123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795 |
- #include "ggml/ggml.h"
- #include "common-ggml.h"
- #include "common.h"
- #include <cassert>
- #include <cmath>
- #include <cinttypes>
- #include <cstddef>
- #include <cstdio>
- #include <cstring>
- #include <fstream>
- #include <iostream>
- #include <map>
- #include <stdint.h>
- #include <string>
- #include <unordered_map>
- #include <utility>
- #include <vector>
- #if defined(_WIN32)
- #define NOMINMAX
- #include <Windows.h>
- bool is_stdin_terminal() {
- auto in = GetStdHandle(STD_INPUT_HANDLE);
- return GetFileType(in) == FILE_TYPE_CHAR;
- }
- #else
- #include <unistd.h>
- bool is_stdin_terminal() {
- return isatty(STDIN_FILENO);
- }
- #endif
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- using piece_t = std::pair<std::size_t, float>;
- using piece_map_t = std::unordered_map<std::string, piece_t>;
- struct replit_tokenizer {
- gpt_vocab raw_vocab;
- piece_map_t piece_map;
- std::vector<std::string> vocab;
- };
- std::pair<std::vector<std::size_t>, float> encode_word(const std::string & word, const piece_map_t & model) {
- std::vector<int> best_segmentations_starts(word.length() + 1, -1);
- best_segmentations_starts[0] = 0;
- std::vector<float> best_segmentations_scores(word.length() + 1, -std::numeric_limits<float>::infinity());
- best_segmentations_scores[0] = 1.0;
- for (size_t start_idx = 0; start_idx < word.length(); ++start_idx) {
- float best_score_at_start = best_segmentations_scores[start_idx];
- for (size_t end_idx = start_idx + 1; end_idx <= word.length(); ++end_idx) {
- std::string token = word.substr(start_idx, end_idx - start_idx);
- if (model.count(token) && best_score_at_start != -std::numeric_limits<float>::infinity()) {
- float token_score = model.at(token).second;
- float score = token_score + best_score_at_start;
- if (best_segmentations_scores[end_idx] == -std::numeric_limits<float>::infinity() ||
- best_segmentations_scores[end_idx] > score) {
- best_segmentations_starts[end_idx] = start_idx;
- best_segmentations_scores[end_idx] = score;
- }
- }
- }
- }
- if (best_segmentations_scores.back() == -std::numeric_limits<float>::infinity()) {
- return std::make_pair(std::vector<std::size_t>{0}, 0.0f);
- }
- float score = best_segmentations_scores.back();
- int start = best_segmentations_starts.back();
- int end = word.length();
- std::vector<std::size_t> tokens;
- while (start != 0) {
- const auto token_id = model.at(word.substr(start, end - start)).first;
- tokens.insert(tokens.begin(), token_id);
- int next_start = best_segmentations_starts[start];
- end = start;
- start = next_start;
- }
- const auto token_id = model.at(word.substr(start, end - start)).first;
- tokens.insert(tokens.begin(), token_id);
- return std::make_pair(tokens, score);
- }
- bool replit_tokenizer_load(replit_tokenizer & tokenizer, std::istream & fin, int max_vocab_size) {
- std::string word;
- std::vector<char> buf(128);
- for (int i = 0; i < max_vocab_size; i++) {
- uint32_t len;
- fin.read((char *)&len, sizeof(len));
- buf.resize(len);
- fin.read((char *)buf.data(), len);
- word.assign(buf.data(), len);
- float score;
- fin.read((char *)&score, sizeof(score));
- tokenizer.piece_map[word] = std::make_pair(i, -score);
- tokenizer.raw_vocab.id_to_token[i] = word;
- }
- return true;
- }
- std::string replace_all(const std::string & str, // where to work
- const std::string & find, // substitute 'find'
- const std::string & replace // by 'replace'
- ) {
- using namespace std;
- string result;
- size_t find_len = find.size();
- size_t pos, from = 0;
- while (string::npos != (pos = str.find(find, from))) {
- result.append(str, from, pos - from);
- result.append(replace);
- from = pos + find_len;
- }
- result.append(str, from, string::npos);
- return result;
- }
- std::string ws_symbol = "\342\226\201";
- std::vector<std::size_t> replit_tokenizer_tokenize(replit_tokenizer & tokenizer, const std::string & text) {
- std::vector<std::size_t> tokens;
- auto normalized_text = replace_all(text, " ", ws_symbol);
- auto tokenized = encode_word(normalized_text, tokenizer.piece_map);
- return tokenized.first;
- }
- std::string replit_tokenizer_detokenize(replit_tokenizer & tokenizer, const std::vector<std::size_t> & tokens) {
- std::string text;
- for (auto token : tokens) {
- text += tokenizer.raw_vocab.id_to_token[token];
- }
- auto denormalized_text = replace_all(text, ws_symbol, " ");
- return denormalized_text;
- }
- // no defaults for now
- struct replit_hparams {
- int32_t d_model = 0;
- int32_t max_seq_len = 0;
- int32_t n_heads = 0;
- int32_t n_layers = 0;
- int32_t n_vocab = 0;
- int32_t ftype = 0;
- };
- struct replit_layer {
- // pre normalization
- struct ggml_tensor * norm_1_weight;
- // attention
- struct ggml_tensor * c_attn_wqkv_weight;
- struct ggml_tensor * c_attn_out_proj_weight;
- // post normalization
- struct ggml_tensor * norm_2_weight;
- // ff
- struct ggml_tensor * ffn_up_proj;
- struct ggml_tensor * ffn_down_proj;
- };
- struct replit_model {
- replit_hparams hparams;
- struct ggml_tensor * wte_weight; // position embedding
- struct ggml_tensor * norm_f_weight; // language model head
- std::vector<replit_layer> layers;
- // key + value memory
- struct ggml_tensor * memory_k;
- struct ggml_tensor * memory_v;
- struct ggml_context * ctx;
- std::map<std::string, struct ggml_tensor *> tensors;
- };
- // load the model's weights from a file
- bool replit_model_load(const std::string & fname, replit_model & model, replit_tokenizer & vocab) {
- printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
- return false;
- }
- // verify magic
- {
- uint32_t magic;
- fin.read((char *)&magic, sizeof(magic));
- if (magic != GGML_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
- return false;
- }
- }
- // load hparams
- {
- auto & hparams = model.hparams;
- fin.read((char *)&hparams.d_model, sizeof(hparams.d_model));
- fin.read((char *)&hparams.max_seq_len, sizeof(hparams.max_seq_len));
- fin.read((char *)&hparams.n_heads, sizeof(hparams.n_heads));
- fin.read((char *)&hparams.n_layers, sizeof(hparams.n_layers));
- fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
- fin.read((char *)&hparams.ftype, sizeof(hparams.ftype));
- const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
- printf("%s: d_model = %d\n", __func__, hparams.d_model);
- printf("%s: max_seq_len = %d\n", __func__, hparams.max_seq_len);
- printf("%s: n_heads = %d\n", __func__, hparams.n_heads);
- printf("%s: n_layers = %d\n", __func__, hparams.n_layers);
- printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- printf("%s: ftype = %d\n", __func__, hparams.ftype);
- printf("%s: qntvr = %d\n", __func__, qntvr);
- hparams.ftype %= GGML_QNT_VERSION_FACTOR;
- }
- // load vocab
- replit_tokenizer_load(vocab, fin, model.hparams.n_vocab);
- // for the big tensors, we have the option to store the data in 16-bit
- // floats or quantized in order to save memory and also to speed up the
- // computation
- ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
- if (wtype == GGML_TYPE_COUNT) {
- fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(),
- model.hparams.ftype);
- return false;
- }
- auto & ctx = model.ctx;
- size_t ctx_size = 0;
- {
- const auto & hparams = model.hparams;
- const int n_embd = hparams.d_model;
- const int n_layer = hparams.n_layers;
- const int n_ctx = hparams.max_seq_len;
- const int n_vocab = hparams.n_vocab;
- ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight
- ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // ln_f_weight
- ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_weight
- ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight
- ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // attn_out_proj_weight
- ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_weight
- ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight
- ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight
- ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k
- ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v
- ctx_size += (1 + 6 * n_layer) * 512; // object overhead
- printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0));
- }
- // create the ggml context
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
- }
- }
- // prepare memory for the weights
- {
- const auto & hparams = model.hparams;
- const size_t n_embd = hparams.d_model;
- const size_t n_layer = hparams.n_layers;
- const size_t n_vocab = hparams.n_vocab;
- model.layers.resize(n_layer);
- model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
- model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- // map by name
- model.tensors["transformer.wte.weight"] = model.wte_weight;
- model.tensors["transformer.norm_f.weight"] = model.norm_f_weight;
- for (int i = 0; i < (int)n_layer; ++i) {
- auto & layer = model.layers[i];
- layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd);
- layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd);
- layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd);
- // map by name
- model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight;
- model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight;
- model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] =
- layer.c_attn_out_proj_weight;
- model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight;
- model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj;
- model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj;
- }
- }
- // key + value memory
- {
- const auto & hparams = model.hparams;
- const int n_embd = hparams.d_model;
- const int n_layer = hparams.n_layers;
- const int n_ctx = hparams.max_seq_len;
- const int64_t n_mem = n_layer * n_ctx;
- const int64_t n_elements = n_embd * n_mem;
- model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
- model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
- const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
- printf("%s: memory_size = %8.2f MB, n_mem = %" PRIu64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem);
- }
- // load weights
- {
- int n_tensors = 0;
- size_t total_size = 0;
- printf("%s: ", __func__);
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ttype;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
- if (fin.eof()) {
- break;
- }
- int32_t nelements = 1;
- int32_t ne[2] = {1, 1};
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
- std::string name(length, 0);
- fin.read(&name[0], length);
- if (model.tensors.find(name) == model.tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
- return false;
- }
- auto tensor = model.tensors[name];
- if (ggml_nelements(tensor) != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
- return false;
- }
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr,
- "%s: tensor '%s' has wrong shape in model file: got [%5d, "
- "%5d], expected [%5d, %5d]\n",
- __func__, name.c_str(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- // for debugging
- if (0) {
- printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1],
- ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
- }
- const size_t bpe = ggml_type_size(ggml_type(ttype));
- if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
- fprintf(stderr,
- "%s: tensor '%s' has wrong size in model file: got %zu, "
- "expected %zu\n",
- __func__, name.c_str(), ggml_nbytes(tensor), nelements * bpe);
- return false;
- }
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
- total_size += ggml_nbytes(tensor);
- if (++n_tensors % 8 == 0) {
- printf(".");
- fflush(stdout);
- }
- }
- printf(" done\n");
- printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors);
- }
- fin.close();
- return true;
- }
- // evaluate the transformer
- //
- // - model: the model
- // - n_threads: number of threads to use
- // - n_past: the context size so far
- // - embd_inp: the embeddings of the tokens in the context
- // - embd_w: the predicted logits for the next token
- //
- bool replit_eval(const replit_model & model, const int n_threads, const int n_past,
- const std::vector<gpt_vocab::id> & embd_inp, std::vector<float> & embd_w, bool logits_all,
- size_t & mem_per_token) {
- const int N = embd_inp.size();
- const auto & hparams = model.hparams;
- const int n_embd = hparams.d_model;
- const int n_layer = hparams.n_layers;
- const int n_head = hparams.n_heads;
- const int n_vocab = hparams.n_vocab;
- const int n_ctx = hparams.max_seq_len;
- const float eps = 1e-5f;
- static size_t buf_size = 256u * 1024 * 1024;
- static void * buf = malloc(buf_size);
- if (mem_per_token > 0 && mem_per_token * N > buf_size) {
- const size_t buf_size_new = 1.1 * (mem_per_token * N); // add 10% to account for ggml object overhead
- // printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__,
- // buf_size, buf_size_new);
- // reallocate
- buf_size = buf_size_new;
- buf = realloc(buf, buf_size);
- if (buf == nullptr) {
- fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
- return false;
- }
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_size,
- /*.mem_buffer =*/ buf,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- struct ggml_cgraph gf = {};
- struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd));
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * cur;
- // a = self.ln_1(x)
- {
- cur = ggml_norm(ctx0, inpL, eps);
- cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur);
- }
- // self-attention
- // b, _, past_key_value = self.attn(a, past_key_value=past_key_value,
- // attn_bias=attn_bias, attention_mask=attention_mask,
- // is_causal=is_causal)
- {
- // compute QKV
- cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur);
- struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd);
- struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd);
- struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd);
- // store key and value to memory
- {
- struct ggml_tensor * k =
- ggml_view_1d(ctx0, model.memory_k, N * n_embd,
- (ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past));
- struct ggml_tensor * v =
- ggml_view_1d(ctx0, model.memory_v, N * n_embd,
- (ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
- }
- // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0,
- // 2, 1, 3) [64, N, 12]
- struct ggml_tensor * Q = ggml_permute(
- ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2,
- 1, 3);
- // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1,
- // 3) [64, n_past + N, 12]
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd,
- il * n_ctx * ggml_element_size(model.memory_k) * n_embd),
- n_embd / n_head, n_head, n_past + N),
- 0, 2, 1, 3);
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- struct ggml_tensor * KQ_scaled =
- ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
- struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8.0f);
- // KQ_masked = mask_past(KQ_scaled)
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
- // KQ = soft_max(KQ_masked)
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
- // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1,
- // 2, 0, 3).contiguous() [n_past + N, 64, 12]
- struct ggml_tensor * V_trans = ggml_cpy(
- ctx0,
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd,
- il * n_ctx * ggml_element_size(model.memory_v) * n_embd),
- n_embd / n_head, n_head, n_past + N),
- 1, 2, 0, 3),
- ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head));
- // KQV = transpose(V) * KQ_soft_max
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- // cur = KQV_merged.contiguous().view(n_embd, N)
- cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- // projection
- { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); }
- }
- inpL = ggml_add(ctx0, inpL, cur);
- // m = self.ln_2(x)
- {
- cur = ggml_norm(ctx0, inpL, eps);
- cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur);
- }
- // n = self.mlp(m)
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur);
- // GELU activation
- cur = ggml_gelu(ctx0, cur);
- // projection
- // cur = proj_w*cur + proj_b
- cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur);
- }
- // x = x + n
- inpL = ggml_add(ctx0, inpL, cur);
- }
- // norm
- {
- inpL = ggml_norm(ctx0, inpL, eps);
- // inpL = ln_f_g*inpL
- inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL);
- }
- // output embedding weight tied to input embedding
- inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL);
- // logits -> probs
- // inpL = ggml_soft_max(ctx0, inpL);
- // run the computation
- ggml_build_forward_expand(&gf, inpL);
- ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
- // std::cout << "Qcur" << std::endl;
- // print_tensor(Qcur);
- // if (n_past%100 == 0) {
- // ggml_graph_print(&gf);
- // ggml_graph_dump_dot(&gf, NULL, "mpt-model.dot");
- // }
- if (logits_all) {
- // return result for all tokens
- embd_w.resize(n_vocab * N);
- memcpy(embd_w.data(), (float *)ggml_get_data(inpL), sizeof(float) * n_vocab * N);
- } else {
- // return result for just the last token
- embd_w.resize(n_vocab);
- memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab);
- }
- if (mem_per_token == 0) {
- mem_per_token = ggml_used_mem(ctx0) / N;
- }
- // printf("used_mem = %zu\n", ggml_used_mem(ctx0));
- ggml_free(ctx0);
- return true;
- }
- int main(int argc, char ** argv) {
- const int64_t t_main_start_us = ggml_time_us();
- gpt_params params;
- params.model = "";
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- if (params.seed < 0) {
- params.seed = time(NULL);
- }
- printf("%s: seed = %d\n", __func__, params.seed);
- std::mt19937 rng(params.seed);
- if (params.prompt.empty()) {
- if (!is_stdin_terminal()) {
- std::string line;
- while (std::getline(std::cin, line)) {
- params.prompt = params.prompt + "\n" + line;
- }
- } else {
- params.prompt = gpt_random_prompt(rng);
- }
- }
- int64_t t_load_us = 0;
- replit_tokenizer vocab;
- replit_model model;
- // load the model
- {
- const int64_t t_start_us = ggml_time_us();
- if (!replit_model_load(params.model, model, vocab)) {
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
- return 1;
- }
- t_load_us = ggml_time_us() - t_start_us;
- }
- int n_past = 0;
- int64_t t_sample_us = 0;
- int64_t t_predict_us = 0;
- std::vector<float> logits;
- // tokenize the prompt
- std::vector<std::size_t> embd_inp = replit_tokenizer_tokenize(vocab, params.prompt);
- printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
- for (size_t i = 0; i < embd_inp.size(); i++) {
- printf("%s: token[%zu] = %6zu\n", __func__, i, embd_inp[i]);
- // vocab.id_to_token.at(embd_inp[i]).c_str()
- }
- printf("\n");
- params.n_predict = std::min(params.n_predict, model.hparams.max_seq_len - (int)embd_inp.size());
- std::vector<gpt_vocab::id> embd;
- // determine the required inference memory per token:
- size_t mem_per_token = 0;
- replit_eval(model, params.n_threads, 0, {0, 1, 2, 3}, logits, false, mem_per_token);
- for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
- // predict
- if (embd.size() > 0) {
- const int64_t t_start_us = ggml_time_us();
- if (!replit_eval(model, params.n_threads, n_past, embd, logits, false, mem_per_token)) {
- printf("Failed to predict\n");
- return 1;
- }
- t_predict_us += ggml_time_us() - t_start_us;
- }
- n_past += embd.size();
- embd.clear();
- if (i >= embd_inp.size()) {
- // sample next token
- const int top_k = params.top_k;
- const float top_p = params.top_p;
- const float temp = params.temp;
- const int n_vocab = model.hparams.n_vocab;
- gpt_vocab::id id = 0;
- {
- const int64_t t_start_sample_us = ggml_time_us();
- id = gpt_sample_top_k_top_p(vocab.raw_vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p,
- temp, rng);
- t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- // add it to the context
- embd.push_back(id);
- } else {
- // if here, it means we are still processing the input prompt
- for (size_t k = i; k < embd_inp.size(); k++) {
- embd.push_back(embd_inp[k]);
- if (int32_t(embd.size()) > params.n_batch) {
- break;
- }
- }
- i += embd.size() - 1;
- }
- // display text
- for (auto id : embd) {
- printf("%s", replit_tokenizer_detokenize(vocab, {static_cast<std::size_t>(id)}).c_str());
- }
- fflush(stdout);
- // end of text token
- if (embd.back() == 0) {
- break;
- }
- }
- // report timing
- {
- const int64_t t_main_end_us = ggml_time_us();
- printf("\n\n");
- printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
- printf("%s: load time = %8.2f ms\n", __func__, t_load_us / 1000.0f);
- printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us / 1000.0f);
- printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us / 1000.0f,
- t_predict_us / 1000.0f / n_past);
- printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
- }
- ggml_free(model.ctx);
- return 0;
- }
|