test_unity_cpp.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821
  1. import ggml
  2. import ctypes
  3. import torch
  4. import pytest
  5. import numpy as np
  6. import torch
  7. import fairseq2.nn
  8. import fairseq2.nn.transformer
  9. import logging
  10. import sys
  11. import functools
  12. from typing import Tuple
  13. from pathlib import Path
  14. from ctypes_utils import Ptr
  15. from ctypes import c_void_p
  16. from typing import Any
  17. from pathlib import Path
  18. from typing import Iterator
  19. from ggml import NativeObj
  20. from ggml_convert import convert_model, read_layer_config
  21. from seamless_communication.models.inference.translator import Translator, Modality
  22. from fairseq2.data.audio import WaveformToFbankConverter
  23. import torchaudio
  24. from typing import List
  25. from ctypes_utils import NULLPTR
  26. from fairseq2.models.wav2vec2.feature_extractor import Wav2Vec2FbankFeatureExtractor
  27. Ctx = ggml.ggml_context_p
  28. UNITY_MODELS = Path(__file__).parent / "examples/unity/models"
  29. CTX_PARAMS = ggml.ggml_init_params(mem_size=1024 * 1024 * 1024 * 5, mem_buffer=None)
  30. FAIRSEQ2_CPP = Path(__file__).parent / "examples/unity/fairseq2.cpp"
  31. UNITY_FLASH_ATTN = "\n# define UNITY_FLASH_ATTN 0\n" not in FAIRSEQ2_CPP.read_text()
  32. DATA = Path(__file__).parent
  33. @pytest.fixture(name="ctx")
  34. def _ctx() -> Iterator[Ctx]:
  35. """Allocate a new context with 1024 MB of memory"""
  36. try:
  37. ctx = ggml.ggml_init(params=CTX_PARAMS)
  38. with torch.inference_mode():
  39. yield ctx
  40. finally:
  41. ggml.ggml_free(ctx)
  42. @functools.lru_cache()
  43. def _load_g_model_once() -> NativeObj:
  44. model_file = Path(__file__).parent / "seamlessM4T_medium.ggml"
  45. if not model_file.exists():
  46. convert_model("seamlessM4T_medium", model_file)
  47. return ggml.load_fairseq2_ggml_file(model_file)
  48. @pytest.fixture()
  49. def g_model(ctx: Ctx) -> c_void_p:
  50. model = _load_g_model_once()
  51. ggml.lib.fairseq2_model_set_inference_ctx(model.ptr, ctx)
  52. return model.ptr
  53. @functools.lru_cache(maxsize=1)
  54. def load_translator() -> Translator:
  55. return Translator(
  56. "seamlessM4T_medium", "vocoder_36langs", torch.device("cpu"), torch.float32
  57. )
  58. def load_pt_model() -> Any:
  59. return load_translator().model
  60. def test_convert_linear(tmp_path: Path) -> None:
  61. module = fairseq2.nn.Linear(16, 24, True)
  62. layer_config = read_layer_config(module)
  63. assert layer_config == {"input_dim": 16, "output_dim": 24, "skip_init": False}
  64. module_file = Path("module.ggml")
  65. convert_model(module, module_file)
  66. g_module = ggml.load_fairseq2_ggml_file(module_file)
  67. for k, v in layer_config.items():
  68. assert (
  69. ggml.fairseq2_model_layer_config_int(g_module.ptr, bytes(k, "ascii")) == v
  70. )
  71. def test_causal_attention_mask(ctx: Ctx):
  72. x = torch.zeros((1, 10, 32))
  73. generator = fairseq2.nn.transformer.CausalAttentionMaskGenerator()
  74. mask_exp = generator(x).numpy()
  75. gx = ggml.from_numpy(ctx, x)
  76. gmask = ggml.causal_attention_mask(ctx, gx)
  77. mask = ggml.to_numpy(gmask)
  78. gf = ggml.ggml_build_forward(gmask)
  79. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  80. assert mask_exp.shape == (10, 10)
  81. assert mask.shape == (10, 10)
  82. assert np.all(mask == mask_exp)
  83. x = x[:, :8, :]
  84. mask_exp = generator(x).numpy()
  85. gx = ggml.from_numpy(ctx, x)
  86. gmask = ggml.causal_attention_mask(ctx, gx)
  87. mask = ggml.to_numpy(gmask)
  88. gf = ggml.ggml_build_forward(gmask)
  89. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  90. assert mask_exp.shape == (8, 8)
  91. assert mask.shape == (8, 8)
  92. assert np.all(mask == mask_exp)
  93. def test_LayerNorm_forward(ctx: Ctx, g_model: c_void_p) -> None:
  94. x = torch.empty((2, 21, 1024))
  95. torch.nn.init.uniform_(x, -1, 1)
  96. pt_model = load_pt_model()
  97. y_exp = pt_model.text_encoder.layers[0].ffn_layer_norm(x).numpy()
  98. gx = ggml.from_numpy(ctx, x)
  99. gy = ggml.forward("LayerNorm", g_model, "text_encoder.layers.0.ffn_layer_norm", gx)
  100. ggml.build_and_compute(ctx, gy)
  101. y = ggml.to_numpy(gy)
  102. assert np.allclose(y_exp, y, atol=1e-5)
  103. def test_Linear_forward(ctx: Ctx, g_model: c_void_p) -> None:
  104. x = torch.empty((2, 21, 1024))
  105. torch.nn.init.uniform_(x, -1, 1)
  106. pt_model = load_pt_model()
  107. y_exp = pt_model.text_encoder.layers[0].ffn.inner_proj(x).numpy()
  108. gx = ggml.from_numpy(ctx, x)
  109. gy = ggml.forward("Linear", g_model, "text_encoder.layers.0.ffn.inner_proj", gx)
  110. ggml.build_and_compute(ctx, gy)
  111. y = ggml.to_numpy(gy)
  112. assert np.allclose(y_exp, y, atol=1e-5)
  113. def test_FeedForwardNetwork_forward(ctx: Ctx, g_model: c_void_p) -> None:
  114. x = torch.empty((2, 21, 1024)) # (bs, seq_len, model_dim)
  115. torch.nn.init.uniform_(x, -1 / 32, 1 / 32)
  116. # Test FFN without LayerNorm
  117. pt_model = load_pt_model()
  118. y_exp = pt_model.text_encoder.layers[0].ffn(x).numpy()
  119. gx = ggml.from_numpy(ctx, x)
  120. gy = ggml.forward(
  121. "StandardFeedForwardNetwork", g_model, "text_encoder.layers.0.ffn", gx
  122. )
  123. ggml.build_and_compute(ctx, gy)
  124. y = ggml.to_numpy(gy)
  125. assert np.allclose(y_exp, y, atol=1e-5)
  126. @pytest.mark.parametrize("lengths", [(11, 21), (21, 13)])
  127. def test_MultiheadAttention_forward(
  128. ctx: Ctx, g_model: c_void_p, lengths: Tuple[int, int]
  129. ) -> None:
  130. x = torch.empty((2, 21, 1024))
  131. torch.random.manual_seed(0)
  132. torch.nn.init.uniform_(x, -1, 1)
  133. # Note: we use different lengths for queries and keys,
  134. # this tests the implementation in decoding context too.
  135. # Note2: ggml_flash_attn requires that we have more keys than queries
  136. # qlen, klen = (11, 21) if flash_attn else (21, 13)
  137. qlen, klen = lengths
  138. xq = x[:, :qlen]
  139. xk = x[:, :klen]
  140. if qlen > klen and UNITY_FLASH_ATTN:
  141. pytest.skip(reason="flash_attn requires qlen > klen")
  142. gxq = ggml.from_numpy(ctx, xq.contiguous())
  143. gxk = ggml.from_numpy(ctx, xk.contiguous())
  144. ggml.ggml_set_name(gxk, b"xk")
  145. gy = ggml.forward(
  146. "MultiheadAttention",
  147. g_model,
  148. "text_encoder.layers.0.self_attn",
  149. gxq,
  150. gxk,
  151. gxk,
  152. NULLPTR, # TODO: tests with causal attention masks
  153. )
  154. gf = ggml.ggml_build_forward(gy)
  155. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  156. pt_model = load_pt_model()
  157. self_attn = pt_model.text_encoder.layers[0].self_attn
  158. q_exp = self_attn.q_proj(xq).numpy()
  159. y = ggml.to_numpy(gy)
  160. nodes = ggml.nodes(gf)
  161. attn_weights_hook = fairseq2.nn.transformer.StoreAttentionWeights([])
  162. self_attn.register_attn_weight_hook(attn_weights_hook)
  163. y_exp = self_attn(xq, None, xk, xk).numpy()
  164. q = ggml.to_numpy(nodes[b"q"])
  165. assert q.shape == q_exp.shape
  166. assert np.allclose(q_exp, q, atol=1e-5)
  167. # with flash_attn we don't have attn_weights
  168. naive_attn = b"attn_weights" in nodes
  169. if naive_attn:
  170. attn_weights = ggml.to_numpy(nodes[b"attn_weights"])
  171. [attn_weights_exp] = attn_weights_hook._storage
  172. attn_weights_exp = attn_weights_exp.numpy()
  173. assert attn_weights_exp.shape == attn_weights.shape
  174. # GGML is very agressively reducing small softmax weights to 0,
  175. # so the error isn't that small
  176. assert np.allclose(attn_weights_exp, attn_weights, atol=1e-3)
  177. # But the sums should be close to 1
  178. assert np.allclose(np.sum(attn_weights, axis=-1), np.ones((2 * 16, qlen)))
  179. # And the maximum index should match the original ones.
  180. assert np.allclose(
  181. np.argmax(attn_weights_exp, axis=-1), np.argmax(attn_weights, axis=-1)
  182. )
  183. assert y.shape == y_exp.shape
  184. assert np.allclose(y_exp, y, atol=1e-2 if naive_attn else 1e-4)
  185. def test_MultiheadAttention_forward_self_attn_with_cache(
  186. ctx: Ctx, g_model: c_void_p
  187. ) -> None:
  188. pt_model = load_pt_model()
  189. attn = pt_model.text_decoder.layers[0].self_attn
  190. x = torch.empty((2, 21, 1024))
  191. torch.random.manual_seed(0)
  192. torch.nn.init.uniform_(x, -1, 1)
  193. state_bag = fairseq2.nn.IncrementalStateBag()
  194. ggml.fairseq2_kv_cache_alloc(g_model, 2, 21)
  195. # Incremental decoding
  196. for t in range(3):
  197. xq = x[:, t : t + 1]
  198. y_exp = attn(xq, None, xq, xq, state_bag=state_bag).numpy()
  199. assert y_exp.shape == (2, 1, 1024)
  200. gxq = ggml.from_numpy(ctx, xq.contiguous())
  201. ggml.ggml_set_name(gxq, b"xq")
  202. gy = ggml.forward(
  203. "MultiheadAttention",
  204. g_model,
  205. "text_decoder.layers.0.self_attn",
  206. gxq,
  207. gxq,
  208. gxq,
  209. None, # type: ignore
  210. )
  211. gf = ggml.ggml_build_forward(gy)
  212. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  213. nodes = ggml.nodes(gf)
  214. state = state_bag.get_state(
  215. attn, fairseq2.nn.transformer.MultiheadAttentionState
  216. )
  217. state_bag.increment_step()
  218. assert state is not None
  219. assert np.allclose(
  220. state.prev_k.numpy(),
  221. ggml.to_numpy(
  222. nodes[b"text_decoder.layers.0.self_attn.k_cache (step=%d)" % t]
  223. ),
  224. atol=1e-3,
  225. )
  226. y = ggml.to_numpy(gy)
  227. assert np.allclose(y, y_exp, atol=1e-2)
  228. def test_MultiheadAttention_forward_cross_attn_with_cache(
  229. ctx: Ctx, g_model: c_void_p
  230. ) -> None:
  231. pt_model = load_pt_model()
  232. attn = pt_model.text_decoder.layers[0].encoder_decoder_attn
  233. x = torch.empty((2, 21, 1024))
  234. torch.random.manual_seed(0)
  235. torch.nn.init.uniform_(x, -1, 1)
  236. state_bag = fairseq2.nn.IncrementalStateBag()
  237. ggml.fairseq2_kv_cache_alloc(g_model, 2, 21)
  238. # Incremental decoding, the keys come from the encoder, and don't change during decoding
  239. xk = x[:, :11]
  240. gxk = ggml.from_numpy(ctx, xk.contiguous(), name=b"xk")
  241. for t in range(3):
  242. xq = x[:, t : t + 1]
  243. gxq = ggml.from_numpy(ctx, xq.contiguous())
  244. ggml.ggml_set_name(gxq, b"xq")
  245. gy = ggml.forward(
  246. "MultiheadAttention",
  247. g_model,
  248. "text_decoder.layers.0.encoder_decoder_attn",
  249. gxq,
  250. gxk,
  251. gxk,
  252. None, # type: ignore
  253. )
  254. gf = ggml.ggml_build_forward(gy)
  255. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  256. y = ggml.to_numpy(gy)
  257. nodes = ggml.nodes(gf)
  258. leaves = ggml.leafs(gf)
  259. if t > 0:
  260. # the cache only appear in the graph during the second call
  261. state = state_bag.get_state(
  262. attn, fairseq2.nn.transformer.MultiheadAttentionState
  263. )
  264. assert state is not None
  265. assert np.allclose(
  266. state.prev_k.numpy(),
  267. ggml.to_numpy(
  268. nodes[b"text_decoder.layers.0.encoder_decoder_attn.k_cache"]
  269. ),
  270. atol=1e-3,
  271. )
  272. state_bag.increment_step()
  273. y_exp = attn(xq, None, xk, xk, state_bag=state_bag).numpy()
  274. assert y_exp.shape == (2, 1, 1024)
  275. assert np.allclose(y, y_exp, atol=1e-2)
  276. def test_StandardTransformerEncoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
  277. x = torch.empty((2, 21, 1024))
  278. padding_mask = torch.ones((2, 21))
  279. torch.random.manual_seed(0)
  280. torch.nn.init.uniform_(x, -1, 1)
  281. pt_model = load_pt_model()
  282. layer = pt_model.text_encoder.layers[0]
  283. gx = ggml.from_numpy(ctx, x)
  284. ggml.ggml_set_name(gx, b"x")
  285. gpad = ggml.from_numpy(ctx, padding_mask)
  286. ggml.ggml_set_name(gpad, b"padding_mask")
  287. gy = ggml.forward(
  288. "StandardTransformerEncoderLayer",
  289. g_model,
  290. "text_encoder.layers.0",
  291. gx,
  292. None, # TODO support padding mask
  293. )
  294. gf = ggml.ggml_build_forward(gy)
  295. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  296. y = ggml.to_numpy(gy)
  297. y_exp, _ = layer(x, padding_mask)
  298. y_exp = y_exp.numpy()
  299. assert y.shape == y_exp.shape
  300. assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-2)
  301. def test_StandardConformerEncoderLayer_forward(ctx: Ctx, g_model: c_void_p) -> None:
  302. pt_model = load_pt_model()
  303. x = torch.load(
  304. "/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_conformer_block.pt"
  305. )
  306. padding_mask = torch.ones((1, x.shape[1]))
  307. layer = pt_model.speech_encoder.inner.layers[0]
  308. gx = ggml.from_numpy(ctx, x[0])
  309. ggml.ggml_set_name(gx, b"x")
  310. gpad = ggml.from_numpy(ctx, padding_mask[0])
  311. ggml.ggml_set_name(gpad, b"padding_mask")
  312. gy = ggml.forward(
  313. "StandardConformerEncoderLayer",
  314. g_model,
  315. "speech_encoder.inner.layers.0",
  316. gx,
  317. None, # TODO support padding mask
  318. )
  319. gf = ggml.ggml_build_forward(gy)
  320. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  321. y = ggml.to_numpy(gy)
  322. y_exp, _ = layer(x, padding_mask)
  323. y_exp = y_exp.numpy()
  324. assert y.shape == y_exp.shape
  325. assert np.allclose(y_exp, y, atol=2e-3)
  326. def test_StandardConformerEncoderAdaptorLayer_forward(
  327. ctx: Ctx, g_model: c_void_p
  328. ) -> None:
  329. pt_model = load_pt_model()
  330. x = torch.load(
  331. "/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_adaptor.pt"
  332. )
  333. layer = pt_model.speech_encoder.adaptor_layers[0]
  334. gx = ggml.from_numpy(ctx, x[0])
  335. ggml.ggml_set_name(gx, b"x")
  336. gy = ggml.forward(
  337. "StandardConformerEncoderAdaptorLayer",
  338. g_model,
  339. "speech_encoder.adaptor_layers.0",
  340. gx,
  341. None, # TODO support padding mask
  342. )
  343. gf = ggml.ggml_build_forward(gy)
  344. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  345. y = ggml.to_numpy(gy)
  346. y_exp, _ = layer(x, None)
  347. y_exp = y_exp.numpy()
  348. assert y.shape == y_exp.shape
  349. assert np.allclose(y_exp, y, atol=2e-3)
  350. def test_StandardTransformerEncoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
  351. x = torch.empty((2, 21, 1024))
  352. padding_mask = torch.ones((2, 21))
  353. torch.random.manual_seed(0)
  354. torch.nn.init.uniform_(x, -1, 1)
  355. gx = ggml.from_numpy(ctx, x)
  356. ggml.ggml_set_name(gx, b"x")
  357. gpad = ggml.from_numpy(ctx, padding_mask)
  358. ggml.ggml_set_name(gpad, b"padding_mask")
  359. gy = ggml.forward(
  360. "StandardTransformerEncoder",
  361. g_model,
  362. "text_encoder",
  363. gx,
  364. None, # TODO support padding mask
  365. )
  366. gf = ggml.ggml_build_forward(gy)
  367. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  368. y = ggml.to_numpy(gy)
  369. pt_model = load_pt_model()
  370. y_exp, _ = pt_model.text_encoder(x, padding_mask)
  371. y_exp = y_exp.numpy()
  372. assert y.shape == y_exp.shape
  373. assert np.allclose(y_exp, y, atol=1e-4)
  374. def test_StandardConformerEncoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
  375. pt_model = load_pt_model()
  376. wav, _ = torchaudio.load(DATA / "test.wav")
  377. gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
  378. ggml.ggml_set_name(gx, b"x")
  379. gy = ggml.forward(
  380. "StandardConformerEncoder",
  381. g_model,
  382. "speech_encoder",
  383. gx,
  384. None, # TODO support padding mask
  385. )
  386. gf = ggml.ggml_build_forward(gy)
  387. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  388. converter = WaveformToFbankConverter(
  389. num_mel_bins=80,
  390. waveform_scale=2**15,
  391. channel_last=True,
  392. standardize=True,
  393. )
  394. converter_input = {
  395. "waveform": wav.transpose(0, 1),
  396. "sample_rate": 16000.0,
  397. "format": -1,
  398. }
  399. y = ggml.to_numpy(gy)
  400. speech_encoder_input = pt_model.speech_encoder_frontend(
  401. converter(converter_input)["fbank"].unsqueeze(0), None
  402. )[0]
  403. y_exp, _ = pt_model.speech_encoder(speech_encoder_input, None)
  404. y_exp = y_exp.numpy() # remove batch dimension
  405. assert y.shape == y_exp.shape
  406. assert np.allclose(
  407. y_exp, y, atol=1e-2
  408. ) # There are 10 elements in a 137*1024 tensor with error >1e-2
  409. def test_WaveformToFbank_forward(ctx: Ctx, g_model: c_void_p) -> None:
  410. pt_model = load_pt_model()
  411. converter = WaveformToFbankConverter(
  412. num_mel_bins=80,
  413. waveform_scale=2**15,
  414. channel_last=True,
  415. standardize=True,
  416. )
  417. extractor = Wav2Vec2FbankFeatureExtractor(80, 2, 1)
  418. wav, _ = torchaudio.load(
  419. "/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/test.wav"
  420. )
  421. gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
  422. ggml.ggml_set_name(gx, b"x")
  423. gy = ggml.forward("WaveformToFbank", g_model, "", gx)
  424. gf = ggml.ggml_build_forward(gy)
  425. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  426. y = ggml.to_numpy(gy)
  427. converter_input = {
  428. "waveform": wav.transpose(0, 1),
  429. "sample_rate": 16000.0,
  430. "format": -1,
  431. }
  432. y_exp = extractor(converter(converter_input)["fbank"].unsqueeze(0), None)[0]
  433. y_exp = y_exp.numpy()
  434. assert y.shape == y_exp.shape
  435. assert np.allclose(y_exp, y, atol=4e-3) # reduce? error is from standardization
  436. def test_causal_attention_mask(ctx: Ctx):
  437. x = torch.zeros((5, 10))
  438. generator = fairseq2.nn.transformer.CausalAttentionMaskGenerator()
  439. mask_exp = generator(x)
  440. gx = ggml.from_numpy(ctx, x)
  441. gmask = ggml.causal_attention_mask(ctx, gx)
  442. mask = ggml.to_numpy(gmask)
  443. assert mask_exp.shape == (10, 10)
  444. assert mask.shape == (10, 10)
  445. assert np.allclose(mask, mask_exp)
  446. def test_PositionalEmbedding_forward(ctx: Ctx, g_model: c_void_p) -> None:
  447. seq = torch.zeros((4, 20, 1024), dtype=torch.float32)
  448. # this _legacy_pad_idx is suspicious. Shouldn't the model use 1 ? But
  449. # this is consistent with pt_model.text_decoder_frontend.pos_encoder._sin_offset
  450. pos_encoder = fairseq2.nn.SinusoidalPositionEncoder(1024, 55, _legacy_pad_idx=0)
  451. y_exp = pos_encoder(seq, None)[0].numpy()
  452. gseq = ggml.from_numpy(ctx, seq[0].numpy())
  453. ggml.ggml_set_name(gseq, b"seq")
  454. gy = ggml.forward(
  455. "PositionalEmbedding", g_model, "text_decoder_frontend.pos_encoder", gseq
  456. )
  457. gf = ggml.ggml_build_forward(gy)
  458. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  459. y = ggml.to_numpy(gy)
  460. assert y.shape == y_exp.shape
  461. assert np.allclose(y_exp, y, atol=1e-6)
  462. def test_PositionalEmbedding_forward_with_cache(ctx: Ctx, g_model: c_void_p) -> None:
  463. seq = torch.zeros((4, 20, 1024), dtype=torch.float32)
  464. pos_encoder = fairseq2.nn.SinusoidalPositionEncoder(1024, 55, _legacy_pad_idx=0)
  465. pos_encoder.eval()
  466. state_bag = fairseq2.nn.IncrementalStateBag()
  467. ggml.fairseq2_kv_cache_alloc(g_model, 2, 21)
  468. # Incremental decoding
  469. for t in range(20):
  470. gseq = ggml.from_numpy(ctx, seq[:, t : t + 1, :].numpy())
  471. ggml.ggml_set_name(gseq, b"seq")
  472. gy = ggml.forward(
  473. "PositionalEmbedding", g_model, "text_decoder_frontend.pos_encoder", gseq
  474. )
  475. gf = ggml.ggml_build_forward(gy)
  476. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  477. y = ggml.to_numpy(gy)
  478. y_exp = pos_encoder(seq[:, t : t + 1, :], None, state_bag=state_bag).numpy()
  479. state_bag.increment_step()
  480. assert y.shape == y_exp.shape
  481. assert np.allclose(y_exp, y, atol=1e-6)
  482. def test_TransformerEmbeddingFrontend_forward(ctx: Ctx, g_model: c_void_p) -> None:
  483. seq = torch.arange(2 * 20).reshape(2, 20)
  484. seq[1, 15:] = 0 # padding for second sentence
  485. seq_len = torch.tensor([20, 15])
  486. gseq = ggml.from_numpy(ctx, seq.numpy().astype(np.int32))
  487. ggml.ggml_set_name(gseq, b"seq")
  488. gy = ggml.forward(
  489. "TransformerEmbeddingFrontend", g_model, "text_decoder_frontend", gseq
  490. )
  491. ggml.build_and_compute(ctx, gy)
  492. y = ggml.to_numpy(gy)
  493. pt_model = load_pt_model()
  494. y_exp, _ = pt_model.text_decoder_frontend(seq, seq_len)
  495. y_exp = y_exp.numpy()
  496. assert y.shape == y_exp.shape
  497. assert np.allclose(y_exp, y, atol=1e-6)
  498. def test_StandardTransformerDecoder_forward(ctx: Ctx, g_model: c_void_p) -> None:
  499. x = torch.empty((2, 13, 1024))
  500. encoder_out = torch.empty((2, 21, 1024))
  501. padding_mask = torch.ones((2, 13))
  502. torch.random.manual_seed(0)
  503. torch.nn.init.uniform_(x, -1, 1)
  504. torch.nn.init.uniform_(encoder_out, -1, 1)
  505. gx = ggml.from_numpy(ctx, x)
  506. ggml.ggml_set_name(gx, b"x")
  507. gpad = ggml.from_numpy(ctx, padding_mask)
  508. ggml.ggml_set_name(gpad, b"padding_mask")
  509. genc = ggml.from_numpy(ctx, encoder_out)
  510. gy = ggml.forward(
  511. "StandardTransformerDecoder",
  512. g_model,
  513. "text_decoder",
  514. gx,
  515. None, # TODO support padding mask,
  516. genc,
  517. None,
  518. )
  519. ggml.build_and_compute(ctx, gy)
  520. y = ggml.to_numpy(gy)
  521. pt_model = load_pt_model()
  522. y_exp, _ = pt_model.text_decoder(x, padding_mask, encoder_out, None)
  523. y_exp = y_exp.numpy()
  524. assert y.shape == y_exp.shape
  525. assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-3)
  526. def test_t2tt(ctx: Ctx, g_model: c_void_p) -> None:
  527. src_lang = "eng"
  528. src_text = "We are all in a yellow submarine."
  529. tgt_lang = "fra"
  530. sample_file = DATA / "sample_input.npz"
  531. beam_size = 2
  532. if not sample_file.exists():
  533. translator = load_translator()
  534. device = translator.device
  535. token_encoder = translator.text_tokenizer.create_encoder(
  536. task="translation", lang=src_lang, mode="source", device=device
  537. )
  538. src = translator.collate(token_encoder(src_text))
  539. text_out, _ = translator.get_prediction(
  540. translator.model,
  541. translator.text_tokenizer,
  542. translator.unit_tokenizer,
  543. src,
  544. input_modality=Modality.TEXT,
  545. output_modality=Modality.TEXT,
  546. tgt_lang=tgt_lang,
  547. beam_size=beam_size,
  548. )
  549. tgt_text = str(text_out.sentences[0])
  550. assert tgt_text == "Nous sommes tous dans un sous-marin jaune."
  551. hypotheses = [
  552. {
  553. "seq": h.seq.tolist(),
  554. "score": h.score.item(),
  555. "step_scores": h.step_scores.numpy(),
  556. }
  557. for h in text_out.generator_output.results[0]
  558. ]
  559. np.savez(
  560. sample_file,
  561. encoder_output=text_out.encoder_output.numpy(),
  562. encoder_padding_mask=text_out.encoder_padding_mask.numpy(),
  563. hypotheses=hypotheses,
  564. )
  565. # allow_pickle to load the hyp dicts
  566. text_out = np.load(sample_file, allow_pickle=True)
  567. encoder_out = ggml.from_numpy(ctx, text_out["encoder_output"])
  568. encoder_padding_mask = ggml.from_numpy(ctx, text_out["encoder_padding_mask"])
  569. prefix_seq = np.array(text_out["hypotheses"][0]["seq"][:2]).astype(np.int32)
  570. max_seq_len = max(len(h["seq"]) for h in text_out["hypotheses"])
  571. opts = ggml.SequenceGeneratorOptions(
  572. beam_size=beam_size,
  573. min_seq_len=1,
  574. soft_max_seq_len_a=1,
  575. soft_max_seq_len_b=200,
  576. hard_max_seq_len=int(max_seq_len * 1.5),
  577. len_penalty=1.0,
  578. unk_penalty=0.0,
  579. normalize_scores=True,
  580. )
  581. job = ggml.SequenceGeneratorJob(
  582. opts=opts,
  583. prefix_seq=ggml.from_numpy(ctx, prefix_seq),
  584. pad_idx=0,
  585. unk_idx=1,
  586. bos_idx=2,
  587. eos_idx=3,
  588. )
  589. result_ptr = ggml.generate_sequence(
  590. g_model, job, encoder_out, encoder_padding_mask, ctx
  591. )
  592. results = [result_ptr[i] for i in range(beam_size) if result_ptr[i].seq != None]
  593. # The step score error is big, this may negatively impact the beam search.
  594. assert_hypotheses(
  595. text_out["hypotheses"], results, score_rtol=1e-2, step_scores_rtol=0.1
  596. )
  597. def test_s2tt(ctx: Ctx, g_model: c_void_p):
  598. src_audio_wav, _ = torchaudio.load(DATA / "test.wav")
  599. sample_file = DATA / "test.wav.npz"
  600. if not sample_file.exists():
  601. translator = load_translator()
  602. token_encoder = translator.text_tokenizer.create_encoder(task="translation")
  603. decoded_audio = {
  604. "waveform": src_audio_wav.t(),
  605. "sample_rate": 16000.0,
  606. "format": -1,
  607. }
  608. src = translator.collate(translator.convert_to_fbank(decoded_audio))["fbank"]
  609. text_out, _ = translator.get_prediction(
  610. translator.model,
  611. translator.text_tokenizer,
  612. translator.unit_tokenizer,
  613. src,
  614. input_modality=Modality.SPEECH,
  615. output_modality=Modality.TEXT,
  616. tgt_lang="cmn",
  617. )
  618. tgt_text = str(text_out.sentences[0])
  619. assert tgt_text == "大家好 , 世界无主题。"
  620. hypotheses = [
  621. {
  622. "seq": h.seq.tolist(),
  623. "score": h.score.item(),
  624. "step_scores": h.step_scores.numpy(),
  625. }
  626. for h in text_out.generator_output.results[0]
  627. ]
  628. np.savez(
  629. sample_file,
  630. encoder_output=text_out.encoder_output.numpy(),
  631. hypotheses=hypotheses,
  632. )
  633. text_out = np.load(sample_file, allow_pickle=True)
  634. encoder_out = ggml.from_numpy(ctx, text_out["encoder_output"])
  635. tgt_tokens = text_out["hypotheses"][0]["seq"]
  636. max_seq_len = max(len(h["seq"]) for h in text_out["hypotheses"])
  637. max_seq_len = int(max_seq_len * 1.5)
  638. # Apply scale before sending into ggml!
  639. gx = ggml.from_numpy(ctx, src_audio_wav * 2**15)
  640. ggml.ggml_set_name(gx, b"x")
  641. encoder_out = ggml.forward(
  642. "StandardConformerEncoder",
  643. g_model,
  644. "speech_encoder",
  645. gx,
  646. None, # TODO support padding mask
  647. )
  648. gf = ggml.ggml_build_forward(encoder_out)
  649. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  650. beam_size = 5
  651. opts = ggml.SequenceGeneratorOptions(
  652. beam_size=beam_size,
  653. soft_max_seq_len_a=1,
  654. soft_max_seq_len_b=200,
  655. hard_max_seq_len=max_seq_len,
  656. )
  657. job = ggml.SequenceGeneratorJob(
  658. opts=opts,
  659. prefix_seq=ggml.from_numpy(ctx, np.array([3, 256200]).astype(np.int32)),
  660. pad_idx=0,
  661. unk_idx=1,
  662. bos_idx=2,
  663. eos_idx=3,
  664. )
  665. result_ptr = ggml.generate_sequence(g_model, Ptr(job), encoder_out, NULLPTR, ctx)
  666. results = [result_ptr[i] for i in range(beam_size) if result_ptr[i].seq != None]
  667. assert_hypotheses(
  668. text_out["hypotheses"], results, score_rtol=1e-2, step_scores_rtol=0.1
  669. )
  670. def assert_hypotheses(
  671. expected: List[Any],
  672. results: List[Any],
  673. *,
  674. score_rtol: float,
  675. step_scores_rtol: float
  676. ) -> None:
  677. assert len(results) == len(expected)
  678. for g_hyp, exp in zip(results, expected):
  679. g_tokens = list(ggml.to_numpy(g_hyp.seq))
  680. g_step_scores = ggml.to_numpy(g_hyp.step_scores)
  681. assert g_tokens == exp["seq"]
  682. assert g_hyp.score == pytest.approx(exp["score"], rel=score_rtol)
  683. assert np.allclose(g_step_scores, exp["step_scores"], rtol=step_scores_rtol)