123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- # Convert a SAM model checkpoint to a ggml compatible file
- #
- import sys
- import torch
- import struct
- import numpy as np
- if len(sys.argv) < 3:
- print("Usage: convert-pth-to-ggml.py file-model dir-output [ftype]\n")
- print(" ftype == 0 -> float32")
- print(" ftype == 1 -> float16")
- sys.exit(1)
- # output in the same directory as the model
- fname_model = sys.argv[1]
- dir_out = sys.argv[2]
- fname_out = dir_out + "/ggml-model.bin"
- # possible data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- #
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- ftype = 1
- if len(sys.argv) > 3:
- ftype = int(sys.argv[3])
- if ftype < 0 or ftype > 1:
- print("Invalid ftype: " + str(ftype))
- sys.exit(1)
- fname_out = fname_out.replace(".bin", "-" + ftype_str[ftype] + ".bin")
- # Default params are set to sam_vit_b checkpoint
- n_enc_state = 768
- n_enc_layers = 12
- n_enc_heads = 12
- n_enc_out_chans = 256
- n_pt_embd = 4
- model = torch.load(fname_model, map_location="cpu")
- for k, v in model.items():
- print(k, v.shape)
- if k == "image_encoder.blocks.0.norm1.weight":
- n_enc_state = v.shape[0]
- if n_enc_state == 1024: # sam_vit_l
- n_enc_layers = 24
- n_enc_heads = 16
- elif n_enc_state == 1280: # sam_vit_h
- n_enc_layers = 32
- n_enc_heads = 16
- hparams = {
- "n_enc_state": n_enc_state,
- "n_enc_layers": n_enc_layers,
- "n_enc_heads": n_enc_heads,
- "n_enc_out_chans": n_enc_out_chans,
- "n_pt_embd": n_pt_embd,
- }
- print(hparams)
- for k, v in model.items():
- print(k, v.shape)
- #exit()
- #code.interact(local=locals())
- fout = open(fname_out, "wb")
- fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
- fout.write(struct.pack("i", hparams["n_enc_state"]))
- fout.write(struct.pack("i", hparams["n_enc_layers"]))
- fout.write(struct.pack("i", hparams["n_enc_heads"]))
- fout.write(struct.pack("i", hparams["n_enc_out_chans"]))
- fout.write(struct.pack("i", hparams["n_pt_embd"]))
- fout.write(struct.pack("i", ftype))
- for k, v in model.items():
- name = k
- shape = v.shape
- if name[:19] == "prompt_encoder.mask":
- continue
- print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
- #data = tf.train.load_variable(dir_model, name).squeeze()
- #data = v.numpy().squeeze()
- data = v.numpy()
- n_dims = len(data.shape)
- # for efficiency - transpose some matrices
- # "model/h.*/attn/c_attn/w"
- # "model/h.*/attn/c_proj/w"
- # "model/h.*/mlp/c_fc/w"
- # "model/h.*/mlp/c_proj/w"
- #if name[-14:] == "/attn/c_attn/w" or \
- # name[-14:] == "/attn/c_proj/w" or \
- # name[-11:] == "/mlp/c_fc/w" or \
- # name[-13:] == "/mlp/c_proj/w":
- # print(" Transposing")
- # data = data.transpose()
- dshape = data.shape
- # default type is fp16
- ftype_cur = 1
- if ftype == 0 or n_dims == 1 or \
- name == "image_encoder.pos_embed" or \
- name.startswith("prompt_encoder") or \
- name.startswith("mask_decoder.iou_token") or \
- name.startswith("mask_decoder.mask_tokens"):
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- else:
- print(" Converting to float16")
- data = data.astype(np.float16)
- # reshape the 1D bias into a 4D tensor so we can use ggml_repeat
- # keep it in F32 since the data is small
- if name == "image_encoder.patch_embed.proj.bias":
- data = data.reshape(1, data.shape[0], 1, 1)
- n_dims = len(data.shape)
- dshape = data.shape
- print(" New shape: ", dshape)
- # header
- str = name.encode('utf-8')
- fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
- for i in range(n_dims):
- fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
- fout.write(str)
- # data
- data.tofile(fout)
- fout.close()
- print("Done. Output file: " + fname_out)
- print("")
|