123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- #!/usr/bin/env python3
- import sys
- import gguf
- import numpy as np
- from tensorflow import keras
- from tensorflow.keras import layers
- def train(model_name):
- # Model / data parameters
- num_classes = 10
- input_shape = (28, 28, 1)
- # Load the data and split it between train and test sets
- (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
- # Scale images to the [0, 1] range
- x_train = x_train.astype("float32") / 255
- x_test = x_test.astype("float32") / 255
- # Make sure images have shape (28, 28, 1)
- x_train = np.expand_dims(x_train, -1)
- x_test = np.expand_dims(x_test, -1)
- print("x_train shape:", x_train.shape)
- print(x_train.shape[0], "train samples")
- print(x_test.shape[0], "test samples")
- # convert class vectors to binary class matrices
- y_train = keras.utils.to_categorical(y_train, num_classes)
- y_test = keras.utils.to_categorical(y_test, num_classes)
- model = keras.Sequential(
- [
- keras.Input(shape=input_shape),
- layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
- layers.MaxPooling2D(pool_size=(2, 2)),
- layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
- layers.MaxPooling2D(pool_size=(2, 2)),
- layers.Flatten(),
- layers.Dropout(0.5),
- layers.Dense(num_classes, activation="softmax"),
- ]
- )
- model.summary()
- batch_size = 128
- epochs = 15
- model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
- model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
- score = model.evaluate(x_test, y_test, verbose=0)
- print("Test loss:", score[0])
- print("Test accuracy:", score[1])
- model.save(model_name)
- print("Keras model saved to '" + model_name + "'")
- def convert(model_name):
- model = keras.models.load_model(model_name)
- gguf_model_name = model_name + ".gguf"
- gguf_writer = gguf.GGUFWriter(gguf_model_name, "mnist-cnn")
- kernel1 = model.layers[0].weights[0].numpy()
- kernel1 = np.moveaxis(kernel1, [2,3], [0,1])
- kernel1 = kernel1.astype(np.float16)
- gguf_writer.add_tensor("kernel1", kernel1, raw_shape=(32, 1, 3, 3))
- bias1 = model.layers[0].weights[1].numpy()
- bias1 = np.repeat(bias1, 26*26)
- gguf_writer.add_tensor("bias1", bias1, raw_shape=(1, 32, 26, 26))
- kernel2 = model.layers[2].weights[0].numpy()
- kernel2 = np.moveaxis(kernel2, [0,1,2,3], [2,3,1,0])
- kernel2 = kernel2.astype(np.float16)
- gguf_writer.add_tensor("kernel2", kernel2, raw_shape=(64, 32, 3, 3))
- bias2 = model.layers[2].weights[1].numpy()
- bias2 = np.repeat(bias2, 11*11)
- gguf_writer.add_tensor("bias2", bias2, raw_shape=(1, 64, 11, 11))
- dense_w = model.layers[-1].weights[0].numpy()
- dense_w = dense_w.transpose()
- gguf_writer.add_tensor("dense_w", dense_w, raw_shape=(10, 1600))
- dense_b = model.layers[-1].weights[1].numpy()
- gguf_writer.add_tensor("dense_b", dense_b)
- gguf_writer.write_header_to_file()
- gguf_writer.write_kv_data_to_file()
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
- print("Model converted and saved to '{}'".format(gguf_model_name))
- if __name__ == '__main__':
- if len(sys.argv) < 3:
- print("Usage: %s <train|convert> <model_name>".format(sys.argv[0]))
- sys.exit(1)
- if sys.argv[1] == 'train':
- train(sys.argv[2])
- elif sys.argv[1] == 'convert':
- convert(sys.argv[2])
- else:
- print("Usage: %s <train|convert> <model_name>".format(sys.argv[0]))
- sys.exit(1)
|