformers import GPT2Model
- # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
- def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a signficant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8+n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- if len(sys.argv) < 2:
- print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
- sys.exit(1)
- # output in the same directory as the model
- dir_model = sys.argv[1]
- fname_out = sys.argv[1] + "/ggml-model.bin"
- with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
- encoder = json.load(f)
- with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
- encoder_added = json.load(f)
- with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
- # use 16-bit or 32-bit floats
- use_f16 = True
- if len(sys.argv) > 2:
- use_f16 = False
- fname_out = sys.argv[1] + "/ggml-model-f32.bin"
- model = GPT2Model.from_pretrained(dir_model, low_cpu_mem_usage=True)
- #print (model)
- list_vars = model.state_dict()
- #print (list_vars)
- fout = open(fname_out, "wb")
- fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
- fout.write(struct.pack("i", hparams["vocab_size"]))
- fout.write(struct.pack("i", hparams["n_positions"]))
- fout.write(struct.pack("i", hparams["n_embd"]))
- fout.write(struct.pack("i", hparams["n_head"]))
- fout.write(struct.pack("i", hparams["n_layer"]))
- #fout.write(struct.pack("i", hparams["rotary_dim"]))
- fout.write(struct.pack("i", use_f16))
- byte_encoder = bytes_to_unicode()
- byte_decoder = {v:k for k, v in byte_encoder.items()}
- fout.write(struct.pack("i", len(encoder) + len(encoder_added)))
- for key in encoder:
- text = bytearray([byte_decoder[c] for c in key])
- fout.write(struct.pack("i", len(text)))
- fout.write(text)
- for key in encoder_added:
- text = bytearray([byte_decoder[c] for c in key])
- fout.write(struct.pack("i", len(text)))
- fout.write(text)
- for name in list_vars.keys():
- data = list_vars[name].squeeze().numpy()
- print("Processing variable: " + name + " with shape: ", data.shape)
- # we don't need these
- if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
- print(" Skipping variable: " + name)
- continue
- n_dims = len(data.shape);
- # ftype == 0 -> float32, ftype == 1 -> float16
- ftype = 0;
- if use_f16:
- if name[-7:] == ".weight" and n_dims == 2:
- print(" Converting to float16")
- data = data.astype(np.float16)
- ftype = 1
- else:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype = 0
- # for efficiency - transpose these matrices:
- # "transformer.h.*.mlp.c_proj.weight
- if name.endswith(".mlp.c_proj.weight"):
- print(" Transposing")
- data = data.transpose()
- # rename headers to keep compatibility
- if name == "ln_f.weight":
- name = "model/ln_f/g"
- elif name == "ln_f.bias":
- name = "model/ln_f/b"
- elif name == "wte.weight":
- name = "model/wte"
- elif name == "wpe.weight":
- name = "model/wpe"
- elif re.match(r"h\.\d+\.ln_1\.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/ln_1/g"
- elif re.match(r"h\.\d+\.ln_1\.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/ln_1/b"
- elif re.match(r"h\.\d+\.attn\.c_attn\.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/attn/c_attn/w"
- elif re.match(r"h\.\d+\.attn\.c_attn\.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/attn/c_attn/b"
- elif re.match(r"h\.\d+\.attn\.c_proj\.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/attn/c_proj/w"
- elif re.match(r"h.\d+.attn.c_proj.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/attn/c_proj/b"
- elif re.match(r"h.\d+.ln_2.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/ln_2/g"
- elif re.match(r"h.\d+.ln_2.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/ln_2/b"
- elif re.match(r"h.\d+.mlp.c_fc.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/mlp/c_fc/w"
- elif re.match(r"h.\d+.mlp.c_fc.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/mlp/c_fc/b"
- elif re.match(r"h.\d+.mlp.c_proj.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/mlp/c_proj/w"
- elif re.match(r"h.\d+.mlp.c_proj.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/mlp/c_proj/b"
- else:
- print("Unrecognized variable name. %s", name)
- str = name.encode('utf-8')
- fout.write(struct.pack("iii", n_dims, len(str), ftype))
- for i in range(n_dims):
- fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
- fout.write(str);
- # data
- data.tofile(fout)
- fout.close()
- print("Done. Output file: " + fname_out)
- print("")
|