1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039 |
- #include "ggml/ggml.h"
- #include "common-ggml.h"
- #include "common.h"
- #include <cmath>
- #include <cstddef>
- #include <cstdio>
- #include <cstring>
- #include <fstream>
- #include <cinttypes>
- #include <map>
- #include <string>
- #include <utility>
- #include <vector>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- // no defaults for now
- struct mpt_hparams {
- int32_t d_model = 0;
- int32_t max_seq_len = 0;
- int32_t n_heads = 0;
- int32_t n_layers = 0;
- int32_t n_vocab = 0;
- float alibi_bias_max = 0;
- float clip_qkv = 0;
- int32_t ftype = 0;
- int32_t n_ctx = 0;
- };
- struct mpt_layer {
- // pre normalization
- struct ggml_tensor * norm_1_weight;
- // attention
- struct ggml_tensor * c_attn_wqkv_weight;
- struct ggml_tensor * c_attn_out_proj_weight;
- // post normalization
- struct ggml_tensor * norm_2_weight;
- // ff
- struct ggml_tensor * ffn_up_proj;
- struct ggml_tensor * ffn_down_proj;
- };
- struct mpt_model {
- mpt_hparams hparams;
- struct ggml_tensor * wte_weight; // position embedding
- struct ggml_tensor * norm_f_weight; // language model head
- std::vector<mpt_layer> layers;
- // key + value memory
- struct ggml_tensor * memory_k;
- struct ggml_tensor * memory_v;
- struct ggml_context * ctx;
- std::map<std::string, struct ggml_tensor *> tensors;
- };
- struct mpt_params {
- int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
- int32_t seed = -1; // RNG seed
- int32_t n_predict = 200; // new tokens to predict
- int32_t n_batch = 8; // batch size for prompt processing
- int32_t n_ctx = 512;
- std::string model = ""; // model path
- std::string prompt = "";
- std::string token_test = "";
- bool perplexity = false;
- // sampling parameters
- int32_t top_k = 0;
- float top_p = 1.0f;
- float temp = 0.8f;
- int32_t repeat_last_n = 64;
- float repeat_penalty = 1.02f;
- };
- void mpt_print_usage(int /*argc*/, char ** argv, const mpt_params & params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
- fprintf(stderr, " prompt to start generation with (default: random)\n");
- fprintf(stderr, " -f FNAME, --file FNAME\n");
- fprintf(stderr, " load prompt from a file\n");
- fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
- fprintf(stderr, " test tokenization\n");
- fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
- fprintf(stderr, " --top_k N top-k sampling (default: %d, 0 = n_vocab)\n", params.top_k);
- fprintf(stderr, " --top_p N top-p sampling (default: %.2f)\n", params.top_p);
- fprintf(stderr, " --temp N temperature (default: %.2f)\n", params.temp);
- fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
- fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
- fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
- fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
- fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
- fprintf(stderr, " -m FNAME, --model FNAME\n");
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
- fprintf(stderr, "\n");
- }
- bool mpt_params_parse(int argc, char ** argv, mpt_params & params) {
- for (int i = 1; i < argc; i++) {
- std::string arg = argv[i];
- if (arg == "-s" || arg == "--seed") {
- params.seed = std::stoi(argv[++i]);
- } else if (arg == "-t" || arg == "--threads") {
- params.n_threads = std::stoi(argv[++i]);
- } else if (arg == "-p" || arg == "--prompt") {
- params.prompt = argv[++i];
- } else if (arg == "-n" || arg == "--n_predict") {
- params.n_predict = std::stoi(argv[++i]);
- } else if (arg == "--top_k") {
- params.top_k = std::max(1, std::stoi(argv[++i]));
- } else if (arg == "--top_p") {
- params.top_p = std::stof(argv[++i]);
- } else if (arg == "--temp") {
- params.temp = std::stof(argv[++i]);
- } else if (arg == "--repeat-last-n") {
- params.repeat_last_n = std::stof(argv[++i]);
- } else if (arg == "--repeat-penalty") {
- params.repeat_penalty = std::stof(argv[++i]);
- } else if (arg == "--perplexity") {
- params.perplexity = true;
- } else if (arg == "-c" || arg == "--ctx-size") {
- params.n_ctx = std::stoi(argv[++i]);
- } else if (arg == "-b" || arg == "--batch_size") {
- params.n_batch = std::stoi(argv[++i]);
- } else if (arg == "-m" || arg == "--model") {
- params.model = argv[++i];
- } else if (arg == "-h" || arg == "--help") {
- mpt_print_usage(argc, argv, params);
- exit(0);
- } else if (arg == "-f" || arg == "--file") {
- if (++i > argc) {
- fprintf(stderr, "Invalid file param");
- break;
- }
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- break;
- }
- params.prompt.clear();
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
- if (params.prompt.back() == '\n') {
- params.prompt.pop_back();
- }
- } else if (arg == "-tt" || arg == "--token_test") {
- params.token_test = argv[++i];
- } else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- mpt_print_usage(argc, argv, params);
- exit(0);
- }
- }
- return true;
- }
- // load the model's weights from a file
- bool mpt_model_load(const std::string & fname, mpt_model & model, gpt_vocab & vocab) {
- printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
- return false;
- }
- // verify magic
- {
- uint32_t magic;
- fin.read((char *)&magic, sizeof(magic));
- if (magic != GGML_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
- return false;
- }
- }
- // load hparams
- {
- auto & hparams = model.hparams;
- fin.read((char *) &hparams.d_model, sizeof(hparams.d_model));
- fin.read((char *) &hparams.max_seq_len, sizeof(hparams.max_seq_len));
- fin.read((char *) &hparams.n_heads, sizeof(hparams.n_heads));
- fin.read((char *) &hparams.n_layers, sizeof(hparams.n_layers));
- fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- fin.read((char *) &hparams.alibi_bias_max, sizeof(hparams.alibi_bias_max));
- fin.read((char *) &hparams.clip_qkv, sizeof(hparams.clip_qkv));
- fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
- hparams.n_ctx = std::min(hparams.max_seq_len, hparams.n_ctx);
- const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
- printf("%s: d_model = %d\n", __func__, hparams.d_model);
- printf("%s: max_seq_len = %d\n", __func__, hparams.max_seq_len);
- printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
- printf("%s: n_heads = %d\n", __func__, hparams.n_heads);
- printf("%s: n_layers = %d\n", __func__, hparams.n_layers);
- printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max);
- printf("%s: clip_qkv = %f\n", __func__, hparams.clip_qkv);
- printf("%s: ftype = %d\n", __func__, hparams.ftype);
- printf("%s: qntvr = %d\n", __func__, qntvr);
- hparams.ftype %= GGML_QNT_VERSION_FACTOR;
- }
- // load vocab
- {
- const int32_t n_vocab = model.hparams.n_vocab;
- std::string word;
- std::vector<char> buf(128);
- for (int i = 0; i < n_vocab; i++) {
- uint32_t len;
- fin.read((char *) &len, sizeof(len));
- buf.resize(len);
- fin.read((char *) buf.data(), len);
- word.assign(buf.data(), len);
- // Convert token from utf-8
- std::wstring word_multibytes = convert_to_wstring(word);
- word.resize(word_multibytes.size());
- for (size_t w = 0; w < word_multibytes.size(); w++) {
- word[w] = uint8_t(word_multibytes[w]);
- }
- vocab.token_to_id[word] = i;
- vocab.id_to_token[i] = word;
- }
- }
- // for the big tensors, we have the option to store the data in 16-bit
- // floats or quantized in order to save memory and also to speed up the
- // computation
- ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
- if (wtype == GGML_TYPE_COUNT) {
- fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(),
- model.hparams.ftype);
- return false;
- }
- auto & ctx = model.ctx;
- size_t ctx_size = 0;
- const auto & hparams = model.hparams;
- const size_t n_ctx = hparams.n_ctx;
- {
- const size_t n_embd = hparams.d_model;
- const size_t n_layer = hparams.n_layers;
- const size_t n_vocab = hparams.n_vocab;
- ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight
- ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // norm_f_weight
- ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_weight
- ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight
- ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // attn_out_proj_weight
- ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_weight
- ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight
- ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight
- ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k
- ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v
- ctx_size += (1 + 6 * n_layer) * 512; // object overhead
- printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0));
- }
- // create the ggml context
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
- }
- }
- // prepare memory for the weights
- {
- const auto & hparams = model.hparams;
- const size_t n_embd = hparams.d_model;
- const size_t n_layer = hparams.n_layers;
- const size_t n_vocab = hparams.n_vocab;
- model.layers.resize(n_layer);
- model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
- model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- // map by name
- model.tensors["transformer.wte.weight"] = model.wte_weight;
- model.tensors["transformer.norm_f.weight"] = model.norm_f_weight;
- for (int i = 0; i < (int) n_layer; ++i) {
- auto & layer = model.layers[i];
- layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd);
- layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd);
- layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd);
- // map by name
- model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight;
- model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight;
- model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_out_proj_weight;
- model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight;
- model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj;
- model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj;
- }
- }
- // key + value memory
- {
- const auto & hparams = model.hparams;
- const size_t n_embd = hparams.d_model;
- const size_t n_layer = hparams.n_layers;
- const int64_t n_mem = n_layer * n_ctx;
- const int64_t n_elements = n_embd * n_mem;
- model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
- model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
- const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
- printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem);
- }
- // load weights
- {
- int n_tensors = 0;
- size_t total_size = 0;
- printf("%s: ", __func__);
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ttype;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
- if (fin.eof()) {
- break;
- }
- int32_t nelements = 1;
- int32_t ne[2] = {1, 1};
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
- std::string name(length, 0);
- fin.read(&name[0], length);
- if (model.tensors.find(name) == model.tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
- return false;
- }
- auto tensor = model.tensors[name];
- if (ggml_nelements(tensor) != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
- return false;
- }
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr,
- "%s: tensor '%s' has wrong shape in model file: got [%5d, "
- "%5d], expected [%5d, %5d]\n",
- __func__, name.c_str(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- // for debugging
- if (0) {
- printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1],
- ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
- }
- const size_t bpe = ggml_type_size(ggml_type(ttype));
- if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
- fprintf(stderr,
- "%s: tensor '%s' has wrong size in model file: got %zu, "
- "expected %zu\n",
- __func__, name.c_str(), ggml_nbytes(tensor), nelements * bpe);
- return false;
- }
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
- total_size += ggml_nbytes(tensor);
- if (++n_tensors % 8 == 0) {
- printf(".");
- fflush(stdout);
- }
- }
- printf(" done\n");
- printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
- }
- fin.close();
- return true;
- }
- // evaluate the transformer
- //
- // - model: the model
- // - n_threads: number of threads to use
- // - n_past: the context size so far
- // - embd_inp: the embeddings of the tokens in the context
- // - embd_w: the predicted logits for the next token
- //
- bool mpt_eval(const mpt_model & model, const int n_threads, const int n_past,
- const std::vector<gpt_vocab::id> & embd_inp, std::vector<float> & embd_w, bool logits_all, size_t & mem_per_token) {
- const int N = embd_inp.size();
- const auto & hparams = model.hparams;
- const int n_embd = hparams.d_model;
- const int n_layer = hparams.n_layers;
- const int n_head = hparams.n_heads;
- const int n_vocab = hparams.n_vocab;
- const int n_ctx = hparams.n_ctx;
- const float eps = 1e-5f;
- static size_t buf_size = 256u * 1024 * 1024;
- static void * buf = malloc(buf_size);
- // use 2 scratch buffers
- // TODO: very hacky solution - reimplement in a more elegant way
- static size_t scr0_size = 256u*1024*1024;
- static void * scr0 = malloc(scr0_size);
- static size_t scr1_size = 256u*1024*1024;
- static void * scr1 = malloc(scr1_size);
- if (mem_per_token > 0 && mem_per_token * N > buf_size) {
- const size_t buf_size_new = 1.1 * (mem_per_token * N); // add 10% to account for ggml object overhead
- // printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__,
- // buf_size, buf_size_new);
- // reallocate
- buf_size = buf_size_new;
- buf = realloc(buf, buf_size);
- if (buf == nullptr) {
- fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
- return false;
- }
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_size,
- /*.mem_buffer =*/ buf,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- struct ggml_cgraph gf = {};
- struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd));
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * cur;
- ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
- // a = self.ln_1(x)
- {
- cur = ggml_norm(ctx0, inpL, eps);
- cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur);
- }
- // self-attention
- // b, _, past_key_value = self.attn(a, past_key_value=past_key_value,
- // attn_bias=attn_bias, attention_mask=attention_mask,
- // is_causal=is_causal)
- {
- // compute QKV
- cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur);
- if (model.hparams.clip_qkv > 0.0f) {
- cur = ggml_clamp(ctx0, cur, -model.hparams.clip_qkv, model.hparams.clip_qkv);
- }
- struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd);
- struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd);
- struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd);
- // store key and value to memory
- {
- struct ggml_tensor * k =
- ggml_view_1d(ctx0, model.memory_k, N * n_embd,
- (ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past));
- struct ggml_tensor * v =
- ggml_view_1d(ctx0, model.memory_v, N * n_embd,
- (ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
- }
- // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0,
- // 2, 1, 3) [64, N, 12]
- struct ggml_tensor * Q = ggml_permute(
- ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2,
- 1, 3);
- // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1,
- // 3) [64, n_past + N, 12]
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd,
- il * n_ctx * ggml_element_size(model.memory_k) * n_embd),
- n_embd / n_head, n_head, n_past + N),
- 0, 2, 1, 3);
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- struct ggml_tensor * KQ_scaled =
- ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
- struct ggml_tensor * KQ_scaled_alibi =
- ggml_alibi(ctx0, KQ_scaled, n_past, n_head, model.hparams.alibi_bias_max);
- // KQ_masked = mask_past(KQ_scaled)
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
- // KQ = soft_max(KQ_masked)
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
- // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1,
- // 2, 0, 3).contiguous() [n_past + N, 64, 12]
- struct ggml_tensor * V_trans = ggml_cpy(
- ctx0,
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd,
- il * n_ctx * ggml_element_size(model.memory_v) * n_embd),
- n_embd / n_head, n_head, n_past + N),
- 1, 2, 0, 3),
- ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head));
- // KQV = transpose(V) * KQ_soft_max
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- // cur = KQV_merged.contiguous().view(n_embd, N)
- cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- // projection
- { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); }
- }
- inpL = ggml_add(ctx0, inpL, cur);
- ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
- // m = self.ln_2(x)
- {
- cur = ggml_norm(ctx0, inpL, eps);
- cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur);
- }
- // n = self.mlp(m)
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur);
- // GELU activation
- cur = ggml_gelu(ctx0, cur);
- // projection
- // cur = proj_w*cur + proj_b
- cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur);
- }
- // x = x + n
- inpL = ggml_add(ctx0, inpL, cur);
- }
- ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
- // norm
- {
- inpL = ggml_norm(ctx0, inpL, eps);
- // inpL = ln_f_g*inpL
- inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL);
- }
- ggml_set_scratch(ctx0, { 0, 0, nullptr, });
- // output embedding weight tied to input embedding
- inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL);
- // logits -> probs
- // inpL = ggml_soft_max(ctx0, inpL);
- // run the computation
- ggml_build_forward_expand(&gf, inpL);
- ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
- // std::cout << "Qcur" << std::endl;
- // print_tensor(Qcur);
- // if (n_past%100 == 0) {
- // ggml_graph_print(&gf);
- // ggml_graph_dump_dot(&gf, NULL, "mpt-model.dot");
- // }
- if (logits_all) {
- // return result for all tokens
- embd_w.resize(n_vocab *N);
- memcpy(embd_w.data(), (float *)ggml_get_data(inpL) , sizeof(float) * n_vocab * N);
- } else {
- // return result for just the last token
- embd_w.resize(n_vocab);
- memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab);
- }
- if (mem_per_token == 0) {
- mem_per_token = ggml_used_mem(ctx0) / N;
- }
- // printf("used_mem = %zu\n", ggml_used_mem(ctx0));
- ggml_free(ctx0);
- return true;
- }
- std::vector<float> softmax(const std::vector<float> & logits) {
- std::vector<float> probs(logits.size());
- float max_logit = logits[0];
- for (float v : logits) max_logit = std::max(max_logit, v);
- double sum_exp = 0.0;
- for (size_t i = 0; i < logits.size(); i++) {
- // Subtract the maximum logit value from the current logit value for numerical stability
- const float logit = logits[i] - max_logit;
- const float exp_logit = expf(logit);
- sum_exp += exp_logit;
- probs[i] = exp_logit;
- }
- for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
- return probs;
- }
- int perplexity(const mpt_params & params) {
- ggml_time_init();
- const int64_t t_main_start_us = ggml_time_us();
- printf("%s: n_threads = %d\n", __func__, params.n_threads);
- printf("%s: n_batch = %d\n", __func__, params.n_batch);
- printf("%s: n_ctx = %d\n", __func__, params.n_ctx);
- printf("\n");
- int64_t t_load_us = 0;
- gpt_vocab vocab;
- mpt_model model;
- model.hparams.n_ctx = params.n_ctx;
- // load the model
- {
- const int64_t t_start_us = ggml_time_us();
- if (!mpt_model_load(params.model, model, vocab)) {
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
- return 1;
- }
- t_load_us = ggml_time_us() - t_start_us;
- }
- int64_t t_predict_us = 0;
- std::vector<float> logits;
- // tokenize the prompt
- std::vector<int> embd_inp = ::gpt_tokenize(vocab, params.prompt);
- printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
- // determine the required inference memory per token:
- size_t mem_per_token = 0;
- mpt_eval(model, params.n_threads, 0, {0, 1, 2, 3}, logits, false, mem_per_token);
- int count = 0;
- const int n_chunk = embd_inp.size() / params.n_ctx;
- const int n_vocab = model.hparams.n_vocab;
- const int n_batch = params.n_batch;
- double nll = 0.0;
- fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
- for (int i = 0; i < n_chunk; ++i) {
- const int start = i * params.n_ctx;
- const int end = start + params.n_ctx;
- const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
- std::vector<float> logits;
- const auto t_start = std::chrono::high_resolution_clock::now();
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- std::vector<gpt_vocab::id> embd;
- for(int p=0;p<batch_size;p++) {
- embd.push_back( embd_inp[batch_start+p] );
- }
- std::vector<float> batch_logits;// = llama_get_logits(ctx);
- const int64_t t_start_us = ggml_time_us();
- if (!mpt_eval(model, params.n_threads, j * batch_size, embd, batch_logits, true, mem_per_token)) {
- printf("%s: failed to evaluate model\n", __func__);
- return 1;
- }
- t_predict_us += ggml_time_us() - t_start_us;
- logits.insert(logits.end(), batch_logits.data(), batch_logits.data() + batch_size * n_vocab);
- }
- const auto t_end = std::chrono::high_resolution_clock::now();
- if (i == 0) {
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total * n_chunk);
- if (total_seconds >= 60*60) {
- fprintf(stderr, "%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- fprintf(stderr, "%d minutes\n", total_seconds / 60);
- printf("\nChunk\tPPL cumulative\tPPL chunk\n");
- }
- // We get the logits for all the tokens in the context window (params.n_ctx)
- // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
- // calculate the perplexity over the last half of the window (so the model always has
- // some context to predict the token).
- //
- // We rely on the fact that attention in the forward pass only looks at previous
- // tokens here, so the logits returned for each token are an accurate representation
- // of what the model would have predicted at that point.
- //
- // Example, we have a context window of 512, we will compute perplexity for each of the
- // last 256 tokens. Then, we split the input up into context window size chunks to
- // process the entire prompt.
- double nllchunk = 0.0;
- int countchunk = 0;
- for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
- // Calculate probability of next token, given the previous ones.
- const std::vector<float> tok_logits(
- logits.begin() + (j + 0) * n_vocab,
- logits.begin() + (j + 1) * n_vocab);
- const float prob = softmax(tok_logits)[embd_inp[ start+ j + 1]];
- nllchunk += -std::log(prob);
- ++countchunk;
- }
- nll += nllchunk;
- count += countchunk;
- // perplexity is e^(average negative log-likelihood)
- printf("%d\t%.8lf\t%.8lf\n", i + 1, std::exp(nll / count), std::exp(nllchunk/countchunk) );
- fflush(stdout);
- }
- // report timing
- {
- const int64_t t_main_end_us = ggml_time_us();
- printf("\n\n");
- printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
- printf("%s: load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);
- printf("%s: eval time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us / 1000.0f, t_predict_us / 1000.0f / (n_chunk * params.n_ctx));
- printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
- }
- ggml_free(model.ctx);
- return 0;
- }
- int main(int argc, char ** argv) {
- mpt_params params;
- if (mpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- if (params.perplexity) {
- return perplexity(params);
- }
- ggml_time_init();
- const int64_t t_main_start_us = ggml_time_us();
- if (params.seed < 0) {
- params.seed = time(NULL);
- }
- if (params.n_predict < 0) {
- params.n_predict = 0;
- }
- printf("%s: seed = %d\n", __func__, params.seed);
- printf("%s: n_threads = %d\n", __func__, params.n_threads);
- printf("%s: n_batch = %d\n", __func__, params.n_batch);
- printf("%s: n_ctx = %d\n", __func__, params.n_ctx);
- printf("%s: n_predict = %d\n\n", __func__, params.n_predict);
- std::mt19937 rng(params.seed);
- if (params.prompt.empty()) {
- params.prompt = gpt_random_prompt(rng);
- }
- int64_t t_load_us = 0;
- gpt_vocab vocab;
- mpt_model model;
- model.hparams.n_ctx = params.n_ctx;
- // load the model
- {
- const int64_t t_start_us = ggml_time_us();
- if (!mpt_model_load(params.model, model, vocab)) {
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
- return 1;
- }
- t_load_us = ggml_time_us() - t_start_us;
- test_gpt_tokenizer(vocab, params.token_test);
- }
- if (params.top_k == 0) {
- params.top_k = model.hparams.n_vocab;
- }
- if (params.repeat_last_n == -1) {
- params.repeat_last_n = params.n_ctx;
- }
- printf("\n");
- printf("%s: temp = %.3f\n", __func__, params.temp);
- printf("%s: top_k = %d\n", __func__, params.top_k);
- printf("%s: top_p = %.3f\n", __func__, params.top_p);
- printf("%s: repeat_last_n = %d\n", __func__, params.repeat_last_n);
- printf("%s: repeat_penalty = %.3f\n", __func__, params.repeat_penalty);
- int64_t t_sample_us = 0;
- int64_t t_predict_us = 0;
- std::vector<int32_t> last_n_tokens(params.n_ctx);
- std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
- // tokenize the prompt
- std::vector<int> embd_inp = ::gpt_tokenize(vocab, params.prompt);
- printf("\n");
- printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
- for (size_t i = 0; i < embd_inp.size(); i++) {
- printf("%s: token[%zu] = %6d\n", __func__, i, embd_inp[i]);
- }
- printf("\n");
- std::vector<gpt_vocab::id> embd;
- std::vector<float> logits;
- // determine the required inference memory per token:
- size_t mem_per_token = 0;
- mpt_eval(model, params.n_threads, 0, {0, 1, 2, 3}, logits, false, mem_per_token);
- int n_past = 0;
- int n_consumed = 0;
- int n_sampled = 0;
- while (n_sampled < params.n_predict) {
- // predict
- if (embd.size() > 0) {
- const int64_t t_start_us = ggml_time_us();
- if (!mpt_eval(model, params.n_threads, n_past, embd, logits, false, mem_per_token)) {
- printf("%s: failed to predict\n", __func__);
- return 1;
- }
- t_predict_us += ggml_time_us() - t_start_us;
- n_past += embd.size();
- embd.clear();
- }
- if ((int)embd_inp.size() <= n_consumed) {
- // sample next token
- const int top_k = params.top_k;
- const float top_p = params.top_p;
- const float temp = params.temp;
- const int repeat_last_n = params.repeat_last_n;
- const float repeat_penalty = params.repeat_penalty;
- gpt_vocab::id id = 0;
- {
- const int64_t t_start_sample_us = ggml_time_us();
- id = gpt_sample_top_k_top_p_repeat(vocab, logits.data() + (logits.size() - model.hparams.n_vocab), last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_last_n, repeat_penalty, rng);
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(id);
- t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- // add it to the context
- embd.push_back(id);
- ++n_sampled;
- } else {
- // if here, it means we are still processing the input prompt
- while ((int) embd_inp.size() > n_consumed) {
- embd.push_back(embd_inp[n_consumed]);
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(embd_inp[n_consumed]);
- ++n_consumed;
- if ((int) embd.size() >= params.n_batch) {
- break;
- }
- }
- }
- // display text
- for (auto id : embd) {
- printf("%s", vocab.id_to_token[id].c_str());
- }
- fflush(stdout);
- // end of text token
- if (embd.back() == 0) {
- break;
- }
- }
- // report timing
- {
- const int64_t t_main_end_us = ggml_time_us();
- printf("\n\n\n");
- printf("%s: sampled tokens = %8d\n", __func__, n_sampled);
- printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
- printf("%s: load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);
- printf("%s: sample time = %8.2f ms / %.2f ms per token\n", __func__, t_sample_us / 1000.0f, t_sample_us / 1000.0f / n_sampled);
- printf("%s: eval time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us / 1000.0f, t_predict_us / 1000.0f / n_past);
- printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
- }
- ggml_free(model.ctx);
- return 0;
- }
|