123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- #include <string>
- #include "model_loader.h"
- #define DEBUG_MODEL_LOAD 0
- std::ifstream open_ggml_file(const char* fname) {
- printf("%s: loading model from '%s'\n", __func__, fname);
- auto fin = std::ifstream(std::string(fname), std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname);
- throw std::invalid_argument("failed to open file."); // TODO Merge error message.
- }
- std::uint32_t magic;
- fin.read((char*)&magic, 4);
- if (magic != GGML_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad header %d)\n", __func__, fname, magic);
- throw std::invalid_argument("failed to open file."); // TODO Merge error message.
- }
- return fin;
- }
- void register_prefix(fairseq2_model &model, const std::string& name) {
- std::size_t i = name.find_last_of('.');
- while(i != std::string::npos && i > 0) {
- std::string prefix = name.substr(0, i);
- auto prev_tensor = model.tensors.find(prefix);
- if (prev_tensor != model.tensors.end()) {
- GGML_ASSERT(prev_tensor->second == nullptr);
- }
- model.tensors[prefix] = nullptr;
- i = name.find_last_of('.', i - 1);
- }
- }
- std::int64_t
- model_loader::load_model_weights(fairseq2_model &model, std::ifstream &fin)
- {
- std::int64_t num_tensor = 0;
- std::int64_t f32_tensor_size = 0;
- fin.read((char*) &num_tensor, sizeof(num_tensor));
- fin.read((char*) &f32_tensor_size, sizeof(f32_tensor_size));
- // TODO: it might be interesting to allow the caller to not upcast the weights to float32.
- // Note this require changing the on disk format
- bool as_float32 = true;
- struct ggml_init_params params = {
- /*.mem_size =*/ f32_tensor_size + (num_tensor + 1) * (int64_t)ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false,
- };
- model.tensors_ctx = ggml_init(params);
- size_t model_size = 0;
- for (int i = 0; i < num_tensor; ++i) {
- std::string name = get_name(fin);
- if (name.length() == 0)
- break;
- auto tensor = load_tensor_value(fin, model.tensors_ctx, as_float32);
- if (tensor == nullptr) {
- // Abort in case of error, the input stream is corrupted at this point.
- printf("Error while reading tensor %s\n", name.c_str() );
- throw std::invalid_argument("Error while reading tensor from file.");
- }
- register_prefix(model, name);
- ggml_set_name(tensor, name.c_str());
- model.tensors[name] = tensor;
- if (DEBUG_MODEL_LOAD) {
- printf("%s [%5ld, %5ld], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), tensor->ne[0], tensor->ne[1], ggml_type_name(tensor->type), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
- }
- model_size += ggml_nbytes(tensor);
- }
- double mb = 1024.0 * 1024.0;
- printf("%s: model size: %8.2f MB, memory used: %8.2f MB, memory reserved: %8.2f MB\n",
- __func__,
- model_size / mb,
- ggml_used_mem(model.tensors_ctx) / mb,
- ggml_get_mem_size(model.tensors_ctx) / mb
- );
- return ggml_get_mem_size(model.tensors_ctx);
- }
- void assert_endianness() {
- union {
- unsigned int i;
- char c[4];
- } un;
- un.i = 0x12345678;
- if (un.c[0] == 0x78 && un.c[3] == 0x12) {
- printf("little-endian\n");
- }
- else if (un.c[0] == 0x12 && un.c[3] == 0x78) {
- printf("big-endian\n");
- GGML_ASSERT(false); // model_loader.cpp assumes the system is little-endian
- }
- else {
- printf("unknown-endian\n");
- GGML_ASSERT(false); // model_loader.cpp assumes the system is little-endian
- }
- }
- void model_loader::load_hparams(std::unordered_map<std::string, std::int64_t>& hparams, std::ifstream &fin)
- {
- std::int64_t num_params = 0;
- fin.read(reinterpret_cast<char*>(&num_params), sizeof num_params);
- GGML_ASSERT(fin.gcount() == 8);
- hparams.reserve(num_params);
- std::int64_t value;
- for (int i = 0; i < num_params; ++i) {
- std::string name = get_name(fin);
- if (name.length() == 0)
- break;
- fin.read((char*) &value, sizeof(value));
- hparams[name] = value;
- }
- }
- void model_loader::load_vocab(llama_vocab& vocab, std::ifstream &fin)
- {
- // vocab.special_bos_id = 1;
- // vocab.special_eos_id = 2;
- // vocab.special_unk_id = 0;
- // vocab.special_sep_id = -1;
- // vocab.special_pad_id = -1;
- std::int64_t vocab_size = 0;
- fin.read(reinterpret_cast<char*>(&vocab_size), sizeof(vocab_size));
- GGML_ASSERT(fin.gcount() == 8);
- vocab.token_to_id.reserve(vocab_size);
- vocab.id_to_token.reserve(vocab_size);
- std::string packed_vocab = get_name(fin);
- std::int64_t ctx_size = vocab_size * sizeof(float) + vocab_size + 2 * ggml_tensor_overhead();
- ctx_size *= 2;
- ggml_context* ctx = ggml_init(ggml_init_params{ctx_size, nullptr, false});
- ggml_tensor* lengths_tensor = load_tensor_value(fin, ctx, true);
- std::int8_t* lengths = (std::int8_t*)lengths_tensor->data;
- ggml_tensor* scores_tensor = load_tensor_value(fin, ctx, true);
- float* scores = ggml_get_data_f32(scores_tensor);
- int64_t offset = 0;
- for (int i = 0; i < vocab_size; ++i) {
- // TODO: we should use string view instead of copying each word in a new string
- std::string word = packed_vocab.substr(offset, lengths[i]);
- vocab.token_to_id[word] = i;
- vocab.id_to_token.push_back({word, scores[i], LLAMA_TOKEN_TYPE_NORMAL});
- offset += lengths[i] + 1;
- }
- // Since we copied lengths and scores, we don't need the context anymore.
- ggml_free(ctx);
- // vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
- // TODO: special tokens stuff ?
- }
- ggml_tensor* load_tensor_value(std::ifstream &fin, ggml_context* ctx, bool as_float32)
- {
- int32_t n_dims = 0;
- int32_t raw_type = 0;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&raw_type), sizeof(raw_type));
- ggml_type type = ggml_type(raw_type);
- if (n_dims <= 0 || n_dims > GGML_MAX_DIMS || raw_type < 0 || raw_type > GGML_TYPE_COUNT) {
- return nullptr;
- }
- int64_t ne[4] = {1, 1, 1, 1};
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- }
- ggml_tensor* tensor;
- if (as_float32 && type == GGML_TYPE_F16) {
- // read quantized weights from disk, and convert them to f32.
- tensor = ggml_new_tensor(ctx, GGML_TYPE_F32, n_dims, ne);
- ggml_fp16_t buf[128];
- int num_el = ggml_nelements(tensor);
- for (int i = 0; i < num_el; i += 128) {
- int block_size = std::min(128, num_el - i);
- fin.read(reinterpret_cast<char *>(&buf), ggml_type_size(type) * block_size);
- ggml_fp16_to_fp32_row((const ggml_fp16_t*)&buf, (float*)tensor->data + i, block_size);
- }
- } else {
- tensor = ggml_new_tensor(ctx, type, n_dims, ne);
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
- }
- return tensor;
- }
- std::string
- model_loader::get_name(std::ifstream& fin)
- {
- std::uint32_t length = 0;
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- if (length == 0)
- return "";
- std::string name(length, 0);
- fin.read(&name[0], length);
- return name;
- }
- extern "C" int load_fairseq2_ggml_file(fairseq2_model& model, const char* fname) {
- model_loader loader;
- assert_endianness();
- auto fin = open_ggml_file(fname);
- loader.load_hparams(model.hparams, fin);
- loader.load_hparams(model.layer_config, fin);
- loader.load_vocab(model.vocab, fin);
- loader.load_model_weights(model, fin);
- return 0;
- }
|