| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- /**
- * Copyright 2022 Xiaomi Corporation (authors: Fangjun Kuang)
- *
- * See LICENSE for clarification regarding multiple authors
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "gtest/gtest.h"
- #include "rfft.h"
- namespace knf {
- #if 0
- >>> import torch
- >>> a = torch.tensor([1., -1, 3, 8, 20, 6, 0, 2])
- >>> torch.fft.rfft(a)
- tensor([ 39.0000+0.0000j, -28.1924-2.2929j, 18.0000+5.0000j, -9.8076+3.7071j,
- 9.0000+0.0000j])
- #endif
- TEST(Rfft, TestRfft) {
- knf::Rfft fft(8);
- for (int32_t i = 0; i != 10; ++i) {
- std::vector<float> d = {1, -1, 3, 8, 20, 6, 0, 2};
- fft.Compute(d.data());
- EXPECT_EQ(d[0], 39);
- EXPECT_EQ(d[1], 9);
- EXPECT_NEAR(d[2], -28.1924, 1e-3);
- EXPECT_NEAR(-d[3], -2.2929, 1e-3);
- EXPECT_NEAR(d[4], 18, 1e-3);
- EXPECT_NEAR(-d[5], 5, 1e-3);
- EXPECT_NEAR(d[6], -9.8076, 1e-3);
- EXPECT_NEAR(-d[7], 3.7071, 1e-3);
- }
- }
- } // namespace knf
|