123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- import os
- import struct
- import sys
- import torch
- from transformers import AutoConfig, AutoTokenizer
- # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
- def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a signficant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = (
- list(range(ord("!"), ord("~") + 1))
- + list(range(ord("¡"), ord("¬") + 1))
- + list(range(ord("®"), ord("ÿ") + 1))
- )
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8 + n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- def count_model_parts(dir_model: str) -> int:
- """Returns the number of model parts in the model directory."""
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
- if num_parts > 0:
- print(f"Found {num_parts} model parts in {dir_model}")
- return num_parts
- if len(sys.argv) < 3:
- print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
- print(" ftype == 0 -> float32")
- print(" ftype == 1 -> float16")
- sys.exit(1)
- # output in the same directory as the model
- dir_model = sys.argv[1]
- # get number of model parts
- num_parts = count_model_parts(dir_model)
- # possible data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- #
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- ftype = 1
- if len(sys.argv) > 2:
- ftype = int(sys.argv[2])
- if ftype < 0 or ftype > 1:
- print("Invalid ftype: " + str(ftype))
- sys.exit(1)
- fname_out = dir_model + "/ggml-model-" + ftype_str[ftype] + ".bin"
- tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
- config = AutoConfig.from_pretrained(dir_model, trust_remote_code=True)
- hparams = config.to_dict()
- fout = open(fname_out, "wb")
- fout.write(struct.pack("i", 0x67676D6C)) # magic: ggml in hex
- fout.write(struct.pack("i", hparams["d_model"]))
- fout.write(struct.pack("i", hparams["max_seq_len"]))
- fout.write(struct.pack("i", hparams["n_heads"]))
- fout.write(struct.pack("i", hparams["n_layers"]))
- fout.write(struct.pack("i", hparams["vocab_size"]))
- fout.write(struct.pack("f", hparams["attn_config"]["alibi_bias_max"]))
- fout.write(struct.pack("f", hparams["attn_config"]["clip_qkv"] or 0.0))
- fout.write(struct.pack("i", ftype))
- vocab_size = hparams["vocab_size"]
- encoder = tokenizer.vocab
- # Add added_tokens (special tokens) to the encoder
- encoder.update(tokenizer.get_added_vocab())
- byte_encoder = bytes_to_unicode()
- byte_decoder = {v: k for k, v in byte_encoder.items()}
- counter = 0
- # sort by value
- for key in sorted(encoder, key=encoder.get):
- # workaround for key error when c not found
- text = ""
- for c in key:
- if c not in byte_decoder:
- text += c
- else:
- text += chr(byte_decoder[c])
- text = bytearray(text, encoding="utf-8")
- fout.write(struct.pack("i", len(text)))
- fout.write(text)
- counter += 1
- # Repeat last token until vocab_size
- while counter < vocab_size:
- fout.write(struct.pack("i", len(text)))
- fout.write(text)
- counter += 1
- if num_parts == 0:
- part_names = ("pytorch_model.bin",)
- else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
- for part_name in part_names:
- print(f"\n* Loading part: {part_name}")
- model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
- for name in model_part.keys():
- data = model_part[name].squeeze()
- n_dims = len(data.shape)
- # ftype == 0 -> float32, ftype == 1 -> float16
- # default type is fp32
- ftype_cur = 0
- if ftype == 1 and name[-7:] == ".weight" and n_dims > 1:
- ftype_cur = 1
- data = data.to(dtype=torch.float16 if ftype_cur == 1 else torch.float32).numpy()
- print(
- "Processing variable: " + name + " with shape: ",
- data.shape,
- "->",
- data.dtype,
- )
- # header
- str = name.encode("utf-8")
- fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
- for i in range(n_dims):
- fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
- fout.write(str)
- # data
- data.tofile(fout)
- # release memory
- del model_part
- fout.close()
- print("Done. Output file: " + fname_out)
- print("")
|