123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- // Use a pre-generated MNIST compute graph for inference on the M1 GPU via MPS
- //
- // You can generate a compute graph using the "mnist" tool:
- //
- // $ ./bin/mnist ./models/mnist/ggml-model-f32.bin ../examples/mnist/models/mnist/t10k-images.idx3-ubyte
- //
- // This command creates the "mnist.ggml" file, which contains the generated compute graph.
- // Now, you can re-use the compute graph on the GPU with the "mnist-mtl" tool:
- //
- // $ ./bin/mnist-mtl ./models/mnist/mnist.ggml ../examples/mnist/models/mnist/t10k-images.idx3-ubyte
- //
- #include "ggml/ggml.h"
- #include "main-mtl.h"
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <fstream>
- #include <vector>
- // evaluate the MNIST compute graph
- //
- // - fname_cgraph: path to the compute graph
- // - digit: 784 pixel values
- //
- // returns 0 - 9 prediction
- int mnist_eval(
- const char * fname_cgraph,
- std::vector<float> digit
- ) {
- // load the compute graph
- struct ggml_context * ctx_data = NULL;
- struct ggml_context * ctx_eval = NULL;
- struct ggml_cgraph gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval);
- // allocate work context
- static size_t buf_size = 128ull*1024*1024; // TODO
- static void * buf = malloc(buf_size);
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_size,
- /*.mem_buffer =*/ buf,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx_work = ggml_init(params);
- // this allocates all Metal resources and memory buffers
- auto ctx_mtl = mnist_mtl_init(ctx_data, ctx_eval, ctx_work, &gf);
- int prediction = -1;
- for (int i = 0; i < 1; ++i) {
- struct ggml_tensor * input = ggml_graph_get_tensor(&gf, "input");
- if (i % 2 == 0) {
- memcpy(input->data, digit.data(), ggml_nbytes(input));
- } else {
- memset(input->data, 0, ggml_nbytes(input));
- }
- // the actual inference happens here
- prediction = mnist_mtl_eval(ctx_mtl, &gf);
- }
- mnist_mtl_free(ctx_mtl);
- ggml_free(ctx_work);
- ggml_free(ctx_data);
- ggml_free(ctx_eval);
- return prediction;
- }
- int main(int argc, char ** argv) {
- srand(time(NULL));
- ggml_time_init();
- if (argc != 3) {
- fprintf(stderr, "Usage: %s models/mnist/mnist.ggml models/mnist/t10k-images.idx3-ubyte\n", argv[0]);
- exit(0);
- }
- uint8_t buf[784];
- std::vector<float> digit;
- // read a random digit from the test set
- {
- std::ifstream fin(argv[2], std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]);
- return 1;
- }
- // seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
- fin.seekg(16 + 784 * (rand() % 10000));
- fin.read((char *) &buf, sizeof(buf));
- }
- // render the digit in ASCII
- {
- digit.resize(sizeof(buf));
- for (int row = 0; row < 28; row++) {
- for (int col = 0; col < 28; col++) {
- fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_');
- digit[row*28 + col] = ((float)buf[row*28 + col]);
- }
- fprintf(stderr, "\n");
- }
- fprintf(stderr, "\n");
- }
- const int prediction = mnist_eval(argv[1], digit);
- fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction);
- return 0;
- }
|