test_unity_cpp.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659
  1. import ggml
  2. import ctypes
  3. import torch
  4. import pytest
  5. import numpy as np
  6. import torch
  7. import fairseq2.nn
  8. import fairseq2.nn.transformer
  9. import logging
  10. import sys
  11. import functools
  12. from pathlib import Path
  13. from ctypes_utils import Ptr
  14. from ctypes import c_void_p
  15. from typing import Any
  16. from pathlib import Path
  17. from typing import Iterator
  18. from ggml import NativeObj
  19. from ggml_convert import convert_model, read_layer_config
  20. from seamless_communication.models.inference.translator import Translator, Modality
  21. from fairseq2.data.audio import WaveformToFbankConverter
  22. import torchaudio
  23. from fairseq2.models.wav2vec2.feature_extractor import Wav2Vec2FbankFeatureExtractor
  24. Ctx = ggml.ggml_context_p
  25. UNITY_MODELS = Path(__file__).parent / "examples/unity/models"
  26. CTX_PARAMS = ggml.ggml_init_params(mem_size=1024 * 1024 * 1024 * 5, mem_buffer=None)
  27. FAIRSEQ2_CPP = Path(__file__).parent / "examples/unity/fairseq2.cpp"
  28. UNITY_FLASH_ATTN = "\n# define UNITY_FLASH_ATTN 0\n" not in FAIRSEQ2_CPP.read_text()
  29. @pytest.fixture(name="ctx")
  30. def _ctx() -> Iterator[Ctx]:
  31. """Allocate a new context with 1024 MB of memory"""
  32. try:
  33. ctx = ggml.ggml_init(params=CTX_PARAMS)
  34. with torch.inference_mode():
  35. yield ctx
  36. finally:
  37. ggml.ggml_free(ctx)
  38. @functools.lru_cache()
  39. def _load_g_model_once() -> NativeObj:
  40. model_file = Path(__file__).parent / "seamlessM4T_medium.ggml"
  41. if not model_file.exists():
  42. convert_model("seamlessM4T_medium", model_file)
  43. return ggml.load_fairseq2_ggml_file(model_file)
  44. @pytest.fixture()
  45. def g_model(ctx: Ctx) -> c_void_p:
  46. model = _load_g_model_once()
  47. ggml.lib.fairseq2_model_set_inference_ctx(model.ptr, ctx)
  48. return model.ptr
  49. @functools.lru_cache(maxsize=1)
  50. def load_translator() -> Translator:
  51. return Translator(
  52. "seamlessM4T_medium", "vocoder_36langs", torch.device("cpu"), torch.float32
  53. )
  54. def load_pt_model() -> Any:
  55. return load_translator().model
  56. def test_convert_linear(tmp_path: Path) -> None:
  57. module = fairseq2.nn.Linear(16, 24, True)
  58. layer_config = read_layer_config(module)
  59. assert layer_config == {"input_dim": 16, "output_dim": 24, "skip_init": False}
  60. module_file = Path("module.ggml")
  61. convert_model(module, module_file)
  62. g_module = ggml.load_fairseq2_ggml_file(module_file)
  63. for k, v in layer_config.items():
  64. assert ggml.fairseq2_model_layer_config_int(g_module.ptr, bytes(k, "ascii")) == v
  65. def test_causal_attention_mask(ctx: Ctx):
  66. x = torch.zeros((1, 10, 32))
  67. generator = fairseq2.nn.transformer.CausalAttentionMaskGenerator()
  68. mask_exp = generator(x).numpy()
  69. gx = ggml.from_numpy(ctx, x)
  70. gmask = ggml.causal_attention_mask(ctx, gx)
  71. mask = ggml.to_numpy(gmask)
  72. gf = ggml.ggml_build_forward(gmask)
  73. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  74. assert mask_exp.shape == (10, 10)
  75. assert mask.shape == (10, 10)
  76. assert np.all(mask == mask_exp)
  77. x = x[:, :8, :]
  78. mask_exp = generator(x).numpy()
  79. gx = ggml.from_numpy(ctx, x)
  80. gmask = ggml.causal_attention_mask(ctx, gx)
  81. mask = ggml.to_numpy(gmask)
  82. gf = ggml.ggml_build_forward(gmask)
  83. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  84. assert mask_exp.shape == (8, 8)
  85. assert mask.shape == (8, 8)
  86. assert np.all(mask == mask_exp)
  87. def test_LayerNorm_forward(ctx: Ctx, g_model: c_void_p) -> None:
  88. x = torch.empty((2, 21, 1024))
  89. torch.nn.init.uniform_(x, -1, 1)
  90. pt_model = load_pt_model()
  91. y_exp = pt_model.text_encoder.layers[0].ffn_layer_norm(x).numpy()
  92. gx = ggml.from_numpy(ctx, x)
  93. gy = ggml.forward("LayerNorm", g_model, "text_encoder.layers.0.ffn_layer_norm", gx)
  94. ggml.build_and_compute(ctx, gy)
  95. y = ggml.to_numpy(gy)
  96. assert np.allclose(y_exp, y, atol=1e-5)
  97. def test_Linear_forward(ctx: Ctx, g_model: c_void_p) -> None:
  98. x = torch.empty((2, 21, 1024))
  99. torch.nn.init.uniform_(x, -1, 1)
  100. pt_model = load_pt_model()
  101. y_exp = pt_model.text_encoder.layers[0].ffn.inner_proj(x).numpy()
  102. gx = ggml.from_numpy(ctx, x)
  103. gy = ggml.forward("Linear", g_model, "text_encoder.layers.0.ffn.inner_proj", gx)
  104. ggml.build_and_compute(ctx, gy)
  105. y = ggml.to_numpy(gy)
  106. assert np.allclose(y_exp, y, atol=1e-5)
  107. def test_FeedForwardNetwork_forward(ctx: Ctx, g_model: c_void_p) -> None:
  108. x = torch.empty((2, 21, 1024)) # (bs, seq_len, model_dim)
  109. torch.nn.init.uniform_(x, -1 / 32, 1 / 32)
  110. # Test FFN without LayerNorm
  111. pt_model = load_pt_model()
  112. y_exp = pt_model.text_encoder.layers[0].ffn(x).numpy()
  113. gx = ggml.from_numpy(ctx, x)
  114. gy = ggml.forward(
  115. "StandardFeedForwardNetwork", g_model, "text_encoder.layers.0.ffn", gx
  116. )
  117. ggml.build_and_compute(ctx, gy)
  118. y = ggml.to_numpy(gy)
  119. assert np.allclose(y_exp, y, atol=1e-5)
  120. def _name(tensor: ggml.ggml_tensor_p) -> bytes:
  121. try:
  122. return tensor.contents.name # type: ignore[no-any-return]
  123. except ValueError:
  124. return b"???"
  125. def test_MultiheadAttention_forward(ctx: Ctx, g_model: c_void_p) -> None:
  126. x = torch.empty((2, 21, 1024))
  127. torch.random.manual_seed(0)
  128. torch.nn.init.uniform_(x, -1, 1)
  129. pt_model = load_pt_model()
  130. self_attn = pt_model.text_encoder.layers[0].self_attn
  131. # Note: we use different lengths for queries and keys,
  132. # this tests the implementation in decoding context too.
  133. # Note2: ggml_flash_attn requires that we have more keys than queries
  134. gxq = ggml.from_numpy(ctx, x[:, :11, :].contiguous())
  135. gx = ggml.from_numpy(ctx, x)
  136. ggml.ggml_set_name(gx, b"x")
  137. gy = ggml.forward(
  138. "MultiheadAttention",
  139. g_model,
  140. "text_encoder.layers.0.self_attn",
  141. gxq,
  142. gx,
  143. gx,
  144. None, # TODO: tests with causal attention masks
  145. )
  146. gf = ggml.ggml_build_forward(gy)
  147. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  148. q_exp = self_attn.q_proj(x[:, :11, :]).numpy()
  149. y = ggml.to_numpy(gy)
  150. nodes = {}
  151. for i in range(gf.n_nodes):
  152. name = _name(gf.nodes[i])
  153. children = [_name(gf.nodes[i].contents.src[j]) for j in range(2)]
  154. print(name, f"op({gf.nodes[i].contents.op})", children)
  155. nodes[name] = ggml.to_numpy(gf.nodes[i])
  156. attn_weights_hook = fairseq2.nn.transformer.StoreAttentionWeights([])
  157. self_attn.register_attn_weight_hook(attn_weights_hook)
  158. y_exp = self_attn(x[:, :11, :], None, x, x).numpy()
  159. q = nodes[b"q"]
  160. assert q.shape == q_exp.shape
  161. assert np.allclose(q_exp, q, atol=1e-5)
  162. # with flash_attn we don't have attn_weights
  163. if not UNITY_FLASH_ATTN:
  164. attn_weights = nodes[b"attn_weights"]
  165. [attn_weights_exp] = attn_weights_hook._storage
  166. attn_weights_exp = attn_weights_exp.numpy()
  167. assert attn_weights_exp.shape == attn_weights.shape
  168. # GGML is very agressively reducing small softmax weights to 0,
  169. # so the error isn't that small
  170. assert np.allclose(attn_weights_exp, attn_weights, atol=1e-3)
  171. # But the sums should be close to 1
  172. assert np.allclose(np.sum(attn_weights, axis=-1), np.ones((2 * 16, 11)))
  173. # And the maximum index should match the original ones.
  174. assert np.allclose(
  175. np.argmax(attn_weights_exp, axis=-1), np.argmax(attn_weights, axis=-1)
  176. )
  177. assert y.shape == y_exp.shape
  178. assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-2)
  179. def test_StandardTransformerEncoderLayer_forward(
  180. ctx: Ctx, g_model: c_void_p
  181. ) -> None:
  182. x = torch.empty((2, 21, 1024))
  183. padding_mask = torch.ones((2, 21))
  184. torch.random.manual_seed(0)
  185. torch.nn.init.uniform_(x, -1, 1)
  186. pt_model = load_pt_model()
  187. layer = pt_model.text_encoder.layers[0]
  188. gx = ggml.from_numpy(ctx, x)
  189. ggml.ggml_set_name(gx, b"x")
  190. gpad = ggml.from_numpy(ctx, padding_mask)
  191. ggml.ggml_set_name(gpad, b"padding_mask")
  192. gy = ggml.forward(
  193. "StandardTransformerEncoderLayer",
  194. g_model,
  195. "text_encoder.layers.0",
  196. gx,
  197. None, # TODO support padding mask
  198. )
  199. gf = ggml.ggml_build_forward(gy)
  200. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  201. y = ggml.to_numpy(gy)
  202. y_exp, _ = layer(x, padding_mask)
  203. y_exp = y_exp.numpy()
  204. assert y.shape == y_exp.shape
  205. assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-2)
  206. def test_StandardConformerEncoderLayer_forward(
  207. ctx: Ctx, g_model: c_void_p
  208. ) -> None:
  209. pt_model = load_pt_model()
  210. x = torch.load("/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_conformer_block.pt")
  211. padding_mask = torch.ones((1, x.shape[1]))
  212. layer = pt_model.speech_encoder.inner.layers[0]
  213. gx = ggml.from_numpy(ctx, x[0])
  214. ggml.ggml_set_name(gx, b"x")
  215. gpad = ggml.from_numpy(ctx, padding_mask[0])
  216. ggml.ggml_set_name(gpad, b"padding_mask")
  217. gy = ggml.forward(
  218. "StandardConformerEncoderLayer",
  219. g_model,
  220. "speech_encoder.inner.layers.0",
  221. gx,
  222. None, # TODO support padding mask
  223. )
  224. gf = ggml.ggml_build_forward(gy)
  225. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  226. y = ggml.to_numpy(gy)
  227. y_exp, _ = layer(x, padding_mask)
  228. y_exp = y_exp.numpy()
  229. assert y.shape == y_exp.shape
  230. assert np.allclose(y_exp, y, atol=2e-3)
  231. def test_StandardConformerEncoderAdaptorLayer_forward(
  232. ctx: Ctx, g_model: c_void_p
  233. ) -> None:
  234. pt_model = load_pt_model()
  235. x = torch.load("/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/dev/seqs_before_adaptor.pt")
  236. layer = pt_model.speech_encoder.adaptor_layers[0]
  237. gx = ggml.from_numpy(ctx, x[0])
  238. ggml.ggml_set_name(gx, b"x")
  239. gy = ggml.forward(
  240. "StandardConformerEncoderAdaptorLayer",
  241. g_model,
  242. "speech_encoder.adaptor_layers.0",
  243. gx,
  244. None, # TODO support padding mask
  245. )
  246. gf = ggml.ggml_build_forward(gy)
  247. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  248. y = ggml.to_numpy(gy)
  249. y_exp, _ = layer(x, None)
  250. y_exp = y_exp.numpy()
  251. assert y.shape == y_exp.shape
  252. assert np.allclose(y_exp, y, atol=2e-3)
  253. def test_StandardTransformerEncoder_forward(
  254. ctx: Ctx, g_model: c_void_p
  255. ) -> None:
  256. x = torch.empty((2, 21, 1024))
  257. padding_mask = torch.ones((2, 21))
  258. torch.random.manual_seed(0)
  259. torch.nn.init.uniform_(x, -1, 1)
  260. gx = ggml.from_numpy(ctx, x)
  261. ggml.ggml_set_name(gx, b"x")
  262. gpad = ggml.from_numpy(ctx, padding_mask)
  263. ggml.ggml_set_name(gpad, b"padding_mask")
  264. gy = ggml.forward(
  265. "StandardTransformerEncoder",
  266. g_model,
  267. "text_encoder",
  268. gx,
  269. None, # TODO support padding mask
  270. )
  271. gf = ggml.ggml_build_forward(gy)
  272. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  273. y = ggml.to_numpy(gy)
  274. pt_model = load_pt_model()
  275. y_exp, _ = pt_model.text_encoder(x, padding_mask)
  276. y_exp = y_exp.numpy()
  277. assert y.shape == y_exp.shape
  278. assert np.allclose(y_exp, y, atol=1e-4)
  279. def test_StandardConformerEncoder_forward(
  280. ctx: Ctx, g_model: c_void_p
  281. ) -> None:
  282. pt_model = load_pt_model()
  283. wav, _ = torchaudio.load("/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/test.wav")
  284. gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
  285. ggml.ggml_set_name(gx, b"x")
  286. gy = ggml.forward(
  287. "StandardConformerEncoder",
  288. g_model,
  289. "speech_encoder",
  290. gx,
  291. None, # TODO support padding mask
  292. )
  293. gf = ggml.ggml_build_forward(gy)
  294. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  295. converter = WaveformToFbankConverter(
  296. num_mel_bins=80,
  297. waveform_scale=2**15,
  298. channel_last=True,
  299. standardize=True,
  300. )
  301. converter_input = {
  302. "waveform": wav.transpose(0, 1),
  303. "sample_rate": 16000.,
  304. "format": -1,
  305. }
  306. y = ggml.to_numpy(gy)
  307. speech_encoder_input = pt_model.speech_encoder_frontend(converter(converter_input)["fbank"].unsqueeze(0), None)[0]
  308. y_exp, _ = pt_model.speech_encoder(speech_encoder_input, None)
  309. y_exp = y_exp.numpy() # remove batch dimension
  310. assert y.shape == y_exp.shape
  311. assert np.allclose(y_exp, y, atol=1e-2) # There are 10 elements in a 137*1024 tensor with error >1e-2
  312. def test_WaveformToFbank_forward(
  313. ctx: Ctx, g_model: c_void_p
  314. ) -> None:
  315. pt_model = load_pt_model()
  316. converter = WaveformToFbankConverter(
  317. num_mel_bins=80,
  318. waveform_scale=2**15,
  319. channel_last=True,
  320. standardize=True,
  321. )
  322. extractor = Wav2Vec2FbankFeatureExtractor(80, 2, 1)
  323. wav, _ = torchaudio.load("/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/test.wav")
  324. gx = ggml.from_numpy(ctx, wav * 2**15) # Apply scale before sending into ggml!
  325. ggml.ggml_set_name(gx, b"x")
  326. gy = ggml.forward(
  327. "WaveformToFbank",
  328. g_model,
  329. "",
  330. gx
  331. )
  332. gf = ggml.ggml_build_forward(gy)
  333. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  334. y = ggml.to_numpy(gy)
  335. converter_input = {
  336. "waveform": wav.transpose(0, 1),
  337. "sample_rate": 16000.,
  338. "format": -1,
  339. }
  340. y_exp = extractor(converter(converter_input)["fbank"].unsqueeze(0), None)[0]
  341. y_exp = y_exp.numpy()
  342. assert y.shape == y_exp.shape
  343. assert np.allclose(y_exp, y, atol=4e-3) # reduce? error is from standardization
  344. def test_causal_attention_mask(ctx: Ctx):
  345. x = torch.zeros((5, 10))
  346. generator = fairseq2.nn.transformer.CausalAttentionMaskGenerator()
  347. mask_exp = generator(x)
  348. gx = ggml.from_numpy(ctx, x)
  349. gmask = ggml.causal_attention_mask(ctx, gx)
  350. mask = ggml.to_numpy(gmask)
  351. assert mask_exp.shape == (10, 10)
  352. assert mask.shape == (10, 10)
  353. assert np.allclose(mask, mask_exp)
  354. def test_PositionalEmbedding_forward(ctx: Ctx, g_model: c_void_p) -> None:
  355. seq = torch.zeros((4, 20, 1024), dtype=torch.float32)
  356. # this _legacy_pad_idx is suspicious. Shouldn't the model use 1 ? But
  357. # this is consistent with pt_model.text_decoder_frontend.pos_encoder._sin_offset
  358. pos_encoder = fairseq2.nn.SinusoidalPositionEncoder(1024, 55, _legacy_pad_idx=0)
  359. y_exp = pos_encoder(seq, None)[0].numpy()
  360. gseq = ggml.from_numpy(ctx, seq[0].numpy())
  361. ggml.ggml_set_name(gseq, b"seq")
  362. gy = ggml.forward(
  363. "PositionalEmbedding", g_model, "text_decoder_frontend.pos_encoder", gseq
  364. )
  365. gf = ggml.ggml_build_forward(gy)
  366. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  367. y = ggml.to_numpy(gy)
  368. assert y.shape == y_exp.shape
  369. assert np.allclose(y_exp, y, atol=1e-6)
  370. def test_TransformerEmbeddingFrontend_forward(
  371. ctx: Ctx, g_model: c_void_p
  372. ) -> None:
  373. seq = torch.arange(2 * 20).reshape(2, 20)
  374. seq[1, 15:] = 0 # padding for second sentence
  375. seq_len = torch.tensor([20, 15])
  376. gseq = ggml.from_numpy(ctx, seq.numpy().astype(np.int32))
  377. ggml.ggml_set_name(gseq, b"seq")
  378. gy = ggml.forward(
  379. "TransformerEmbeddingFrontend", g_model, "text_decoder_frontend", gseq
  380. )
  381. ggml.build_and_compute(ctx, gy)
  382. y = ggml.to_numpy(gy)
  383. pt_model = load_pt_model()
  384. y_exp, _ = pt_model.text_decoder_frontend(seq, seq_len)
  385. y_exp = y_exp.numpy()
  386. assert y.shape == y_exp.shape
  387. assert np.allclose(y_exp, y, atol=1e-6)
  388. def test_StandardTransformerDecoder_forward(
  389. ctx: Ctx, g_model: c_void_p
  390. ) -> None:
  391. x = torch.empty((2, 13, 1024))
  392. encoder_out = torch.empty((2, 21, 1024))
  393. padding_mask = torch.ones((2, 13))
  394. torch.random.manual_seed(0)
  395. torch.nn.init.uniform_(x, -1, 1)
  396. torch.nn.init.uniform_(encoder_out, -1, 1)
  397. gx = ggml.from_numpy(ctx, x)
  398. ggml.ggml_set_name(gx, b"x")
  399. gpad = ggml.from_numpy(ctx, padding_mask)
  400. ggml.ggml_set_name(gpad, b"padding_mask")
  401. genc = ggml.from_numpy(ctx, encoder_out)
  402. gy = ggml.forward(
  403. "StandardTransformerDecoder",
  404. g_model,
  405. "text_decoder",
  406. gx,
  407. None, # TODO support padding mask,
  408. genc,
  409. None,
  410. )
  411. ggml.build_and_compute(ctx, gy)
  412. y = ggml.to_numpy(gy)
  413. pt_model = load_pt_model()
  414. y_exp, _ = pt_model.text_decoder(x, padding_mask, encoder_out, None)
  415. y_exp = y_exp.numpy()
  416. assert y.shape == y_exp.shape
  417. assert np.allclose(y_exp, y, atol=1e-4 if UNITY_FLASH_ATTN else 1e-3)
  418. def test_t2tt(ctx: Ctx, g_model: c_void_p):
  419. src_lang = "eng"
  420. src_text = "We are all in a yellow submarine."
  421. tgt_lang = "fra"
  422. sample_file = Path(__file__).parent / "sample_input.npz"
  423. beam_size = 2
  424. if not sample_file.exists():
  425. translator = load_translator()
  426. device = translator.device
  427. token_encoder = translator.text_tokenizer.create_encoder(
  428. task="translation", lang=src_lang, mode="source", device=device
  429. )
  430. src = translator.collate(token_encoder(src_text))
  431. text_out, _ = translator.get_prediction(
  432. translator.model,
  433. translator.text_tokenizer,
  434. translator.unit_tokenizer,
  435. src,
  436. input_modality=Modality.TEXT,
  437. output_modality=Modality.TEXT,
  438. tgt_lang=tgt_lang,
  439. beam_size=beam_size,
  440. )
  441. tgt_text = str(text_out.sentences[0])
  442. assert tgt_text == "Nous sommes tous dans un sous-marin jaune."
  443. hypotheses = [
  444. {
  445. "seq": h.seq.tolist(),
  446. "score": h.score.item(),
  447. "step_scores": h.step_scores.numpy(),
  448. }
  449. for h in text_out.generator_output.results[0]
  450. ]
  451. np.savez(
  452. sample_file,
  453. encoder_output=text_out.encoder_output.numpy(),
  454. encoder_padding_mask=text_out.encoder_padding_mask.numpy(),
  455. hypotheses=hypotheses,
  456. )
  457. # allow_pickle to load the hyp dicts
  458. text_out = np.load(sample_file, allow_pickle=True)
  459. encoder_out = ggml.from_numpy(ctx, text_out["encoder_output"])
  460. encoder_padding_mask = ggml.from_numpy(ctx, text_out["encoder_padding_mask"])
  461. prefix_seq = np.array(text_out["hypotheses"][0]["seq"][:2]).astype(np.int32)
  462. max_seq_len = max(len(h["seq"]) for h in text_out["hypotheses"])
  463. job = ggml.SequenceGeneratorJob()
  464. job.opts.beam_size = beam_size
  465. job.opts.min_seq_len = 1
  466. job.opts.soft_max_seq_len_a = 1
  467. job.opts.soft_max_seq_len_b = 200
  468. job.opts.hard_max_seq_len = int(max_seq_len * 1.5)
  469. job.opts.len_penalty = 1.0
  470. job.opts.unk_penalty = 0.0
  471. job.opts.normalize_scores = True
  472. job.prefix_seq = ggml.from_numpy(ctx, prefix_seq)
  473. job.pad_idx = 0
  474. job.unk_idx = 1
  475. job.bos_idx = 2
  476. job.eos_idx = 3
  477. result_ptr = ggml.generate_sequence(
  478. g_model, job, encoder_out, encoder_padding_mask, ctx
  479. )
  480. results = [result_ptr[i] for i in range(beam_size) if result_ptr[i].seq != None]
  481. assert len(results) == len(text_out["hypotheses"])
  482. for g_hyp, exp in zip(results, text_out["hypotheses"]):
  483. g_tokens = list(ggml.to_numpy(g_hyp.seq))
  484. g_step_scores = ggml.to_numpy(g_hyp.step_scores)
  485. assert g_tokens == exp["seq"]
  486. assert g_hyp.score == pytest.approx(exp["score"], rel=1e-2)
  487. # The score error is big, this may negatively impact the beam search.
  488. assert np.allclose(g_step_scores, exp["step_scores"], atol=0.1)
  489. def test_s2tt(ctx: Ctx, g_model: c_void_p):
  490. src_audio_wav, _ = torchaudio.load("/private/home/dnn/internal_sc/seamless_communication/ggml/examples/unity/test.wav")
  491. # translator = load_translator()
  492. # token_encoder = translator.text_tokenizer.create_encoder(
  493. # task="translation"
  494. # )
  495. # decoded_audio = {
  496. # "waveform": src_audio_wav.t(),
  497. # "sample_rate": 16000.,
  498. # "format": -1,
  499. # }
  500. # src = translator.collate(translator.convert_to_fbank(decoded_audio))["fbank"]
  501. # text_out, _ = translator.get_prediction(
  502. # translator.model,
  503. # translator.text_tokenizer,
  504. # translator.unit_tokenizer,
  505. # src,
  506. # input_modality=Modality.SPEECH,
  507. # output_modality=Modality.TEXT,
  508. # tgt_lang="cmn",
  509. # )
  510. # tgt_text = str(text_out.sentences[0])
  511. # assert tgt_text == "大家好 , 世界无主题。"
  512. # tgt_tokens = text_out.generator_output.results[0][0].seq
  513. # score = text_out.generator_output.results[0][0].score.item()
  514. tgt_tokens = [ 3, 256200, 16991, 249346, 249725, 146, 25220, 251069, 249211,
  515. 251148, 253935, 3] # "大家好 , 世界无主题。"
  516. gx = ggml.from_numpy(ctx, src_audio_wav * 2**15) # Apply scale before sending into ggml!
  517. ggml.ggml_set_name(gx, b"x")
  518. gy = ggml.forward(
  519. "StandardConformerEncoder",
  520. g_model,
  521. "speech_encoder",
  522. gx,
  523. None, # TODO support padding mask
  524. )
  525. gf = ggml.ggml_build_forward(gy)
  526. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  527. encoder_out = gy
  528. job = ggml.SequenceGeneratorJob()
  529. job.opts.beam_size = 5
  530. job.opts.min_seq_len = 1
  531. job.opts.soft_max_seq_len_a = 1
  532. job.opts.soft_max_seq_len_b = 200
  533. job.opts.hard_max_seq_len = 1000
  534. job.opts.len_penalty = 1.0
  535. job.opts.unk_penalty = 0.0
  536. job.prefix_seq = ggml.from_numpy(ctx, np.array([3, 256200]).astype(np.int32))
  537. job.opts.normalize_scores = True
  538. job.pad_idx = 0
  539. job.unk_idx = 1
  540. job.bos_idx = 2
  541. job.eos_idx = 3
  542. result_ptr = ggml.generate_sequence(
  543. g_model, job, encoder_out, None, ctx
  544. )
  545. g_tokens = list(ggml.to_numpy(result_ptr[0].seq))
  546. assert g_tokens == tgt_tokens