123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- # Convert HF models to ggml format
- #
- import sys
- import struct
- import json
- import torch
- import numpy as np
- import re
- import os
- import argparse
- from transformers import AutoModelForCausalLM
- from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM
- # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
- def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a signficant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8+n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- parser = argparse.ArgumentParser(description='Convert starcoder HF model to GGML')
- parser.add_argument('model_name_or_path', type=str, help='Name of model on HF hub, or local model folder')
- parser.add_argument('--outfile', type=str, default='ggml-model.bin', help='Path of GGML file to write.')
- parser.add_argument('--use_f32', action="store_true", help='Save GGML file in fp32')
- args = parser.parse_args()
- # use 16-bit or 32-bit floats
- use_f16 = not args.use_f32
- fname_out = args.outfile
- fname_dir = os.path.dirname(fname_out)
- if fname_dir:
- os.makedirs(fname_dir, exist_ok=True)
- print("Loading model: ", args.model_name_or_path)
- tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
- config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=True)
- hparams = config.to_dict()
- model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, config=config, torch_dtype=torch.float16 if use_f16 else torch.float32, low_cpu_mem_usage=True, trust_remote_code=True, offload_state_dict=True)
- print("Model loaded: ", args.model_name_or_path)
- list_vars = model.state_dict()
- encoder = tokenizer.vocab
- # Add added_tokens (special tokens) to the encoder
- encoder.update(tokenizer.get_added_vocab())
- print(hparams)
- print("Saving ggml model to: ", fname_out)
- fout = open(fname_out, "wb")
- fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
- vocab_size = hparams["vocab_size"]
- fout.write(struct.pack("i", vocab_size))
- # fout.write(struct.pack("i", len(encoder)))
- fout.write(struct.pack("i", hparams["n_positions"]))
- fout.write(struct.pack("i", hparams["n_embd"]))
- fout.write(struct.pack("i", hparams["n_head"]))
- fout.write(struct.pack("i", hparams["n_layer"]))
- fout.write(struct.pack("i", use_f16))
- byte_encoder = bytes_to_unicode()
- byte_decoder = {v:k for k, v in byte_encoder.items()}
- fout.write(struct.pack("i", vocab_size))
- counter = 0
- # sort by value
- for key in sorted(encoder, key=encoder.get):
- text = bytearray([byte_decoder[c] for c in key])
- fout.write(struct.pack("i", len(text)))
- fout.write(text)
- counter += 1
- # TODO: Repeat last token until vocab_size
- while counter < vocab_size:
- fout.write(struct.pack("i", len(text)))
- fout.write(text)
- counter += 1
- # assert counter == config.vocab_size
- for name in list_vars.keys():
- data = list_vars[name].squeeze().numpy()
- print("Processing variable: " + name + " with shape: ", data.shape)
- # rename headers to keep compatibility
- if name == "transformer.ln_f.weight":
- name = "model/ln_f/g"
- elif name == "transformer.ln_f.bias":
- name = "model/ln_f/b"
- elif name == "transformer.wte.weight":
- name = "model/wte"
- elif name == "transformer.wpe.weight":
- name = "model/wpe"
- elif name == "lm_head.weight":
- name = "model/lm_head"
- elif re.match(r"transformer.h\.\d+\.ln_1\.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/ln_1/g"
- elif re.match(r"transformer.h\.\d+\.ln_1\.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/ln_1/b"
- elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/attn/c_attn/w"
- elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/attn/c_attn/b"
- elif re.match(r"transformer.h\.\d+\.attn\.c_proj\.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/attn/c_proj/w"
- elif re.match(r"transformer.h.\d+.attn.c_proj.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/attn/c_proj/b"
- elif re.match(r"transformer.h.\d+.ln_2.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/ln_2/g"
- elif re.match(r"transformer.h.\d+.ln_2.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/ln_2/b"
- elif re.match(r"transformer.h.\d+.mlp.c_fc.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/mlp/c_fc/w"
- elif re.match(r"transformer.h.\d+.mlp.c_fc.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/mlp/c_fc/b"
- elif re.match(r"transformer.h.\d+.mlp.c_proj.weight", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/mlp/c_proj/w"
- elif re.match(r"transformer.h.\d+.mlp.c_proj.bias", name):
- i = re.findall("\d+", name)[0]
- name = f"model/h{i}/mlp/c_proj/b"
- else:
- print("Unrecognized variable name. %s", name)
- # we don't need these
- if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
- print(" Skipping variable: " + name)
- continue
- n_dims = len(data.shape);
- # ftype == 0 -> float32, ftype == 1 -> float16
- ftype = 0;
- if use_f16:
- if (name == "model/wte" or name == "model/lm_head" or name[-2:] == "/g" or name[-2:] == "/w") and n_dims == 2:
- print(" Converting to float16")
- data = data.astype(np.float16)
- ftype = 1
- else:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype = 0
- "model/h.*/attn/c_attn/w"
- "model/h.*/attn/c_proj/w"
- "model/h.*/mlp/c_fc/w"
- "model/h.*/mlp/c_proj/w"
- if name[-14:] == "/attn/c_attn/w" or name[-14:] == "/attn/c_attn/b":
- print(" Duplicate K,V heads to use MHA instead of MQA")
- embed_dim = hparams["n_embd"]
- head_dim = embed_dim // hparams["n_head"]
- # ((n_heads + 2) * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim)
- q, k ,v = np.split(data, (hparams["n_head"] * head_dim, (hparams["n_head"] + 1) * head_dim), axis=0)
- # duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim)
- if len(k.shape) == 2:
- k = np.tile(k, (hparams["n_head"], 1))
- v = np.tile(v, (hparams["n_head"], 1))
- elif len(k.shape) == 1:
- k = np.tile(k, (hparams["n_head"]))
- v = np.tile(v, (hparams["n_head"]))
- # concat q, k, v along the first axis (n_heads * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim)
- data = np.concatenate((q, k, v), axis=0)
- # header
- str = name.encode('utf-8')
- fout.write(struct.pack("iii", n_dims, len(str), ftype))
- for i in range(n_dims):
- fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
- fout.write(str);
- # data
- data.tofile(fout)
- fout.close()
- print("Done. Output file: " + fname_out)
- print("")
|