fairseq2.cpp 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287
  1. #include <math.h>
  2. #include "kaldi-native-fbank/csrc/feature-fbank.h"
  3. #include "kaldi-native-fbank/csrc/feature-window.h"
  4. #include "ggml.h"
  5. #include "fairseq2.h"
  6. #include <unordered_map>
  7. #include <algorithm>
  8. #include <iostream>
  9. /// allocate the fairseq2 model and hyperparameters
  10. extern "C" fairseq2_model* fairseq2_model_alloc() {
  11. // pre-allocate some memory to write hyperparameters and tensors pointers
  12. auto* model = new fairseq2_model;
  13. model->tensors_ctx = nullptr;
  14. return model;
  15. }
  16. inline double model_layer_config_d(const fairseq2_model& model, std::string name) {
  17. const std::int64_t* data = &model.layer_config.at(name);
  18. return *(double*)data;
  19. }
  20. extern "C" double fairseq2_model_layer_config_double(const fairseq2_model& model, const char* name) {
  21. return model_layer_config_d(model, std::string(name));
  22. }
  23. extern "C" std::int64_t fairseq2_model_layer_config_int(const fairseq2_model& model, const char* name) {
  24. return model.layer_config.at(std::string(name));
  25. }
  26. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  27. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  28. delete model;
  29. }
  30. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  31. model->ctx = ctx;
  32. }
  33. extern "C" std::string* std_string_alloc(char* c_str) {
  34. return new std::string(c_str);
  35. }
  36. extern "C" void std_string_free(std::string* str) {
  37. delete str;
  38. }
  39. bool has_layer(fairseq2_model& model, const std::string& name) {
  40. return model.tensors.find(name) != model.tensors.end();
  41. }
  42. extern "C" ggml_tensor* Linear_forward(
  43. fairseq2_model& model,
  44. const std::string &prefix,
  45. ggml_tensor* input // (d_in)
  46. ) {
  47. // Note: for now we assumed un-batched input
  48. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  49. GGML_ASSERT(weight != nullptr);
  50. ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
  51. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  52. if (bias == nullptr) return out;
  53. return ggml_add_inplace(model.ctx, out, bias);
  54. }
  55. extern "C" ggml_tensor* LayerNorm_forward(
  56. fairseq2_model& model,
  57. const std::string &prefix,
  58. ggml_tensor* input
  59. ) {
  60. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  61. GGML_ASSERT(weight != nullptr);
  62. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  63. GGML_ASSERT(bias != nullptr);
  64. auto ctx = model.ctx;
  65. double eps = model_layer_config_d(model, prefix + ".eps");
  66. input = ggml_norm(ctx, input, /*eps*/eps);
  67. return ggml_add_inplace(
  68. ctx,
  69. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  70. ggml_repeat(ctx, bias, input)
  71. );
  72. }
  73. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  74. fairseq2_model& model,
  75. const std::string& prefix,
  76. ggml_tensor* seqs
  77. ) {
  78. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  79. // inner_activation = ReLu // TODO: allow other activation
  80. seqs = ggml_relu_inplace(model.ctx, seqs);
  81. if (has_layer(model, prefix + ".inner_layer_norm")) {
  82. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  83. }
  84. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  85. return seqs;
  86. }
  87. extern "C" ggml_tensor* SiluFeedForwardNetwork_forward(
  88. fairseq2_model& model,
  89. const std::string& prefix,
  90. ggml_tensor* seqs
  91. ) {
  92. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  93. seqs = ggml_silu(model.ctx, seqs);
  94. if (has_layer(model, prefix + ".inner_layer_norm")) {
  95. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  96. }
  97. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  98. return seqs;
  99. }
  100. ggml_tensor* ggml_flatten_1d(ggml_context* ctx, ggml_tensor* x, int dim) {
  101. int n_dims = x->n_dims;
  102. GGML_ASSERT(dim >= 0);
  103. GGML_ASSERT(dim < n_dims);
  104. GGML_ASSERT(ggml_is_contiguous(x));
  105. // Nothing to do
  106. if (dim == n_dims - 1) return x;
  107. if (n_dims == 2) {
  108. return ggml_reshape_1d(ctx, x, x->ne[0] * x->ne[1]);
  109. } else if (n_dims == 3) {
  110. if (dim == 0) {
  111. return ggml_reshape_2d(ctx, x, x->ne[0] * x->ne[1], x->ne[2]);
  112. } else { // dim == 1
  113. return ggml_reshape_2d(ctx, x, x->ne[0], x->ne[1] * x->ne[2]);
  114. }
  115. } else { // n_dims == 4
  116. if (dim == 0) {
  117. return ggml_reshape_3d(ctx, x, x->ne[0] * x->ne[1], x->ne[2], x->ne[3]);
  118. } else if (dim == 1) {
  119. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1] * x->ne[2], x->ne[3]);
  120. } else { // dim == 2
  121. return ggml_reshape_3d(ctx, x, x->ne[0], x->ne[1], x->ne[2] * x->ne[3]);
  122. }
  123. }
  124. }
  125. ggml_tensor* ggml_unflatten_1d(ggml_context* ctx, ggml_tensor* x, int dim, int num_el) {
  126. int n_dims = x->n_dims;
  127. GGML_ASSERT(dim >= 0);
  128. GGML_ASSERT(dim < n_dims);
  129. GGML_ASSERT(n_dims < 4);
  130. if (n_dims == 1) {
  131. return ggml_reshape_2d(ctx, x, num_el, x->ne[0] / num_el);
  132. } else if (n_dims == 2) {
  133. if (dim == 0) {
  134. return ggml_reshape_3d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1]);
  135. } else { // dim == 1
  136. return ggml_reshape_3d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el);
  137. }
  138. } else { // (n_dims == 3)
  139. if (dim == 0) {
  140. return ggml_reshape_4d(ctx, x, num_el, x->ne[0] / num_el, x->ne[1], x->ne[2]);
  141. } else if (dim == 1) {
  142. return ggml_reshape_4d(ctx, x, x->ne[0], num_el, x->ne[1] / num_el, x->ne[2]);
  143. } else { // dim == 2
  144. return ggml_reshape_4d(ctx, x, x->ne[0], x->ne[1], num_el, x->ne[2] / num_el);
  145. }
  146. }
  147. }
  148. ggml_tensor* _reshape_num_head(ggml_context* ctx, ggml_tensor* x, int head_dim) {
  149. // (B, S, dim) -> (B, S, H, H_dim)
  150. x = ggml_unflatten_1d(ctx, x, 0, head_dim);
  151. x = ggml_permute(ctx, x, 0, 2, 1, 3); // (B, H, S, H_dim)
  152. x = ggml_cont(ctx, x);
  153. x = ggml_flatten_1d(ctx, x, 2); // (B * H, S, H_dim)
  154. return x;
  155. }
  156. /// (B, Sk, dim) -> // (B?, H, H_dim, Sk)
  157. ggml_tensor* _reshape_num_head_values(ggml_context* ctx, ggml_tensor* v, int head_dim ) {
  158. // (B, Sk, dim) -> (B, Sk, H, H_dim)
  159. v = ggml_unflatten_1d(ctx, v, 0, head_dim);
  160. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (B?, H, H_dim, Sk)
  161. v = ggml_cont(ctx, v);
  162. v = ggml_flatten_1d(ctx, v, 2); // (B * H, S, H_dim)
  163. return v;
  164. }
  165. // flash_attn doesn't work for cross attention because it assumes Q <= K
  166. // TODO: enable flash_attn only for the encoder
  167. # define UNITY_FLASH_ATTN 0
  168. extern "C" ggml_tensor* MultiheadAttention_forward(
  169. fairseq2_model& model,
  170. const std::string &prefix,
  171. ggml_tensor* queries, // (slen, d_in)
  172. ggml_tensor* keys, // (klen, d_in)
  173. ggml_tensor* values, // (klen, d_out)
  174. ggml_tensor* attn_mask // (klen, slen)
  175. ) {
  176. int model_dim = queries->ne[0];
  177. int num_heads = 16; // TODO: read from hparams
  178. int head_dim = model_dim / num_heads;
  179. GGML_ASSERT(model_dim % num_heads == 0);
  180. ggml_context* ctx = model.ctx;
  181. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries); // (B, S, H * H_dim)
  182. ggml_set_name(q, "q");
  183. q = _reshape_num_head(ctx, q, head_dim); // (B * H, S, H_dim)
  184. ggml_tensor* k = Linear_forward(model, prefix + ".k_proj", keys);
  185. ggml_set_name(k, "k");
  186. k = _reshape_num_head(ctx, k, head_dim); // (B * H, Sk, H_dim)
  187. ggml_tensor* v = Linear_forward(model, prefix + ".v_proj", values);
  188. ggml_set_name(v, "v");
  189. v = _reshape_num_head_values(ctx, v, head_dim); // (B * H, H_dim, Sk)
  190. v = ggml_cont(ctx, v);
  191. #if UNITY_FLASH_ATTN
  192. // For flash_attn, we assume either no masks, or triangular masks.
  193. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/attn_mask != nullptr); // (B * H, S, H_dim)
  194. ggml_set_name(attn, "attn");
  195. // TODO test !
  196. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  197. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (B, S, H, H_dim)
  198. #else
  199. // (B * H, Sk, H_dim) x (B * H, S, H_dim) -> (B * H, S, Sk)
  200. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  201. ggml_set_name(qk, "qk");
  202. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  203. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  204. qk = ggml_scale(ctx, qk, qk_scale);
  205. ggml_set_name(qk, "qk_scaled");
  206. // TODO: Should we replace this by ggml_diag_mask_inf ?
  207. if (attn_mask) qk = ggml_add(ctx, qk, attn_mask);
  208. // TODO: upgrade qk to float32 if needed
  209. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (B * H, S, Sk)
  210. ggml_set_name(attn_weights, "attn_weights");
  211. // (B * H, S, Sk) x (B * H, H_dim, Sk) -> (B * H, H_dim, S)
  212. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  213. ggml_set_name(attn, "attn");
  214. attn = ggml_unflatten_1d(ctx, attn, 2, num_heads); // (B, H, H_dim, S)
  215. attn = ggml_permute(ctx, attn, 2, 0, 1, 3); // (B, S, H, H_dim)
  216. #endif // UNITY_FLASH_ATTN
  217. attn = ggml_cont(ctx, attn);
  218. attn = ggml_flatten_1d(ctx, attn, 0); // (B, S, H * H_dim)
  219. // out -> (B, S, d_out)
  220. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  221. ggml_set_name(out, "out");
  222. return out;
  223. }
  224. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  225. fairseq2_model& model,
  226. const std::string& prefix,
  227. ggml_tensor* seqs,
  228. ggml_tensor* padding_mask
  229. ) {
  230. ggml_context* ctx = model.ctx;
  231. // TODO: read norm_order from model
  232. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  233. // _forward_self_attn(seqs, padding_mask)
  234. auto residual = seqs;
  235. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  236. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  237. // TODO: add padding_mask to MultiheadAttention_forward
  238. GGML_ASSERT(padding_mask == nullptr);
  239. seqs = MultiheadAttention_forward(
  240. model,
  241. prefix + ".self_attn",
  242. seqs,
  243. seqs,
  244. seqs,
  245. /*attn_mask=*/nullptr
  246. );
  247. if (has_layer(model, prefix + ".self_attn_norm"))
  248. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  249. seqs = ggml_add(ctx, seqs, residual);
  250. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  251. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  252. // _forward_ffn(seqs)
  253. residual = seqs;
  254. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  255. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  256. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  257. // TODO: if self.residual_scale is not None:
  258. // residual = self.residual_scale * residual
  259. seqs = ggml_add(ctx, seqs, residual);
  260. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  261. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  262. return seqs;
  263. }
  264. extern "C" ggml_tensor* WaveformToFbank_forward(
  265. fairseq2_model& model,
  266. const std::string &prefix,
  267. ggml_tensor* waveform
  268. ) {
  269. // Hardcoding: num_bins 80, sample rate 16k, always standardize
  270. ggml_context* ctx = model.ctx;
  271. knf::MelBanksOptions mel_opts{};
  272. mel_opts.num_bins = 80;
  273. knf::FrameExtractionOptions frame_opts{};
  274. frame_opts.samp_freq = 16000;
  275. knf::FbankOptions opts{};
  276. opts.frame_opts = frame_opts;
  277. opts.mel_opts = mel_opts;
  278. std::vector<float_t> signal_frame{};
  279. std::int32_t num_frames = knf::NumFrames(/*num_samples=*/waveform->ne[0], frame_opts);
  280. struct ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 80, num_frames);
  281. knf::FbankComputer native_(opts);
  282. knf::FeatureWindowFunction window_fn_(native_.GetFrameOptions());
  283. for (std::int32_t frame_nr = 0; frame_nr < num_frames; ++frame_nr) {
  284. signal_frame.resize(0);
  285. // Extract the frame from the waveform tensor.
  286. knf::ExtractWindow(
  287. /*sample_offset=*/0,
  288. (float *)(waveform->data),
  289. waveform->ne[0],
  290. frame_nr,
  291. frame_opts,
  292. window_fn_,
  293. &signal_frame);
  294. native_.Compute(
  295. /*signal_raw_log_energy=*/0, /*vtln_warp=*/1.0, &signal_frame, ((float *)(output->data) + frame_nr * 80));
  296. }
  297. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  298. output = ggml_norm(ctx, output, 1e-5);
  299. output = ggml_dup(ctx, ggml_transpose(ctx, output));
  300. if (output->ne[1] % 2 == 1) {
  301. struct ggml_tensor * remove_last = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, output->ne[1]-1);
  302. for (int i = 0; i < output->ne[1]-1; ++i) {
  303. ((int32_t *) remove_last->data)[i] = i;
  304. }
  305. output = ggml_get_rows(ctx, output, remove_last);
  306. }
  307. output = ggml_reshape_2d(ctx, output, output->ne[0] * 2, output->ne[1] / 2);
  308. return output;
  309. }
  310. // TODO: Check if it's possible to merge with standard MHA
  311. extern "C" ggml_tensor* RelativePositionMHA_forward(
  312. fairseq2_model& model,
  313. const std::string& prefix,
  314. ggml_tensor* seqs
  315. ) {
  316. ggml_context* ctx = model.ctx;
  317. ggml_tensor* residual = seqs;
  318. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  319. // self_attn: qkv
  320. struct ggml_tensor * Qcur = Linear_forward(model, prefix + ".q_proj", seqs);
  321. struct ggml_tensor * Kcur = Linear_forward(model, prefix + ".k_proj", seqs);
  322. struct ggml_tensor * Vcur = Linear_forward(model, prefix + ".v_proj", seqs);
  323. // self_attn: rel_pos SDPA
  324. int32_t S = seqs->ne[1];
  325. int32_t H = 16; // TODO: Make this configurable
  326. int32_t n_ctx = 4096;
  327. int32_t K_h = seqs->ne[0] / H;
  328. int32_t start_index = n_ctx - S;
  329. int32_t end_index = n_ctx + S - 1;
  330. int num_indices = end_index - start_index;
  331. struct ggml_tensor *rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, num_indices);
  332. rows->data = malloc(ggml_nbytes(rows));
  333. for (int i = 0; i < num_indices; i++) {
  334. ((int32_t *)rows->data)[i] = start_index + i;
  335. }
  336. // self_attn: load pos_enc weights & compute_r
  337. // In fairseq2 pos_enc weights are calculated on the fly, since some more custom operators might be needed to enable this,
  338. // we store the results (fixed) in checkpoint as model.audio_enc_pos_enc_w and load directly.
  339. struct ggml_tensor * r = ggml_get_rows(ctx, model.tensors["speech_encoder.pos_enc"], rows);
  340. r = ggml_mul_mat(ctx, model.tensors[prefix + ".sdpa.r_proj.weight"], r);
  341. r = ggml_dup(ctx, ggml_permute(ctx,
  342. ggml_cpy(ctx,
  343. r,
  344. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S*2-1)),
  345. 0, 2, 1, 3));
  346. struct ggml_tensor * u_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.u_bias"], K_h, 1, H);
  347. struct ggml_tensor * v_bias = ggml_reshape_3d(ctx, model.tensors[prefix + ".sdpa.v_bias"], K_h, 1, H);
  348. // self_attn: Permute QKV
  349. struct ggml_tensor * Q =
  350. ggml_dup(ctx, ggml_permute(ctx,
  351. ggml_cpy(ctx,
  352. Qcur,
  353. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  354. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  355. struct ggml_tensor * K =
  356. ggml_dup(ctx, ggml_permute(ctx,
  357. ggml_cpy(ctx,
  358. Kcur,
  359. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  360. 0, 2, 1, 3)); // (H * K_h, S) -> (K_h, H, S) -> (K_h, S, H)
  361. struct ggml_tensor * V =
  362. ggml_dup(ctx, ggml_permute(ctx,
  363. ggml_cpy(ctx,
  364. Vcur,
  365. ggml_new_tensor_3d(ctx, GGML_TYPE_F32, K_h, H, S)),
  366. 1, 2, 0, 3)); // (H * K_h, S) -> (K_h, H, S) -> (H, S, K_h)
  367. struct ggml_tensor * q_with_u_bias = ggml_add(ctx, Q, u_bias); // (K_h, S, H)
  368. struct ggml_tensor * q_with_v_bias = ggml_add(ctx, Q, v_bias); // (K_h, S, H)
  369. struct ggml_tensor * ac = ggml_mul_mat(ctx, K, q_with_u_bias);
  370. struct ggml_tensor * bd = ggml_mul_mat(ctx, r, q_with_v_bias);
  371. // self_attn: shift_bd. Logic follows https://github.com/facebookresearch/fairseq2/blob/main/src/fairseq2/nn/transformer/relative_attention.py#L161
  372. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // H, S, 2S-1
  373. struct ggml_tensor * pad = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, H, S, 1);
  374. pad->data = malloc(ggml_nbytes(pad));
  375. pad = ggml_set_f32(pad, 0.0);
  376. bd = ggml_concat(ctx, pad, bd); // bd[i][j][0] == 0, (H, S, 2S)
  377. bd = ggml_dup(ctx, ggml_permute(ctx, bd, 2, 1, 0, 3)); // (2S, S, H)
  378. bd = ggml_dup(ctx, ggml_reshape_3d(ctx, bd, S, 2*S, H)); // (S, 2S, H)
  379. bd = ggml_remove_head_row(ctx, bd); // A custom operator introduced to reduce 1st row (in the 2nd dim)
  380. bd = ggml_reshape_3d(ctx, bd, 2*S-1, S, H);
  381. bd = ggml_get_first_cols_by_rows(ctx, bd); // A custom operator introduced to get first #rows cols.
  382. // self_attn: compute attn / weights
  383. struct ggml_tensor * attn_weights = ggml_add(ctx, ac, bd);
  384. struct ggml_tensor * attn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  385. attn_scale->data = malloc(ggml_nbytes(attn_scale));
  386. ggml_set_f32(attn_scale, 1.0 / pow(K_h, 0.5));
  387. attn_weights = ggml_mul(ctx, ggml_repeat(ctx, attn_scale, attn_weights), attn_weights);
  388. attn_weights = ggml_soft_max(ctx, attn_weights);
  389. struct ggml_tensor * attn = ggml_mul_mat(ctx, V, attn_weights); // K_h, S, H
  390. attn = ggml_dup(ctx, ggml_permute(ctx, attn, 0, 2, 1, 3));
  391. struct ggml_tensor * attn_2d = ggml_reshape_2d(ctx, attn, K_h * H, S);
  392. struct ggml_tensor * attn_out = ggml_mul_mat(ctx, model.tensors[prefix + ".output_proj.weight"], attn_2d);
  393. attn_out = ggml_add(ctx,
  394. ggml_repeat(ctx,
  395. model.tensors[prefix + ".output_proj.bias"],
  396. attn_out),
  397. attn_out);
  398. attn_out = ggml_add(ctx, residual, attn_out);
  399. return attn_out;
  400. }
  401. extern "C" ggml_tensor* ConvModule_forward(
  402. fairseq2_model& model,
  403. const std::string& prefix,
  404. ggml_tensor* seqs
  405. ) {
  406. ggml_context* ctx = model.ctx;
  407. ggml_tensor* residual = seqs;
  408. seqs = LayerNorm_forward(model, prefix + "_layer_norm", seqs);
  409. // conv: Use matmul for pointwise conv 1 - kernel_size=1, no padding case
  410. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv1.weight"], seqs);
  411. // conv: GLU
  412. seqs = ggml_glu(ctx, seqs);
  413. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  414. // S x C -> (S+K-1) x C -> K x S x C -> S x C
  415. seqs = ggml_conv_1d(ctx, model.tensors[prefix + ".depthwise_conv.weight"], seqs, 1, 15, 1);
  416. // conv: Custom implementation of batch norm
  417. seqs = ggml_batch_norm(ctx, seqs, model.tensors[prefix + ".batch_norm.weight"], model.tensors[prefix + ".batch_norm.bias"], model.tensors[prefix + ".batch_norm.running_mean"], model.tensors[prefix + ".batch_norm.running_var"], 1e-5);
  418. // conv: SiLU actvation
  419. seqs = ggml_silu(ctx, seqs);
  420. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  421. // conv: Use matmul for pointwise conv 2 - kernel_size=1, no padding case
  422. seqs = ggml_mul_mat(ctx, model.tensors[prefix + ".pointwise_conv2.weight"], seqs);
  423. // conv: + residual
  424. seqs = ggml_add(ctx, seqs, residual);
  425. return seqs;
  426. }
  427. extern "C" ggml_tensor* StandardConformerEncoderLayer_forward(
  428. fairseq2_model& model,
  429. const std::string& prefix,
  430. ggml_tensor* seqs,
  431. ggml_tensor* padding_mask
  432. ) {
  433. ggml_context* ctx = model.ctx;
  434. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  435. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  436. ggml_set_f32(ffn_scale, 0.5f);
  437. struct ggml_tensor * residual = seqs;
  438. seqs = LayerNorm_forward(model, prefix + ".ffn1_layer_norm", seqs);
  439. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn1", seqs);
  440. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  441. seqs = ggml_add(ctx, seqs, residual);
  442. seqs = RelativePositionMHA_forward(model, prefix + ".self_attn", seqs);
  443. seqs = ConvModule_forward(model, prefix + ".conv", seqs);
  444. residual = seqs;
  445. seqs = LayerNorm_forward(model, prefix + ".ffn2_layer_norm", seqs);
  446. seqs = SiluFeedForwardNetwork_forward(model, prefix + ".ffn2", seqs);
  447. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  448. seqs = ggml_add(ctx, seqs, residual);
  449. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  450. return seqs;
  451. }
  452. extern "C" ggml_tensor* StandardConformerEncoder_forward(
  453. fairseq2_model& model,
  454. const std::string& prefix,
  455. ggml_tensor* seqs,
  456. ggml_tensor* padding_mask
  457. ) { // TODO: Implement this!
  458. ggml_context* ctx = model.ctx;
  459. seqs = WaveformToFbank_forward(model, prefix, seqs);
  460. seqs = LayerNorm_forward(model, prefix + "_frontend.post_extract_layer_norm", seqs);
  461. seqs = Linear_forward(model, prefix + "_frontend.model_dim_proj", seqs);
  462. int layer_idx = 0;
  463. std::string layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  464. while (has_layer(model, layer_name)) {
  465. seqs = StandardConformerEncoderLayer_forward(
  466. model, layer_name, seqs, padding_mask
  467. );
  468. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  469. layer_idx += 1;
  470. layer_name = prefix + ".inner.layers." + std::to_string(layer_idx);
  471. }
  472. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  473. ggml_tensor* residual = seqs;
  474. seqs = Linear_forward(model, prefix + ".proj1", seqs);
  475. seqs = ggml_relu_inplace(ctx, seqs);
  476. seqs = Linear_forward(model, prefix + ".proj2", seqs);
  477. struct ggml_tensor * ffn_scale = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, 1);
  478. ffn_scale->data = malloc(ggml_nbytes(ffn_scale));
  479. ggml_set_f32(ffn_scale, 0.5f);
  480. seqs = ggml_mul(ctx, ggml_repeat(ctx, ffn_scale, seqs), seqs);
  481. seqs = ggml_add(ctx, seqs, residual);
  482. layer_idx = 0;
  483. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  484. while (has_layer(model, layer_name)) {
  485. seqs = StandardConformerEncoderAdaptorLayer_forward(
  486. model, layer_name, seqs, padding_mask
  487. );
  488. ggml_set_name(seqs, ("x_ada_" + std::to_string(layer_idx)).c_str());
  489. layer_idx += 1;
  490. layer_name = prefix + ".adaptor_layers." + std::to_string(layer_idx);
  491. }
  492. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  493. return seqs;
  494. }
  495. extern "C" ggml_tensor* StandardConformerEncoderAdaptorLayer_forward(
  496. fairseq2_model& model,
  497. const std::string& prefix,
  498. ggml_tensor* seqs,
  499. ggml_tensor* padding_mask
  500. ) {
  501. ggml_context* ctx = model.ctx;
  502. struct ggml_tensor * residual = seqs;
  503. residual = LayerNorm_forward(model, prefix + ".residual_layer_norm", residual);
  504. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  505. residual = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".residual_conv.weight"], residual, 8, 4, 1);
  506. residual = ggml_dup(ctx, ggml_permute(ctx, residual, 1, 0, 2, 3));
  507. residual = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".residual_conv.bias"], residual), residual);
  508. residual = ggml_glu(ctx, residual);
  509. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  510. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  511. seqs = ggml_conv_1d_generic(ctx, model.tensors[prefix + ".self_attn_conv.weight"], seqs, 8, 4, 1);
  512. seqs = ggml_dup(ctx, ggml_permute(ctx, seqs, 1, 0, 2, 3));
  513. seqs = ggml_add(ctx, ggml_repeat(ctx, model.tensors[prefix + ".self_attn_conv.bias"], seqs), seqs);
  514. seqs = ggml_glu(ctx, seqs);
  515. seqs = MultiheadAttention_forward(
  516. model,
  517. prefix + ".self_attn",
  518. seqs,
  519. seqs,
  520. seqs,
  521. /*attention masks=*/nullptr
  522. );
  523. seqs = ggml_add(ctx, seqs, residual);
  524. residual = seqs;
  525. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  526. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  527. seqs = ggml_add(ctx, seqs, residual);
  528. return seqs;
  529. }
  530. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  531. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  532. struct ggml_tensor * ggml_slice(
  533. struct ggml_context * ctx,
  534. struct ggml_tensor * a,
  535. int axis,
  536. int64_t start,
  537. int64_t end
  538. ) {
  539. int64_t ne[4];
  540. std::copy(a->ne, a->ne + 4, ne);
  541. if (axis < 0) axis = a->n_dims + axis;
  542. if (start < 0) start = ne[axis] + start;
  543. if (end < 0) end = ne[axis] + end;
  544. GGML_ASSERT(0 <= start);
  545. GGML_ASSERT(start <= end);
  546. GGML_ASSERT(end <= ne[axis]);
  547. ne[axis] = end - start;
  548. size_t offset = a->nb[axis] * start;
  549. size_t* nb = a->nb;
  550. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  551. result->n_dims = a->n_dims;
  552. return result;
  553. }
  554. extern "C" ggml_tensor* PositionalEmbedding_forward(
  555. fairseq2_model& model,
  556. const std::string& prefix,
  557. ggml_tensor* embeds
  558. ) {
  559. // This only work with the simple pos encoders
  560. int seq_len = embeds->ne[1];
  561. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  562. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
  563. return ggml_add(model.ctx, embeds, pos_embeds);
  564. }
  565. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  566. fairseq2_model& model,
  567. const std::string& prefix,
  568. ggml_tensor* seqs
  569. // TODO: state_bag
  570. ) {
  571. GGML_ASSERT(seqs->n_dims < GGML_MAX_DIMS);
  572. ggml_context* ctx = model.ctx;
  573. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  574. GGML_ASSERT(embed_weights != nullptr);
  575. ggml_tensor* embeds;
  576. if (seqs->n_dims == 1) {
  577. embeds = ggml_get_rows(ctx, embed_weights, seqs);
  578. } else {
  579. // ggml_get_rows isn't very flexible, we have to handle the reshape ourselves.
  580. ggml_tensor* flat_seqs = seqs;
  581. if (!ggml_is_contiguous(seqs)) {
  582. flat_seqs->type = GGML_TYPE_F32;
  583. flat_seqs = ggml_cont(ctx, flat_seqs);
  584. }
  585. flat_seqs = ggml_reshape_1d(ctx, flat_seqs, ggml_nelements(seqs));
  586. flat_seqs->type = GGML_TYPE_I32;
  587. embeds = ggml_get_rows(ctx, embed_weights, flat_seqs);
  588. embeds = ggml_reshape_4d(ctx, embeds, embed_weights->ne[0], seqs->ne[0], seqs->ne[1], seqs->ne[2]);
  589. embeds->n_dims = seqs->n_dims + 1;
  590. }
  591. // padding mask ?
  592. // padding_mask = to_padding_mask(embeds, seq_lens)
  593. if (has_layer(model, prefix + ".pos_encoder")) {
  594. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  595. }
  596. if (has_layer(model, prefix + ".layer_norm")) {
  597. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  598. }
  599. return embeds;
  600. }
  601. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  602. fairseq2_model& model,
  603. const std::string& prefix,
  604. ggml_tensor* seqs,
  605. ggml_tensor* padding_mask
  606. ) {
  607. int layer_idx = 0;
  608. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  609. while (has_layer(model, layer_name)) {
  610. seqs = StandardTransformerEncoderLayer_forward(
  611. model, layer_name, seqs, padding_mask
  612. );
  613. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  614. layer_idx += 1;
  615. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  616. }
  617. if (has_layer(model, prefix + ".layer_norm"))
  618. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  619. return seqs;
  620. }
  621. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  622. fairseq2_model& model,
  623. const std::string& prefix,
  624. ggml_tensor* seqs,
  625. ggml_tensor* self_attn_mask,
  626. ggml_tensor* encoder_output,
  627. ggml_tensor* encoder_padding_mask
  628. ) {
  629. ggml_context* ctx = model.ctx;
  630. // TODO: read norm_order from model
  631. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  632. // _forward_self_attn(seqs, padding_mask)
  633. auto residual = seqs;
  634. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  635. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  636. seqs = MultiheadAttention_forward(
  637. model,
  638. prefix + ".self_attn",
  639. seqs,
  640. seqs,
  641. seqs,
  642. /*attn_mask=*/self_attn_mask
  643. );
  644. if (has_layer(model, prefix + ".self_attn_norm"))
  645. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  646. seqs = ggml_add(ctx, seqs, residual);
  647. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  648. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  649. // _forward_encoder_decoder_attn
  650. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  651. // `encoder_output` must be `None` for decoder-only attention.
  652. GGML_ASSERT(encoder_output == nullptr);
  653. return seqs;
  654. }
  655. // `encoder_output` must not be `None` for encoder-decoder attention.
  656. GGML_ASSERT(encoder_output != nullptr);
  657. residual = seqs;
  658. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  659. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  660. seqs = MultiheadAttention_forward(
  661. model,
  662. prefix + ".encoder_decoder_attn",
  663. seqs,
  664. encoder_output,
  665. encoder_output,
  666. /*attention masks=*/encoder_padding_mask
  667. );
  668. seqs = ggml_add(ctx, seqs, residual);
  669. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  670. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  671. // _forward_ffn(seqs)
  672. residual = seqs;
  673. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  674. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  675. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  676. // TODO:
  677. // if self.residual_scale is not None:
  678. // residual = self.residual_scale * residual
  679. seqs = ggml_add(ctx, seqs, residual);
  680. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  681. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  682. return seqs;
  683. }
  684. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  685. auto seq_len = seqs->ne[1];
  686. // TODO: allow other ggml_type
  687. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  688. return ggml_diag_mask_inf(ctx, mask, 0);
  689. }
  690. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  691. fairseq2_model& model,
  692. const std::string& prefix,
  693. ggml_tensor* seqs,
  694. ggml_tensor* padding_mask,
  695. ggml_tensor* encoder_output,
  696. ggml_tensor* encoder_padding_mask
  697. ) {
  698. int layer_idx = 0;
  699. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  700. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  701. while (has_layer(model, layer_name)) {
  702. seqs = StandardTransformerDecoderLayer_forward(
  703. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  704. );
  705. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  706. layer_idx += 1;
  707. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  708. }
  709. if (has_layer(model, prefix + ".layer_norm"))
  710. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  711. return seqs;
  712. }
  713. using IncrementalStateBag = std::unordered_map<ggml_tensor*, ggml_tensor*>*;
  714. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  715. auto opts = job.opts;
  716. int max_seq_len = -1;
  717. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  718. max_seq_len = opts.hard_max_seq_len;
  719. } else {
  720. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len) + opts.soft_max_seq_len_b);
  721. }
  722. if (opts.min_seq_len > max_seq_len) {
  723. printf(
  724. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  725. opts.min_seq_len,
  726. max_seq_len
  727. );
  728. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  729. }
  730. int prefix_seq_len = job.prefix_seq->ne[0];
  731. if (prefix_seq_len >= max_seq_len) {
  732. printf(
  733. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  734. prefix_seq_len,
  735. max_seq_len
  736. );
  737. GGML_ASSERT(prefix_seq_len < max_seq_len);
  738. }
  739. return max_seq_len;
  740. }
  741. void _fan_out_encoder_output(
  742. ggml_context* ctx,
  743. ggml_tensor** encoder_output_out,
  744. ggml_tensor** encoder_padding_mask_out,
  745. int beam_size
  746. ) {
  747. // (S_enc, M)
  748. ggml_tensor* encoder_output = *encoder_output_out;
  749. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  750. // (B, S_enc, M)
  751. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  752. // (S_enc, M) -> (B, S_enc, M)
  753. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  754. // (S_enc) -> (B, S_enc)
  755. if (encoder_padding_mask != nullptr) {
  756. ggml_tensor* shape_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], 1, beam_size);
  757. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  758. }
  759. }
  760. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  761. // TODO: this isn't the most precise way of doing this
  762. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  763. }
  764. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  765. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  766. ggml_type true_type = x->type;
  767. x->type = GGML_TYPE_F32;
  768. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  769. y->type = true_type;
  770. return y;
  771. }
  772. void _bootstrap_seqs_and_scores(
  773. fairseq2_model& model,
  774. const SequenceGeneratorJob& job,
  775. ggml_tensor* full_seqs,
  776. ggml_tensor* scores,
  777. ggml_tensor* encoder_output,
  778. ggml_tensor* encoder_padding_mask,
  779. IncrementalStateBag state_bag
  780. ) {
  781. int prefix_seq_len = job.prefix_seq->ne[0];
  782. int max_seq_len = scores->ne[0];
  783. int beam_size = scores->ne[1];
  784. GGML_ASSERT(prefix_seq_len > 0);
  785. if (prefix_seq_len == 1)
  786. return;
  787. ggml_context* ctx = model.ctx;
  788. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  789. full_seqs->type = GGML_TYPE_F32;
  790. job.prefix_seq->type = GGML_TYPE_F32;
  791. ggml_tensor* seqs = ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len);
  792. seqs = ggml_cpy(ctx, ggml_repeat(ctx, job.prefix_seq, seqs), seqs);
  793. // We have to bootstrap the model with the already fanned-out encoder
  794. // output to correctly initialize its incremental state.
  795. // Note: we don't start decoding the last prefix token just yet.
  796. seqs = ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1);
  797. seqs->type = GGML_TYPE_I32;
  798. // Bootstrap the model state with prefix sequence.
  799. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  800. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  801. model,
  802. "text_decoder",
  803. seqs,
  804. /*padding_mask*/ nullptr,
  805. encoder_output,
  806. encoder_padding_mask
  807. // TODO: state_bag
  808. );
  809. // TODO state_bag.increment_step(prefix_seq_len - 1)
  810. // logits, lprobs: (N, S_pfx - 1, V)
  811. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  812. int vocab_size = logits->ne[0];
  813. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  814. ggml_cgraph gf = ggml_build_forward(lprobs);
  815. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  816. full_seqs->type = GGML_TYPE_I32;
  817. job.prefix_seq->type = GGML_TYPE_I32;
  818. // Fetch scores of next steps from "lprobs"
  819. float p_score = 0;
  820. for (int i = 1; i < prefix_seq_len; ++i) {
  821. int p = ggml_get_i32_1d(job.prefix_seq, i);
  822. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  823. for (int b = 0; b < beam_size; ++b) {
  824. // scores: (N, S)
  825. // Note: First step (e.g. BOS)'s score is always 0.
  826. ggml_set_f32_1d(scores, b * max_seq_len + i, p_score);
  827. }
  828. }
  829. }
  830. /// Finds the topk indices, and write the winning indices in "candidate_indices" array.
  831. int topk(
  832. ggml_tensor* lprobs, // (B, V)
  833. std::int64_t k,
  834. ggml_tensor* candidate_indices
  835. ) {
  836. // Take the best 2 x `beam_size` predictions. We'll choose the first
  837. // `beam_size` of these which don't predict EOS to continue with.
  838. // (N, 2 x B)
  839. // `vocab_size` - 1 to never select PAD.
  840. std::int64_t K = std::min(k, ggml_nelements(lprobs));
  841. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  842. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  843. };
  844. GGML_ASSERT(ggml_nelements(candidate_indices) >= k);
  845. auto cand = (std::int32_t*)candidate_indices->data;
  846. std::partial_sort(cand, cand + K, cand + ggml_nelements(lprobs), comp);
  847. return K;
  848. }
  849. void ggml_detach(ggml_tensor* a) {
  850. a->op = GGML_OP_NONE;
  851. a->src[0] = nullptr;
  852. }
  853. /// Copies the sequence and scores of a given candidate beam.
  854. void _finalize_hypothesis(
  855. const SequenceGeneratorJob& job,
  856. ggml_context* ctx,
  857. int step_nr,
  858. std::int32_t beam,
  859. std::int32_t token,
  860. float eos_score,
  861. ggml_tensor* seqs, // (beam_size, seq_len)
  862. ggml_tensor* scores, // (beam_size, seq_len)
  863. Hypothesis* hypothesis
  864. ) {
  865. ggml_tensor* seq = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  866. hypothesis->seq = seq;
  867. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  868. hypothesis->step_scores = step_scores;
  869. auto tok = (std::int32_t*)seq->data;
  870. for (int i = 0; i < step_nr + 1; ++i) {
  871. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  872. }
  873. tok[step_nr + 1] = token;
  874. // Convert from cumulative to per-step scores.
  875. auto sc = (float*)step_scores->data;
  876. float last_score = eos_score;
  877. for (int i = step_nr; i >= 0; --i) {
  878. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  879. sc[i + 1] = last_score - sc0;
  880. last_score = sc0;
  881. }
  882. sc[0] = 0;
  883. if (job.opts.normalize_scores)
  884. // Skip first EOS since it is always 0 and skews normalization.
  885. eos_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  886. hypothesis->score = eos_score;
  887. }
  888. // Uses ggml_context to store any object.
  889. #define GGML_CTX_ALLOC(ctx, Type, n) \
  890. (Type*)(ggml_new_tensor_1d(ctx, GGML_TYPE_I8, sizeof(Type) * n)->data);
  891. /// Generates a translation for a single sequence
  892. // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
  893. // TODO: clean ups
  894. // * replace manual tensor tweaking with ggml_set_*d (a ggml_set_slice could be useful)
  895. extern "C" Hypothesis* generate_sequence(
  896. fairseq2_model& model,
  897. const SequenceGeneratorJob& job,
  898. ggml_tensor* encoder_output,
  899. ggml_tensor* encoder_padding_mask,
  900. ggml_context* result_ctx
  901. ) {
  902. ggml_context* ctx = model.ctx;
  903. size_t eos_idx = job.eos_idx;
  904. auto pad_idx = job.pad_idx;
  905. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  906. size_t vocab_size = embed->ne[1];
  907. std::size_t beam_size = job.opts.beam_size;
  908. int source_seq_len = encoder_output->ne[1];
  909. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  910. // (S_enc, M) -> (B, S_enc, M)
  911. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  912. // Allocate results in the context provided by the caller.
  913. Hypothesis* finished_searches_begin = GGML_CTX_ALLOC(result_ctx, Hypothesis, beam_size);
  914. Hypothesis* finished_searches = finished_searches_begin;
  915. for (std::size_t i = 0; i < beam_size; ++i) finished_searches[i] = {nullptr, -INFINITY, nullptr};
  916. Hypothesis* finished_searches_end = finished_searches + beam_size;
  917. // Initialize buffers. (B, S)
  918. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  919. ggml_set_i32(seqs, 0);
  920. ggml_set_name(seqs, "seqs_0");
  921. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  922. ggml_set_name(scores, "scores_0");
  923. ggml_set_f32(scores, 0.0);
  924. IncrementalStateBag state_bag = {};
  925. _bootstrap_seqs_and_scores(
  926. model, job, seqs, scores, encoder_output, encoder_padding_mask, state_bag
  927. );
  928. int prefix_seq_len = job.prefix_seq->ne[0];
  929. int start_step = prefix_seq_len - 1;
  930. // Holds the indices of beams (a beam can occur more than once) that we
  931. // should continue with in the next step.
  932. ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  933. ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  934. ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
  935. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  936. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  937. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  938. ((int32_t *)(candidate_indices->data))[i] = i;
  939. // TODO: memory management, there should be a per-step ggml_context for intermediary results
  940. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  941. // because of no IncrementalStateBag we pass input from the start
  942. // decoder_input = seqs[:, 0 : step_nr + 1]
  943. ggml_tensor* decoder_input = ggml_slice(ctx, seqs, 0, 0, step_nr + 1);
  944. decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", decoder_input);
  945. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  946. model,
  947. "text_decoder",
  948. decoder_input,
  949. nullptr, // We never generate PAD.
  950. encoder_output,
  951. encoder_padding_mask
  952. // state_bag=state_bag,
  953. ); // (B, S, D)
  954. // state_bag.increment_step()
  955. // Because of no IncrementalStateBag decoder_output here is of shape (B, S, D)
  956. // Just look at the last token.
  957. decoder_output = ggml_slice(ctx, decoder_output, 1, step_nr, step_nr+1);
  958. decoder_output = ggml_cont(ctx, decoder_output);
  959. decoder_output = ggml_flatten_1d(ctx, decoder_output, 0); // (B, model_dim)
  960. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output); // (B, vocab_size)
  961. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  962. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  963. // TODO: use ggml properly compute the tweaks
  964. ggml_cgraph gf = ggml_build_forward(lprobs);
  965. printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
  966. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  967. ggml_detach(lprobs);
  968. // // Do not allow EOS before reaching the minimum sequence length.
  969. if (step_nr < job.opts.min_seq_len) {
  970. // lprobs[:, :, self.eos_idx] = -INFINITY;
  971. for (size_t i = 0; i < beam_size; ++i)
  972. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  973. }
  974. // If we have reached the maximum length, force the last step to be EOS.
  975. if (step_nr == max_seq_len - 2) {
  976. // lprobs[:, :, : self.eos_idx] = -torch.inf
  977. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  978. for (size_t b = 0; b < beam_size; ++b) {
  979. size_t t = 0;
  980. for (t = 0; t < eos_idx; ++t)
  981. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  982. for (t = eos_idx + 1; t < vocab_size; ++t)
  983. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  984. }
  985. }
  986. // Never allow PAD.
  987. for (size_t i = 0; i < beam_size; ++i)
  988. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  989. // Apply UNK penalty.
  990. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  991. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  992. auto lprobs_raw = ggml_get_data_f32(lprobs);
  993. for (size_t i = 0; i < beam_size; ++i)
  994. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  995. }
  996. ggml_tensor* last_scores = ggml_slice(ctx, scores, 0, step_nr, step_nr+1);
  997. if (step_nr == start_step) {
  998. // At the initial step, all hypotheses are equally likely, so we use
  999. // only the first beam.
  1000. lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
  1001. lprobs = ggml_cont(ctx, lprobs);
  1002. // The first step always indicates the beginning of the sequence and has no score.
  1003. if (step_nr > 0) {
  1004. last_scores = ggml_slice(ctx, last_scores, 1, 0, 1);
  1005. lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1006. }
  1007. } else {
  1008. // Make probabilities contain cumulative scores for each hypothesis.
  1009. lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  1010. }
  1011. gf = ggml_build_forward(lprobs);
  1012. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1013. // Determine (beam, token) candidates for the next step.
  1014. // (N, 2 x B)
  1015. std::int64_t K = topk(
  1016. lprobs, std::min(2 * beam_size, vocab_size - 1), candidate_indices
  1017. );
  1018. std::size_t ongoing_beams = 0;
  1019. for (std::int32_t i = 0; i < K; ++i) {
  1020. int c = ggml_get_f32_1d(candidate_indices, i);
  1021. std::int32_t beam = c / vocab_size;
  1022. std::int32_t token = c % vocab_size;
  1023. float tok_score = ggml_get_f32_1d(lprobs, c);
  1024. // Detect beams that reached the minimum length and that end with an EOS.
  1025. bool eos = token == job.eos_idx;
  1026. eos &= tok_score != -INFINITY;
  1027. if (eos) {
  1028. _finalize_hypothesis(job, result_ctx, step_nr, beam, token, tok_score, seqs, scores, finished_searches++);
  1029. if (finished_searches == finished_searches_end)
  1030. goto end_of_beam_search;
  1031. continue;
  1032. }
  1033. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  1034. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  1035. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  1036. ongoing_beams += 1;
  1037. if (ongoing_beams >= beam_size) break;
  1038. }
  1039. // Reorder beams in the `seq` and `score` buffers. The same beam can
  1040. // be selected more than once.
  1041. ggml_tensor* new_seqs = seqs;
  1042. ggml_tensor* new_scores = scores;
  1043. if (step_nr > start_step) {
  1044. // (B, S), (B) -> (B, S)
  1045. // ggml_get_rows and ggml_set only work with floats ...
  1046. new_seqs->type = GGML_TYPE_F32;
  1047. new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
  1048. new_scores = ggml_get_rows(ctx, scores, beam_indices);
  1049. gf = ggml_build_forward(new_seqs);
  1050. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1051. ggml_detach(new_seqs);
  1052. new_seqs->type = GGML_TYPE_I32;
  1053. gf = ggml_build_forward(new_scores);
  1054. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  1055. ggml_detach(new_scores);
  1056. }
  1057. // new_seqs[:, step_nr + 1] = next_tokens
  1058. // new_scores[:, step_nr + 1] = next_scores
  1059. for (std::size_t i = 0; i < beam_size; ++i) {
  1060. ((std::int32_t*)new_seqs->data)[step_nr + 1 + i * max_seq_len] = ggml_get_i32_1d(next_tokens, i);
  1061. ((float*)new_scores->data)[step_nr + 1 + i * max_seq_len] = ggml_get_f32_1d(next_scores, i);
  1062. }
  1063. // TODO the old seqs and score buffers could be reused for next step
  1064. seqs = new_seqs;
  1065. scores = new_scores;
  1066. }
  1067. end_of_beam_search:
  1068. // Ensure that hypotheses are sorted by decreasing scores before returning.
  1069. std::sort(
  1070. finished_searches_begin,
  1071. finished_searches_end,
  1072. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  1073. );
  1074. return finished_searches_begin;
  1075. }
  1076. extern "C" Hypothesis* _testing_return_hypothesis_ptr(ggml_context* ctx) {
  1077. Hypothesis* result = GGML_CTX_ALLOC(ctx, struct Hypothesis, 2);
  1078. result[0] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 3.14f, (ggml_tensor*)result};
  1079. ggml_set_i32_1d(result[0].seq, 0, 314);
  1080. result[1] = {ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1), 4.21f, nullptr};
  1081. ggml_set_i32_1d(result[1].seq, 0, 421);
  1082. return result;
  1083. }