123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- import sys
- import struct
- import json
- import numpy as np
- from transformers import AutoModelForCausalLM, AutoTokenizer
- if len(sys.argv) < 3:
- print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
- print(" ftype == 0 -> float32")
- print(" ftype == 1 -> float16")
- sys.exit(1)
- # output in the same directory as the model
- dir_model = sys.argv[1]
- fname_out = sys.argv[1] + "/ggml-model.bin"
- with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
- # possible data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- #
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- ftype = 1
- if len(sys.argv) > 2:
- ftype = int(sys.argv[2])
- if ftype < 0 or ftype > 1:
- print("Invalid ftype: " + str(ftype))
- sys.exit(1)
- fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
- model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True)
- list_vars = model.state_dict()
- for name in list_vars.keys():
- print(name, list_vars[name].shape, list_vars[name].dtype)
- fout = open(fname_out, "wb")
- print(hparams)
- fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
- fout.write(struct.pack("i", hparams["vocab_size"]))
- fout.write(struct.pack("i", hparams["max_position_embeddings"]))
- fout.write(struct.pack("i", hparams["hidden_size"]))
- fout.write(struct.pack("i", hparams["num_attention_heads"]))
- fout.write(struct.pack("i", hparams["num_hidden_layers"]))
- fout.write(struct.pack("i", int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"]))))
- fout.write(struct.pack("i", hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True))
- fout.write(struct.pack("i", ftype))
- # TODO: temporary hack to not deal with implementing the tokenizer
- for i in range(hparams["vocab_size"]):
- text = tokenizer.decode([i]).encode('utf-8')
- fout.write(struct.pack("i", len(text)))
- fout.write(text)
- for name in list_vars.keys():
- data = list_vars[name].squeeze().numpy()
- print("Processing variable: " + name + " with shape: ", data.shape)
- # we don't need these
- if name.endswith(".attention.masked_bias") or \
- name.endswith(".attention.bias") or \
- name.endswith(".attention.rotary_emb.inv_freq"):
- print(" Skipping variable: " + name)
- continue
- n_dims = len(data.shape)
- # ftype == 0 -> float32, ftype == 1 -> float16
- ftype_cur = 0
- if ftype != 0:
- if name[-7:] == ".weight" and n_dims == 2:
- print(" Converting to float16")
- data = data.astype(np.float16)
- ftype_cur = 1
- else:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- else:
- if data.dtype != np.float32:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- # header
- str = name.encode('utf-8')
- fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
- for i in range(n_dims):
- fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
- fout.write(str)
- # data
- data.tofile(fout)
- fout.close()
- print("Done. Output file: " + fname_out)
- print("")
|