123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328 |
- #include "ggml/ggml.h"
- #include "common.h"
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <fstream>
- #include <string>
- #include <vector>
- #include <algorithm>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- // default hparams
- struct mnist_hparams {
- int32_t n_input = 784;
- int32_t n_hidden = 500;
- int32_t n_classes = 10;
- };
- struct mnist_model {
- mnist_hparams hparams;
- struct ggml_tensor * fc1_weight;
- struct ggml_tensor * fc1_bias;
- struct ggml_tensor * fc2_weight;
- struct ggml_tensor * fc2_bias;
- struct ggml_context * ctx;
- };
- // load the model's weights from a file
- bool mnist_model_load(const std::string & fname, mnist_model & model) {
- printf("%s: loading model from '%s'\n", __func__, fname.c_str());
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
- return false;
- }
- // verify magic
- {
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic != GGML_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
- return false;
- }
- }
- auto & ctx = model.ctx;
- size_t ctx_size = 0;
- {
- const auto & hparams = model.hparams;
- const int n_input = hparams.n_input;
- const int n_hidden = hparams.n_hidden;
- const int n_classes = hparams.n_classes;
- ctx_size += n_input * n_hidden * ggml_type_sizef(GGML_TYPE_F32); // fc1 weight
- ctx_size += n_hidden * ggml_type_sizef(GGML_TYPE_F32); // fc1 bias
- ctx_size += n_hidden * n_classes * ggml_type_sizef(GGML_TYPE_F32); // fc2 weight
- ctx_size += n_classes * ggml_type_sizef(GGML_TYPE_F32); // fc2 bias
- printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
- }
- // create the ggml context
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size + 1024*1024,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
- }
- }
- // Read FC1 layer 1
- {
- // Read dimensions
- int32_t n_dims;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- {
- int32_t ne_weight[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne_weight[i]), sizeof(ne_weight[i]));
- }
- // FC1 dimensions taken from file, eg. 768x500
- model.hparams.n_input = ne_weight[0];
- model.hparams.n_hidden = ne_weight[1];
- model.fc1_weight = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, model.hparams.n_input, model.hparams.n_hidden);
- fin.read(reinterpret_cast<char *>(model.fc1_weight->data), ggml_nbytes(model.fc1_weight));
- ggml_set_name(model.fc1_weight, "fc1_weight");
- }
- {
- int32_t ne_bias[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne_bias[i]), sizeof(ne_bias[i]));
- }
- model.fc1_bias = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_hidden);
- fin.read(reinterpret_cast<char *>(model.fc1_bias->data), ggml_nbytes(model.fc1_bias));
- ggml_set_name(model.fc1_bias, "fc1_bias");
- // just for testing purposes, set some parameters to non-zero
- model.fc1_bias->op_params[0] = 0xdeadbeef;
- }
- }
- // Read FC2 layer 2
- {
- // Read dimensions
- int32_t n_dims;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- {
- int32_t ne_weight[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne_weight[i]), sizeof(ne_weight[i]));
- }
- // FC1 dimensions taken from file, eg. 10x500
- model.hparams.n_classes = ne_weight[1];
- model.fc2_weight = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, model.hparams.n_hidden, model.hparams.n_classes);
- fin.read(reinterpret_cast<char *>(model.fc2_weight->data), ggml_nbytes(model.fc2_weight));
- ggml_set_name(model.fc2_weight, "fc2_weight");
- }
- {
- int32_t ne_bias[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne_bias[i]), sizeof(ne_bias[i]));
- }
- model.fc2_bias = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_classes);
- fin.read(reinterpret_cast<char *>(model.fc2_bias->data), ggml_nbytes(model.fc2_bias));
- ggml_set_name(model.fc2_bias, "fc2_bias");
- }
- }
- fin.close();
- return true;
- }
- // evaluate the model
- //
- // - model: the model
- // - n_threads: number of threads to use
- // - digit: 784 pixel values
- //
- // returns 0 - 9 prediction
- int mnist_eval(
- const mnist_model & model,
- const int n_threads,
- std::vector<float> digit,
- const char * fname_cgraph
- ) {
- const auto & hparams = model.hparams;
- static size_t buf_size = hparams.n_input * sizeof(float) * 4;
- static void * buf = malloc(buf_size);
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_size,
- /*.mem_buffer =*/ buf,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- struct ggml_cgraph gf = {};
- struct ggml_tensor * input = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, hparams.n_input);
- memcpy(input->data, digit.data(), ggml_nbytes(input));
- ggml_set_name(input, "input");
- // fc1 MLP = Ax + b
- ggml_tensor * fc1 = ggml_add(ctx0, ggml_mul_mat(ctx0, model.fc1_weight, input), model.fc1_bias);
- ggml_tensor * fc2 = ggml_add(ctx0, ggml_mul_mat(ctx0, model.fc2_weight, ggml_relu(ctx0, fc1)), model.fc2_bias);
- // soft max
- ggml_tensor * probs = ggml_soft_max(ctx0, fc2);
- ggml_set_name(probs, "probs");
- // build / export / run the computation graph
- ggml_build_forward_expand(&gf, probs);
- ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
- //ggml_graph_print (&gf);
- ggml_graph_dump_dot(&gf, NULL, "mnist.dot");
- if (fname_cgraph) {
- // export the compute graph for later use
- // see the "mnist-cpu" example
- ggml_graph_export(&gf, "mnist.ggml");
- fprintf(stderr, "%s: exported compute graph to '%s'\n", __func__, fname_cgraph);
- }
- const float * probs_data = ggml_get_data_f32(probs);
- const int prediction = std::max_element(probs_data, probs_data + 10) - probs_data;
- ggml_free(ctx0);
- return prediction;
- }
- #ifdef __cplusplus
- extern "C" {
- #endif
- int wasm_eval(uint8_t * digitPtr) {
- mnist_model model;
- if (!mnist_model_load("models/mnist/ggml-model-f32.bin", model)) {
- fprintf(stderr, "error loading model\n");
- return -1;
- }
- std::vector<float> digit(digitPtr, digitPtr + 784);
- int result = mnist_eval(model, 1, digit, nullptr);
- ggml_free(model.ctx);
- return result;
- }
- int wasm_random_digit(char * digitPtr) {
- auto fin = std::ifstream("models/mnist/t10k-images.idx3-ubyte", std::ios::binary);
- if (!fin) {
- fprintf(stderr, "failed to open digits file\n");
- return 0;
- }
- srand(time(NULL));
- // Seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
- fin.seekg(16 + 784 * (rand() % 10000));
- fin.read(digitPtr, 784);
- return 1;
- }
- #ifdef __cplusplus
- }
- #endif
- int main(int argc, char ** argv) {
- srand(time(NULL));
- ggml_time_init();
- if (argc != 3) {
- fprintf(stderr, "Usage: %s models/mnist/ggml-model-f32.bin models/mnist/t10k-images.idx3-ubyte\n", argv[0]);
- exit(0);
- }
- uint8_t buf[784];
- mnist_model model;
- std::vector<float> digit;
- // load the model
- {
- const int64_t t_start_us = ggml_time_us();
- if (!mnist_model_load(argv[1], model)) {
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "models/ggml-model-f32.bin");
- return 1;
- }
- const int64_t t_load_us = ggml_time_us() - t_start_us;
- fprintf(stdout, "%s: loaded model in %8.2f ms\n", __func__, t_load_us / 1000.0f);
- }
- // read a random digit from the test set
- {
- std::ifstream fin(argv[2], std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]);
- return 1;
- }
- // seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
- fin.seekg(16 + 784 * (rand() % 10000));
- fin.read((char *) &buf, sizeof(buf));
- }
- // render the digit in ASCII
- {
- digit.resize(sizeof(buf));
- for (int row = 0; row < 28; row++) {
- for (int col = 0; col < 28; col++) {
- fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_');
- digit[row*28 + col] = ((float)buf[row*28 + col]);
- }
- fprintf(stderr, "\n");
- }
- fprintf(stderr, "\n");
- }
- const int prediction = mnist_eval(model, 1, digit, "mnist.ggml");
- fprintf(stdout, "%s: predicted digit is %d\n", __func__, prediction);
- ggml_free(model.ctx);
- return 0;
- }
|