123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485 |
- #include "ggml/ggml.h"
- #include "ggml/ggml-alloc.h"
- #include "common.h"
- #include "common-ggml.h"
- #include <cassert>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <fstream>
- #include <map>
- #include <string>
- #include <vector>
- #include <iostream>
- // default hparams
- struct unity_hparams {
- int32_t n_text_vocab = 256206;
- int32_t n_unit_vocab = 10084;
- int32_t n_audio_enc_dim = 1024;
- int32_t n_audio_enc_ffn_dim = 4096;
- int32_t n_audio_enc_feat_dim = 160;
- int32_t n_audio_enc_layer = 24;
- int32_t n_audio_enc_head = 16;
- int32_t ftype = 1;
- float eps = 1e-5f;
- };
- // layer def
- struct audio_enc_layer {
- struct ggml_tensor * self_attn_layer_norm_w;
- struct ggml_tensor * self_attn_layer_norm_b;
- struct ggml_tensor * self_attn_linear_k_w;
- struct ggml_tensor * self_attn_linear_k_b;
- struct ggml_tensor * self_attn_linear_q_w;
- struct ggml_tensor * self_attn_linear_q_b;
- struct ggml_tensor * self_attn_linear_v_w;
- struct ggml_tensor * self_attn_linear_v_b;
- struct ggml_tensor * self_attn_linear_out_w;
- struct ggml_tensor * self_attn_linear_out_b;
- struct ggml_tensor * self_attn_linear_pos_w;
- struct ggml_tensor * self_attn_pos_bias_u;
- struct ggml_tensor * self_attn_pos_bias_v;
- struct ggml_tensor * conv_layer_norm_w;
- struct ggml_tensor * conv_layer_norm_b;
- struct ggml_tensor * conv_pointwise_conv1_w;
- struct ggml_tensor * conv_depthwise_conv_w;
- struct ggml_tensor * conv_batch_norm_w;
- struct ggml_tensor * conv_batch_norm_b;
- struct ggml_tensor * conv_batch_norm_running_mean;
- struct ggml_tensor * conv_batch_norm_running_var;
- struct ggml_tensor * conv_batch_norm_num_batches_tracked;
- struct ggml_tensor * conv_pointwise_conv2_w;
- struct ggml_tensor * ffn1_layer_norm_w;
- struct ggml_tensor * ffn1_layer_norm_b;
- struct ggml_tensor * ffn1_w1;
- struct ggml_tensor * ffn1_b1;
- struct ggml_tensor * ffn1_w2;
- struct ggml_tensor * ffn1_b2;
- struct ggml_tensor * ffn2_layer_norm_w;
- struct ggml_tensor * ffn2_layer_norm_b;
- struct ggml_tensor * ffn2_w1;
- struct ggml_tensor * ffn2_b1;
- struct ggml_tensor * ffn2_w2;
- struct ggml_tensor * ffn2_b2;
- struct ggml_tensor * final_layer_norm_w;
- struct ggml_tensor * final_layer_norm_b;
- };
- // struct ggml_tensor * conv_ln;
- // struct ggml_tensor * conv_pool_1d;
- // model def
- struct unity_model {
- unity_hparams hparams;
- // audio encoder
- struct ggml_tensor * post_extract_proj;
- struct ggml_tensor * audio_enc_pos_conv;
- std::vector<audio_enc_layer> audio_enc_layers;
- // text encoder
- // std::vector<text_enc_layer> text_enc_layers;
- // adaptor
- // std::vector<adapter_layer> adapter_layers;
- // text decoder
- // std::vector<text_dec_layer> text_dec_layers;
- // unit decoder
- // std::vector<unit_dec_layer> unit_dec_layers;
- //
- struct ggml_context * ctx;
- std::map<std::string, struct ggml_tensor *> tensors;
- };
- // model load
- bool unity_model_load(const std::string & fname, unity_model & model, gpt_vocab & vocab) {
- printf("%s: loading model from '%s'\n", __func__, fname.c_str());
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
- return false;
- }
- // verify magic
- {
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic != GGML_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
- return false;
- }
- }
- // load hparams
- {
- auto & hparams = model.hparams;
- fin.read((char *) &hparams.n_text_vocab, sizeof(hparams.n_text_vocab));
- fin.read((char *) &hparams.n_audio_enc_dim, sizeof(hparams.n_audio_enc_dim));
- fin.read((char *) &hparams.n_audio_enc_ffn_dim, sizeof(hparams.n_audio_enc_ffn_dim));
- fin.read((char *) &hparams.n_audio_enc_feat_dim, sizeof(hparams.n_audio_enc_feat_dim));
- fin.read((char *) &hparams.n_audio_enc_layer, sizeof(hparams.n_audio_enc_layer));
- fin.read((char *) &hparams.n_audio_enc_head, sizeof(hparams.n_audio_enc_head));
- fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
- const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
- printf("%s: n_text_vocab = %d\n", __func__, hparams.n_text_vocab);
- printf("%s: n_audio_enc_dim = %d\n", __func__, hparams.n_audio_enc_dim);
- printf("%s: n_audio_enc_ffn_dim = %d\n", __func__, hparams.n_audio_enc_ffn_dim);
- printf("%s: n_audio_enc_feat_dim = %d\n", __func__, hparams.n_audio_enc_feat_dim);
- printf("%s: n_audio_enc_layer = %d\n", __func__, hparams.n_audio_enc_layer);
- printf("%s: n_audio_enc_head = %d\n", __func__, hparams.n_audio_enc_head);
- printf("%s: ftype = %d\n", __func__, hparams.ftype);
- printf("%s: qntvr = %d\n", __func__, qntvr);
- hparams.ftype %= GGML_QNT_VERSION_FACTOR;
- }
- // for the big tensors, we have the option to store the data in 16-bit floats or quantized
- // in order to save memory and also to speed up the computation
- ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
- if (wtype == GGML_TYPE_COUNT) {
- fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
- __func__, fname.c_str(), model.hparams.ftype);
- return false;
- }
- auto & ctx = model.ctx;
- size_t ctx_size = 0;
- {
- const auto & hparams = model.hparams;
- const int n_audio_enc_dim = hparams.n_audio_enc_dim;
- const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
- const int n_audio_enc_layer = hparams.n_audio_enc_layer;
- // const int n_text_vocab = hparams.n_text_vocab;
- const int kernel_size = 31;
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm_w
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // self_attn_layer_norm_b
- ctx_size += n_audio_enc_layer*(5*n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // self_attn_w
- ctx_size += n_audio_enc_layer*(4*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // self_attn_b
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm_w
- ctx_size += n_audio_enc_layer*n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_layer_norm_b
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*2*ggml_type_sizef(wtype)); // conv_pointwise_conv1_w
- ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_w
- ctx_size += n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32); // conv_batch_norm_b
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*kernel_size*ggml_type_sizef(wtype)); // conv_depthwise_conv_w
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*n_audio_enc_dim*ggml_type_sizef(wtype)); // conv_pointwise_conv2_w
- ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm_w
- ctx_size += 2 * n_audio_enc_layer * (n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_layer_norm_b
- ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * n_audio_enc_ffn_dim * ggml_type_sizef(wtype)); // ffn{1,2}_w{1,2}
- ctx_size += 2 * n_audio_enc_layer * (2 * n_audio_enc_dim * ggml_type_sizef(GGML_TYPE_F32)); // ffn{1,2}_b{1,2}
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm_w
- ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // final_layer_norm_b
- // Adaptor
- // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_ln
- // ctx_size += n_audio_enc_layer*(n_audio_enc_dim*ggml_type_sizef(GGML_TYPE_F32)); // conv_pool_1d
- // object overhead might differ depending on the structure and other miscellaneous factors
- ctx_size += (6 + 12*n_audio_enc_layer)*512; // updated object overhead
- printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
- printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
- }
- // create the ggml context
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
- }
- }
- // prepare memory for the weights
- {
- const auto & hparams = model.hparams;
- const int n_audio_enc_dim = hparams.n_audio_enc_dim;
- const int n_audio_enc_ffn_dim = hparams.n_audio_enc_ffn_dim;
- // const int n_audio_enc_feat_dim = hparams.n_audio_enc_feat_dim;
- const int n_audio_enc_layer = hparams.n_audio_enc_layer;
- const int n_audio_enc_head = hparams.n_audio_enc_head;
- // const int n_text_vocab = hparams.n_text_vocab;
- model.audio_enc_layers.resize(n_audio_enc_layer);
- // model.post_extract_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_feat_dim);
- // model.post_extract_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- // model.tensors["model/post_extract_proj/w"] = model.post_extract_proj_w
- // model.tensors["model/post_extract_proj/b"] = model.post_extract_proj_b
- // model.audio_enc_pos_conv_w = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim, 1);
- // model.tensors["model/audio_enc_pos_conv/w"] = model.audio_enc_pos_conv_w;
- // model.audio_enc_pos_conv_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- // model.tensors["model/audio_enc_pos_conv/b"] = model.audio_enc_pos_conv_b;
- for (int i = 0; i < n_audio_enc_layer; ++i) {
- auto & layer = model.audio_enc_layers[i];
- layer.self_attn_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_linear_k_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.self_attn_linear_k_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_linear_q_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.self_attn_linear_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_linear_v_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.self_attn_linear_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_linear_out_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.self_attn_linear_out_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.self_attn_linear_pos_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.self_attn_pos_bias_u = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_head, n_audio_enc_dim / n_audio_enc_head);
- layer.self_attn_pos_bias_v = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_head, n_audio_enc_dim / n_audio_enc_head);
- layer.conv_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_pointwise_conv1_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2*n_audio_enc_dim, n_audio_enc_dim);
- layer.conv_depthwise_conv_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, 31);
- layer.conv_batch_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_batch_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_batch_norm_running_mean = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_batch_norm_running_var = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.conv_batch_norm_num_batches_tracked = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- layer.conv_pointwise_conv2_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_dim);
- layer.ffn1_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.ffn1_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.ffn1_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
- layer.ffn1_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
- layer.ffn1_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
- layer.ffn1_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.ffn2_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.ffn2_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.ffn2_w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim, n_audio_enc_dim);
- layer.ffn2_b1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_ffn_dim);
- layer.ffn2_w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_enc_dim, n_audio_enc_ffn_dim);
- layer.ffn2_b2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.final_layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- layer.final_layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_enc_dim);
- // map by name
- model.tensors["model/h" + std::to_string(i) + "/self_attn_layer_norm/w"] = layer.self_attn_layer_norm_w;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_layer_norm/b"] = layer.self_attn_layer_norm_b;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_k/w"] = layer.self_attn_linear_k_w;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_k/b"] = layer.self_attn_linear_k_b;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_q/w"] = layer.self_attn_linear_q_w;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_q/b"] = layer.self_attn_linear_q_b;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_v/w"] = layer.self_attn_linear_v_w;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_v/b"] = layer.self_attn_linear_v_b;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_out/w"] = layer.self_attn_linear_out_w;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_out/b"] = layer.self_attn_linear_out_b;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_linear_pos/w"] = layer.self_attn_linear_pos_w;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_pos_bias/u"] = layer.self_attn_pos_bias_u;
- model.tensors["model/h" + std::to_string(i) + "/self_attn_pos_bias/v"] = layer.self_attn_pos_bias_v;
- model.tensors["model/h" + std::to_string(i) + "/conv_layer_norm/w"] = layer.conv_layer_norm_w;
- model.tensors["model/h" + std::to_string(i) + "/conv_layer_norm/b"] = layer.conv_layer_norm_b;
- model.tensors["model/h" + std::to_string(i) + "/conv_pointwise_conv1/w"] = layer.conv_pointwise_conv1_w;
- model.tensors["model/h" + std::to_string(i) + "/conv_depthwise_conv/w"] = layer.conv_depthwise_conv_w;
- model.tensors["model/h" + std::to_string(i) + "/conv_batch_norm/w"] = layer.conv_batch_norm_w;
- model.tensors["model/h" + std::to_string(i) + "/conv_batch_norm/b"] = layer.conv_batch_norm_b;
- model.tensors["model/h" + std::to_string(i) + "/conv_batch_norm/m"] = layer.conv_batch_norm_running_mean;
- model.tensors["model/h" + std::to_string(i) + "/conv_batch_norm/v"] = layer.conv_batch_norm_running_var;
- model.tensors["model/h" + std::to_string(i) + "/conv_batch_norm/n"] = layer.conv_batch_norm_num_batches_tracked;
- model.tensors["model/h" + std::to_string(i) + "/conv_pointwise_conv2/w"] = layer.conv_pointwise_conv2_w;
- model.tensors["model/h" + std::to_string(i) + "/ffn1_layer_norm/w"] = layer.ffn1_layer_norm_w;
- model.tensors["model/h" + std::to_string(i) + "/ffn1_layer_norm/b"] = layer.ffn1_layer_norm_b;
- model.tensors["model/h" + std::to_string(i) + "/ffn1_w_1/w"] = layer.ffn1_w1;
- model.tensors["model/h" + std::to_string(i) + "/ffn1_w_1/b"] = layer.ffn1_b1;
- model.tensors["model/h" + std::to_string(i) + "/ffn1_w_2/w"] = layer.ffn1_w2;
- model.tensors["model/h" + std::to_string(i) + "/ffn1_w_2/b"] = layer.ffn1_b2;
- model.tensors["model/h" + std::to_string(i) + "/ffn2_layer_norm/w"] = layer.ffn2_layer_norm_w;
- model.tensors["model/h" + std::to_string(i) + "/ffn2_layer_norm/b"] = layer.ffn2_layer_norm_b;
- model.tensors["model/h" + std::to_string(i) + "/ffn2_w_1/w"] = layer.ffn2_w1;
- model.tensors["model/h" + std::to_string(i) + "/ffn2_w_1/b"] = layer.ffn2_b1;
- model.tensors["model/h" + std::to_string(i) + "/ffn2_w_2/w"] = layer.ffn2_w2;
- model.tensors["model/h" + std::to_string(i) + "/ffn2_w_2/b"] = layer.ffn2_b2;
- model.tensors["model/h" + std::to_string(i) + "/final_layer_norm/w"] = layer.final_layer_norm_w;
- model.tensors["model/h" + std::to_string(i) + "/final_layer_norm/b"] = layer.final_layer_norm_b;
- }
- }
-
- // load weights
- {
- size_t total_size = 0;
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ttype;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
- if (fin.eof()) {
- break;
- }
- int32_t nelements = 1;
- int32_t ne[3] = { 1, 1, 1};
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
- std::string name(length, 0);
- fin.read(&name[0], length);
- std::cout << "loading " << name << " " << n_dims << std::endl;
- if (model.tensors.find(name) == model.tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str());
- return false;
- }
- auto tensor = model.tensors[name];
- if (ggml_nelements(tensor) != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str());
- return false;
- }
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- // for debugging
- if (0) {
- printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
- }
- const size_t bpe = ggml_type_size(ggml_type(ttype));
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe);
- return false;
- }
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
- total_size += ggml_nbytes(tensor);
- }
- printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
- }
- fin.close();
- return true;
- }
- int main(int argc, char ** argv) {
- // ggml_time_init();
- // const int64_t t_main_start_us = ggml_time_us();
- gpt_params params;
- params.model = "models/gpt-2-117M/ggml-model.bin";
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- if (params.seed < 0) {
- params.seed = time(NULL);
- }
- printf("%s: seed = %d\n", __func__, params.seed);
- std::mt19937 rng(params.seed);
- if (params.prompt.empty()) {
- params.prompt = gpt_random_prompt(rng);
- }
- // int64_t t_load_us = 0;
- gpt_vocab vocab;
- unity_model model;
- // load the model
- {
- // const int64_t t_start_us = ggml_time_us();
- if (!unity_model_load(params.model, model, vocab)) {
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
- return 1;
- }
- // t_load_us = ggml_time_us() - t_start_us;
- // test_gpt_tokenizer(vocab, params.token_test);
- }
- // keep this buffer alive while evaluating the model
- // std::vector<uint8_t> compute_buffer;
- // struct ggml_allocr * allocr = NULL;
- // // allocate the compute buffer
- // {
- // allocr = ggml_allocr_new_measure(GGML_MEM_ALIGN);
- // // create the worst case graph for memory usage estimation
- // int n_tokens = std::min(model.hparams.n_ctx, params.n_batch);
- // int n_past = model.hparams.n_ctx - n_tokens;
- // struct ggml_cgraph * gf = gpt2_graph(model, allocr, n_past, std::vector<gpt_vocab::id>(n_tokens, 0));
- // // compute the required memory
- // size_t mem_size = ggml_allocr_alloc_graph(allocr, gf) + GGML_MEM_ALIGN;
- // // recreate the allocator with the required memory
- // ggml_allocr_free(allocr);
- // compute_buffer.resize(mem_size);
- // allocr = ggml_allocr_new(compute_buffer.data(), mem_size, GGML_MEM_ALIGN);
- // fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0/1024.0);
- // }
- ggml_free(model.ctx);
- return 0;
- }
|