main.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814
  1. #include "ggml/ggml.h"
  2. #include "common.h"
  3. #include "common-ggml.h"
  4. #include <cassert>
  5. #include <cmath>
  6. #include <cstdio>
  7. #include <cstring>
  8. #include <cinttypes>
  9. #include <fstream>
  10. #include <map>
  11. #include <string>
  12. #include <vector>
  13. #if defined(_MSC_VER)
  14. #pragma warning(disable: 4244 4267) // possible loss of data
  15. #endif
  16. // default hparams (StableLM 3B)
  17. struct gpt_neox_hparams {
  18. int32_t n_vocab = 50257;
  19. int32_t n_ctx = 4096;
  20. int32_t n_embd = 4096;
  21. int32_t n_head = 32;
  22. int32_t n_layer = 16;
  23. int32_t n_rot = 32; // rotary_pct * (n_embd / n_head)
  24. int32_t par_res = 1; // 1 = true, 0 = false
  25. int32_t ftype = 1;
  26. float eps = 1e-5f;
  27. };
  28. struct gpt_neox_layer {
  29. // pre normalization
  30. struct ggml_tensor * ln_1_g;
  31. struct ggml_tensor * ln_1_b;
  32. // attention
  33. struct ggml_tensor * c_attn_attn_w;
  34. struct ggml_tensor * c_attn_attn_b;
  35. struct ggml_tensor * c_attn_proj_w;
  36. struct ggml_tensor * c_attn_proj_b;
  37. // post normalization
  38. struct ggml_tensor * ln_2_g;
  39. struct ggml_tensor * ln_2_b;
  40. // ff
  41. struct ggml_tensor * c_mlp_fc_w;
  42. struct ggml_tensor * c_mlp_fc_b;
  43. struct ggml_tensor * c_mlp_proj_w;
  44. struct ggml_tensor * c_mlp_proj_b;
  45. };
  46. struct gpt_neox_model {
  47. gpt_neox_hparams hparams;
  48. // normalization
  49. struct ggml_tensor * ln_f_g;
  50. struct ggml_tensor * ln_f_b;
  51. struct ggml_tensor * wte; // position embedding
  52. struct ggml_tensor * lmh_g; // language model head
  53. //struct ggml_tensor * lmh_b; // language model bias
  54. std::vector<gpt_neox_layer> layers;
  55. // key + value memory
  56. struct ggml_tensor * memory_k;
  57. struct ggml_tensor * memory_v;
  58. //
  59. struct ggml_context * ctx;
  60. std::map<std::string, struct ggml_tensor *> tensors;
  61. };
  62. // load the model's weights from a file
  63. bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt_vocab & vocab) {
  64. printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
  65. auto fin = std::ifstream(fname, std::ios::binary);
  66. if (!fin) {
  67. fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
  68. return false;
  69. }
  70. // verify magic
  71. {
  72. uint32_t magic;
  73. fin.read((char *) &magic, sizeof(magic));
  74. if (magic != GGML_FILE_MAGIC) {
  75. fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
  76. return false;
  77. }
  78. }
  79. // load hparams
  80. {
  81. auto & hparams = model.hparams;
  82. fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
  83. fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
  84. fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
  85. fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
  86. fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
  87. fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
  88. fin.read((char *) &hparams.par_res, sizeof(hparams.par_res));
  89. fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
  90. const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
  91. printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
  92. printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
  93. printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
  94. printf("%s: n_head = %d\n", __func__, hparams.n_head);
  95. printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
  96. printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
  97. printf("%s: par_res = %d\n", __func__, hparams.par_res);
  98. printf("%s: ftype = %d\n", __func__, hparams.ftype);
  99. printf("%s: qntvr = %d\n", __func__, qntvr);
  100. hparams.ftype %= GGML_QNT_VERSION_FACTOR;
  101. }
  102. // load vocab
  103. {
  104. const int32_t n_vocab = model.hparams.n_vocab;
  105. std::string word;
  106. std::vector<char> buf(128);
  107. for (int i = 0; i < n_vocab; i++) {
  108. uint32_t len;
  109. fin.read((char *) &len, sizeof(len));
  110. buf.resize(len);
  111. fin.read((char *) buf.data(), len);
  112. word.assign(buf.data(), len);
  113. vocab.token_to_id[word] = i;
  114. vocab.id_to_token[i] = word;
  115. }
  116. }
  117. // for the big tensors, we have the option to store the data in 16-bit floats or quantized
  118. // in order to save memory and also to speed up the computation
  119. ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
  120. if (wtype == GGML_TYPE_COUNT) {
  121. fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
  122. __func__, fname.c_str(), model.hparams.ftype);
  123. return false;
  124. }
  125. auto & ctx = model.ctx;
  126. size_t ctx_size = 0;
  127. {
  128. const auto & hparams = model.hparams;
  129. const size_t n_embd = hparams.n_embd;
  130. const size_t n_layer = hparams.n_layer;
  131. const size_t n_ctx = hparams.n_ctx;
  132. const size_t n_vocab = hparams.n_vocab;
  133. ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
  134. ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
  135. ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte
  136. ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g
  137. //ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b
  138. ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
  139. ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
  140. ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
  141. ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
  142. ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
  143. ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
  144. ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
  145. ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
  146. ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
  147. ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
  148. ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
  149. ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
  150. ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
  151. ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
  152. ctx_size += (6 + 16*n_layer)*1024; // object overhead
  153. printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
  154. }
  155. // create the ggml context
  156. {
  157. struct ggml_init_params params = {
  158. /*.mem_size =*/ ctx_size,
  159. /*.mem_buffer =*/ NULL,
  160. /*.no_alloc =*/ false,
  161. };
  162. model.ctx = ggml_init(params);
  163. if (!model.ctx) {
  164. fprintf(stderr, "%s: ggml_init() failed\n", __func__);
  165. return false;
  166. }
  167. }
  168. // prepare memory for the weights
  169. {
  170. const auto & hparams = model.hparams;
  171. const int n_embd = hparams.n_embd;
  172. const int n_layer = hparams.n_layer;
  173. const int n_vocab = hparams.n_vocab;
  174. model.layers.resize(n_layer);
  175. model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
  176. model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  177. model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  178. model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
  179. //model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab);
  180. // map by name
  181. model.tensors["gpt_neox.embed_in.weight"] = model.wte;
  182. model.tensors["gpt_neox.final_layer_norm.weight"] = model.ln_f_g;
  183. model.tensors["gpt_neox.final_layer_norm.bias"] = model.ln_f_b;
  184. model.tensors["embed_out.weight"] = model.lmh_g;
  185. //model.tensors["lm_head.bias"] = model.lmh_b;
  186. for (int i = 0; i < n_layer; ++i) {
  187. auto & layer = model.layers[i];
  188. layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  189. layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  190. layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
  191. layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
  192. layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
  193. layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  194. layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  195. layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  196. layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
  197. layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
  198. layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
  199. layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  200. // map by name
  201. model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.weight"] = layer.ln_1_g;
  202. model.tensors["gpt_neox.layers." + std::to_string(i) + ".input_layernorm.bias"] = layer.ln_1_b;
  203. model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.weight"] = layer.c_attn_attn_w;
  204. model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.query_key_value.bias"] = layer.c_attn_attn_b;
  205. model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.weight"] = layer.c_attn_proj_w;
  206. model.tensors["gpt_neox.layers." + std::to_string(i) + ".attention.dense.bias"] = layer.c_attn_proj_b;
  207. model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.weight"] = layer.ln_2_g;
  208. model.tensors["gpt_neox.layers." + std::to_string(i) + ".post_attention_layernorm.bias"] = layer.ln_2_b;
  209. model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.weight"] = layer.c_mlp_fc_w;
  210. model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_h_to_4h.bias"] = layer.c_mlp_fc_b;
  211. model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.weight"] = layer.c_mlp_proj_w;
  212. model.tensors["gpt_neox.layers." + std::to_string(i) + ".mlp.dense_4h_to_h.bias"] = layer.c_mlp_proj_b;
  213. }
  214. }
  215. // key + value memory
  216. {
  217. const auto & hparams = model.hparams;
  218. const int n_embd = hparams.n_embd;
  219. const int n_layer = hparams.n_layer;
  220. const int n_ctx = hparams.n_ctx;
  221. const int64_t n_mem = n_layer*n_ctx;
  222. const int64_t n_elements = n_embd*n_mem;
  223. model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
  224. model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
  225. const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
  226. printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem);
  227. }
  228. // load weights
  229. {
  230. int n_tensors = 0;
  231. size_t total_size = 0;
  232. printf("%s: ", __func__);
  233. while (true) {
  234. int32_t n_dims;
  235. int32_t length;
  236. int32_t ttype;
  237. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  238. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  239. fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
  240. if (fin.eof()) {
  241. break;
  242. }
  243. int32_t nelements = 1;
  244. int32_t ne[2] = { 1, 1 };
  245. for (int i = 0; i < n_dims; ++i) {
  246. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  247. nelements *= ne[i];
  248. }
  249. std::string name(length, 0);
  250. fin.read(&name[0], length);
  251. if (model.tensors.find(name) == model.tensors.end()) {
  252. fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
  253. return false;
  254. }
  255. auto tensor = model.tensors[name];
  256. if (ggml_nelements(tensor) != nelements) {
  257. fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
  258. return false;
  259. }
  260. if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
  261. fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%5d, %5d], expected [%5d, %5d]\n",
  262. __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
  263. return false;
  264. }
  265. // for debugging
  266. if (0) {
  267. printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
  268. }
  269. const size_t bpe = ggml_type_size(ggml_type(ttype));
  270. if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
  271. fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
  272. __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
  273. return false;
  274. }
  275. fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
  276. total_size += ggml_nbytes(tensor);
  277. if (++n_tensors % 8 == 0) {
  278. printf(".");
  279. fflush(stdout);
  280. }
  281. }
  282. printf(" done\n");
  283. printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
  284. }
  285. fin.close();
  286. return true;
  287. }
  288. // feed-forward network
  289. ggml_tensor * gpt_neox_ff(
  290. const gpt_neox_layer & layer,
  291. ggml_context * ctx0,
  292. ggml_tensor * inp,
  293. float eps) {
  294. ggml_tensor * cur = ggml_norm(ctx0, inp, eps);
  295. cur = ggml_add(ctx0,
  296. ggml_mul(ctx0,
  297. ggml_repeat(ctx0, layer.ln_2_g, cur),
  298. cur),
  299. ggml_repeat(ctx0, layer.ln_2_b, cur));
  300. cur = ggml_mul_mat(ctx0,
  301. layer.c_mlp_fc_w,
  302. cur);
  303. cur = ggml_add(ctx0,
  304. ggml_repeat(ctx0, layer.c_mlp_fc_b, cur),
  305. cur);
  306. // GELU activation
  307. cur = ggml_gelu(ctx0, cur);
  308. // projection
  309. // cur = proj_w*cur + proj_b
  310. cur = ggml_mul_mat(ctx0,
  311. layer.c_mlp_proj_w,
  312. cur);
  313. cur = ggml_add(ctx0,
  314. ggml_repeat(ctx0, layer.c_mlp_proj_b, cur),
  315. cur);
  316. return cur;
  317. }
  318. // evaluate the transformer
  319. //
  320. // - model: the model
  321. // - n_threads: number of threads to use
  322. // - n_past: the context size so far
  323. // - embd_inp: the embeddings of the tokens in the context
  324. // - embd_w: the predicted logits for the next token
  325. //
  326. bool gpt_neox_eval(
  327. const gpt_neox_model & model,
  328. const int n_threads,
  329. const int n_past,
  330. const std::vector<gpt_vocab::id> & embd_inp,
  331. std::vector<float> & embd_w,
  332. size_t & mem_per_token) {
  333. const int N = embd_inp.size();
  334. const auto & hparams = model.hparams;
  335. const int n_embd = hparams.n_embd;
  336. const int n_layer = hparams.n_layer;
  337. const int n_ctx = hparams.n_ctx;
  338. const int n_head = hparams.n_head;
  339. const int n_vocab = hparams.n_vocab;
  340. const int n_rot = hparams.n_rot;
  341. static size_t buf_size = 256u*1024*1024;
  342. static void * buf = malloc(buf_size);
  343. // use 2 scratch buffers
  344. // TODO: very hacky solution - reimplement in a more elegant way
  345. static size_t scr0_size = 256u*1024*1024;
  346. static void * scr0 = malloc(scr0_size);
  347. static size_t scr1_size = 256u*1024*1024;
  348. static void * scr1 = malloc(scr1_size);
  349. if (mem_per_token > 0 && mem_per_token*N > buf_size) {
  350. const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
  351. //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
  352. // reallocate
  353. buf_size = buf_size_new;
  354. buf = realloc(buf, buf_size);
  355. if (buf == nullptr) {
  356. fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
  357. return false;
  358. }
  359. }
  360. struct ggml_init_params params = {
  361. /*.mem_size =*/ buf_size,
  362. /*.mem_buffer =*/ buf,
  363. /*.no_alloc =*/ false,
  364. };
  365. struct ggml_context * ctx0 = ggml_init(params);
  366. struct ggml_cgraph gf = {};
  367. struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  368. memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
  369. // wte
  370. struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
  371. for (int il = 0; il < n_layer; ++il) {
  372. struct ggml_tensor * cur;
  373. ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
  374. // self-attention
  375. {
  376. {
  377. cur = ggml_norm(ctx0, inpL, hparams.eps);
  378. cur = ggml_add(ctx0,
  379. ggml_mul(ctx0,
  380. ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
  381. cur),
  382. ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
  383. }
  384. // compute QKV
  385. {
  386. cur = ggml_mul_mat(ctx0,
  387. model.layers[il].c_attn_attn_w,
  388. cur);
  389. cur = ggml_add(ctx0,
  390. ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
  391. cur);
  392. }
  393. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head));
  394. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 1*sizeof(float)*n_embd/n_head));
  395. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head));
  396. // using mode = 2 for GPT-NeoX mode
  397. Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2, 0);
  398. Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2, 0);
  399. // store key and value to memory
  400. {
  401. Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N));
  402. struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
  403. struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd,
  404. ( n_ctx)*ggml_element_size(model.memory_v),
  405. (il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v));
  406. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  407. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  408. }
  409. // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
  410. struct ggml_tensor * Q =
  411. ggml_permute(ctx0,
  412. Qcur,
  413. 0, 2, 1, 3);
  414. // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
  415. struct ggml_tensor * K =
  416. ggml_permute(ctx0,
  417. ggml_reshape_3d(ctx0,
  418. ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
  419. n_embd/n_head, n_head, n_past + N),
  420. 0, 2, 1, 3);
  421. // K * Q
  422. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  423. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  424. struct ggml_tensor * KQ_scaled =
  425. ggml_scale_inplace(ctx0,
  426. KQ,
  427. ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
  428. );
  429. // KQ_masked = mask_past(KQ_scaled)
  430. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  431. // KQ = soft_max(KQ_masked)
  432. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  433. // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
  434. struct ggml_tensor * V =
  435. ggml_view_3d(ctx0, model.memory_v,
  436. n_past + N, n_embd/n_head, n_head,
  437. n_ctx*ggml_element_size(model.memory_v),
  438. n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head,
  439. il*n_ctx*ggml_element_size(model.memory_v)*n_embd);
  440. // KQV = transpose(V) * KQ_soft_max
  441. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  442. // KQV_merged = KQV.permute(0, 2, 1, 3)
  443. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  444. // cur = KQV_merged.contiguous().view(n_embd, N)
  445. cur = ggml_cpy(ctx0,
  446. KQV_merged,
  447. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  448. // projection
  449. {
  450. cur = ggml_mul_mat(ctx0,
  451. model.layers[il].c_attn_proj_w,
  452. cur);
  453. cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur);
  454. }
  455. }
  456. ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
  457. if (hparams.par_res == 0) {
  458. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL);
  459. cur = gpt_neox_ff(model.layers[il], ctx0, inpFF, hparams.eps);
  460. // input for next layer
  461. inpL = ggml_add(ctx0, cur, inpFF);
  462. } else {
  463. struct ggml_tensor * inpFF = cur;
  464. // this is independent of the self-attention result, so it could be done in parallel to the self-attention
  465. // note here we pass inpL instead of cur
  466. cur = gpt_neox_ff(model.layers[il], ctx0, inpL, hparams.eps);
  467. // layer input + FF
  468. cur = ggml_add(ctx0, cur, inpFF);
  469. // input for next layer
  470. inpL = ggml_add(ctx0, cur, inpL);
  471. }
  472. }
  473. ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
  474. // norm
  475. {
  476. inpL = ggml_norm(ctx0, inpL, hparams.eps);
  477. // inpL = ln_f_g*inpL + ln_f_b
  478. inpL = ggml_add(ctx0,
  479. ggml_mul(ctx0,
  480. ggml_repeat(ctx0, model.ln_f_g, inpL),
  481. inpL),
  482. ggml_repeat(ctx0, model.ln_f_b, inpL));
  483. }
  484. ggml_set_scratch(ctx0, { 0, 0, nullptr, });
  485. // lm_head
  486. {
  487. inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
  488. //inpL = ggml_add(ctx0,
  489. // ggml_repeat(ctx0, model.lmh_b, inpL),
  490. // inpL);
  491. }
  492. // logits -> probs
  493. //inpL = ggml_soft_max_inplace(ctx0, inpL);
  494. // run the computation
  495. ggml_build_forward_expand(&gf, inpL);
  496. ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
  497. //if (n_past%100 == 0) {
  498. // ggml_graph_print (&gf);
  499. // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
  500. //}
  501. //embd_w.resize(n_vocab*N);
  502. //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
  503. // return result for just the last token
  504. embd_w.resize(n_vocab);
  505. memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  506. if (mem_per_token == 0) {
  507. mem_per_token = ggml_used_mem(ctx0)/N;
  508. }
  509. //printf("used_mem = %zu\n", ggml_used_mem(ctx0));
  510. ggml_free(ctx0);
  511. return true;
  512. }
  513. int main(int argc, char ** argv) {
  514. ggml_time_init();
  515. const int64_t t_main_start_us = ggml_time_us();
  516. gpt_params params;
  517. params.model = "models/stablelm-base-alpha-3b/ggml-model-f16.bin";
  518. if (gpt_params_parse(argc, argv, params) == false) {
  519. return 1;
  520. }
  521. if (params.seed < 0) {
  522. params.seed = time(NULL);
  523. }
  524. printf("%s: seed = %d\n", __func__, params.seed);
  525. std::mt19937 rng(params.seed);
  526. if (params.prompt.empty()) {
  527. params.prompt = gpt_random_prompt(rng);
  528. }
  529. int64_t t_load_us = 0;
  530. gpt_vocab vocab;
  531. gpt_neox_model model;
  532. // load the model
  533. {
  534. const int64_t t_start_us = ggml_time_us();
  535. if (!gpt_neox_model_load(params.model, model, vocab)) {
  536. fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
  537. return 1;
  538. }
  539. t_load_us = ggml_time_us() - t_start_us;
  540. test_gpt_tokenizer(vocab, params.token_test);
  541. }
  542. int n_past = 0;
  543. int64_t t_sample_us = 0;
  544. int64_t t_predict_us = 0;
  545. std::vector<float> logits;
  546. // tokenize the prompt
  547. std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
  548. params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
  549. printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  550. for (size_t i = 0; i < embd_inp.size(); i++) {
  551. printf("%s: token[%zu] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
  552. }
  553. printf("\n");
  554. std::vector<gpt_vocab::id> embd;
  555. // determine the required inference memory per token:
  556. size_t mem_per_token = 0;
  557. gpt_neox_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
  558. for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
  559. // predict
  560. if (embd.size() > 0) {
  561. const int64_t t_start_us = ggml_time_us();
  562. if (!gpt_neox_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
  563. printf("Failed to predict\n");
  564. return 1;
  565. }
  566. t_predict_us += ggml_time_us() - t_start_us;
  567. }
  568. n_past += embd.size();
  569. embd.clear();
  570. if (i >= embd_inp.size()) {
  571. // sample next token
  572. const int top_k = params.top_k;
  573. const float top_p = params.top_p;
  574. const float temp = params.temp;
  575. const int n_vocab = model.hparams.n_vocab;
  576. gpt_vocab::id id = 0;
  577. {
  578. const int64_t t_start_sample_us = ggml_time_us();
  579. id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng);
  580. t_sample_us += ggml_time_us() - t_start_sample_us;
  581. }
  582. // add it to the context
  583. embd.push_back(id);
  584. } else {
  585. // if here, it means we are still processing the input prompt
  586. for (size_t k = i; k < embd_inp.size(); k++) {
  587. embd.push_back(embd_inp[k]);
  588. if (int32_t(embd.size()) > params.n_batch) {
  589. break;
  590. }
  591. }
  592. i += embd.size() - 1;
  593. }
  594. // display text
  595. for (auto id : embd) {
  596. printf("%s", vocab.id_to_token[id].c_str());
  597. }
  598. fflush(stdout);
  599. // end of text token
  600. if (embd.back() == 0) {
  601. break;
  602. }
  603. }
  604. // report timing
  605. {
  606. const int64_t t_main_end_us = ggml_time_us();
  607. printf("\n\n");
  608. printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
  609. printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
  610. printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
  611. printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
  612. printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
  613. }
  614. ggml_free(model.ctx);
  615. return 0;
  616. }