fairseq2.cpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. #include <math.h>
  2. #include "ggml.h"
  3. #include "fairseq2.h"
  4. #include <unordered_map>
  5. #include <algorithm>
  6. /// allocate the fairseq2 model and hyperparameters
  7. extern "C" fairseq2_model* fairseq2_model_alloc() {
  8. // pre-allocate some memory to write hyperparameters and tensors pointers
  9. auto* model = new fairseq2_model;
  10. model->hparams = new std::uint8_t[8 * 1024];
  11. model->arch = new std::uint64_t[16 * 1024]; // max tensors allowed
  12. model->tensors_ctx = nullptr;
  13. return model;
  14. };
  15. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  16. if (model->tensors_ctx) ggml_free(model->tensors_ctx);
  17. delete (std::uint64_t*)(model->arch);
  18. delete (std::uint8_t*)model->hparams;
  19. delete model;
  20. };
  21. extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
  22. model->ctx = ctx;
  23. }
  24. extern "C" std::string* std_string_alloc(char* c_str) {
  25. return new std::string(c_str);
  26. }
  27. extern "C" void std_string_free(std::string* str) {
  28. delete str;
  29. }
  30. bool has_layer(fairseq2_model& model, const std::string& name) {
  31. return model.tensors.find(name) != model.tensors.end();
  32. }
  33. extern "C" ggml_tensor* Linear_forward(
  34. fairseq2_model& model,
  35. const std::string &prefix,
  36. ggml_tensor* input // (d_in)
  37. ) {
  38. // Note: for now we assumed un-batched input
  39. ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
  40. GGML_ASSERT(weight != nullptr);
  41. ggml_tensor* out = ggml_mul_mat(model.ctx, weight, input); // (d_out)
  42. ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
  43. if (bias == nullptr) return out;
  44. return ggml_add_inplace(model.ctx, out, bias);
  45. }
  46. extern "C" ggml_tensor* LayerNorm_forward(
  47. fairseq2_model& model,
  48. const std::string &prefix,
  49. ggml_tensor* input
  50. ) {
  51. ggml_tensor* weight = model.tensors[prefix + ".weight"];
  52. GGML_ASSERT(weight != nullptr);
  53. ggml_tensor* bias = model.tensors[prefix + ".bias"];
  54. GGML_ASSERT(bias != nullptr);
  55. auto ctx = model.ctx;
  56. // TODO: should `eps` be part of unity hparams ?
  57. input = ggml_norm(ctx, input, /*eps*/1e-5);
  58. return ggml_add_inplace(
  59. ctx,
  60. ggml_mul_inplace(ctx, ggml_repeat(ctx, weight, input), input),
  61. ggml_repeat(ctx, bias, input)
  62. );
  63. }
  64. extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
  65. fairseq2_model& model,
  66. const std::string& prefix,
  67. ggml_tensor* seqs
  68. ) {
  69. seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
  70. // inner_activation = ReLu // TODO: allow other activation
  71. seqs = ggml_relu_inplace(model.ctx, seqs);
  72. if (has_layer(model, prefix + ".inner_layer_norm")) {
  73. seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
  74. }
  75. seqs = Linear_forward(model, prefix + ".output_proj", seqs);
  76. return seqs;
  77. }
  78. ggml_tensor* reshape_num_head(ggml_context* ctx, ggml_tensor* x, int num_heads) {
  79. int slen = x->ne[1];
  80. int model_dim = x->ne[0];
  81. // (S, dim) -> (S, H, H_dim)
  82. x = ggml_reshape_3d(ctx, x, model_dim / num_heads, num_heads, slen);
  83. // (S, H, H_dim) -> (H, S, H_dim)
  84. x = ggml_permute(ctx, x, 0, 2, 1, 3);
  85. return x;
  86. }
  87. // flash_attn doesn't work for cross attention because it assumes Q <= K
  88. // TODO: enable flash_attn only for the encoder
  89. # define UNITY_FLASH_ATTN 0
  90. extern "C" ggml_tensor* MultiheadAttention_forward(
  91. fairseq2_model& model,
  92. const std::string &prefix,
  93. ggml_tensor* queries, // (slen, d_in)
  94. ggml_tensor* keys, // (klen, d_in)
  95. ggml_tensor* values, // (klen, d_out)
  96. ggml_tensor* mask // (klen, slen)
  97. ) {
  98. int slen = queries->ne[1];
  99. int slenk = keys->ne[1];
  100. int num_heads = 16;
  101. int head_dim = queries->ne[0] / num_heads;
  102. ggml_context* ctx = model.ctx;
  103. ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries);
  104. q = reshape_num_head(ctx, q, num_heads); // (H, S, H_dim)
  105. ggml_set_name(q, "q");
  106. ggml_tensor* k = Linear_forward(model, prefix + ".k_proj", keys);
  107. k = reshape_num_head(ctx, k, num_heads); // (H, Sk, H_dim)
  108. ggml_set_name(k, "k");
  109. ggml_tensor* v = Linear_forward(model, prefix + ".v_proj", values);
  110. v = ggml_reshape_3d(ctx, v, head_dim, num_heads, slenk); // (Sk, H, H_dim)
  111. v = ggml_permute(ctx, v, 1, 2, 0, 3); // (H, H_dim, Sk)
  112. v = ggml_cont(ctx, v);
  113. ggml_set_name(v, "v");
  114. #if UNITY_FLASH_ATTN
  115. // For flash_attn, we assume either no masks, or triangular masks.
  116. ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/mask != nullptr); // (H, S, H_dim)
  117. ggml_set_name(attn, "attn");
  118. attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (S, H, H_dim)
  119. attn = ggml_cont(ctx, attn);
  120. attn = ggml_reshape_2d(ctx, attn, num_heads * head_dim, slen); // (S, H * H_dim)
  121. #else
  122. // (H, Sk, H_dim) x (H, S, H_dim) -> (H, S, Sk)
  123. ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
  124. ggml_set_name(qk, "qk");
  125. ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
  126. ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
  127. qk = ggml_scale(ctx, qk, qk_scale);
  128. ggml_set_name(qk, "qk_scaled");
  129. if (mask) qk = ggml_add(ctx, qk, mask);
  130. // TODO: upgrade qk to float32 if needed
  131. ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (H, Sk, S)
  132. ggml_set_name(attn_weights, "attn_weights");
  133. // (H, S, Sk) x (H, H_dim, Sk) -> (H, H_dim, S)
  134. ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
  135. ggml_set_name(attn, "attn");
  136. attn = ggml_reshape_2d(ctx, attn, slen, num_heads * head_dim); // (H * H_dim, S)
  137. attn = ggml_transpose(ctx, attn); // (S, H * H_dim)
  138. // // I'm not sure why this one is needed ...
  139. attn = ggml_cont(ctx, attn);
  140. #endif // UNITY_FLASH_ATTN
  141. // out -> (S, d_out)
  142. ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
  143. ggml_set_name(out, "out");
  144. return out;
  145. }
  146. extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
  147. fairseq2_model& model,
  148. const std::string& prefix,
  149. ggml_tensor* seqs,
  150. ggml_tensor* padding_mask
  151. ) {
  152. ggml_context* ctx = model.ctx;
  153. // TODO: read norm_order from model
  154. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  155. // _forward_self_attn(seqs, padding_mask)
  156. auto residual = seqs;
  157. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  158. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  159. // TODO: add padding_mask to MultiheadAttention_forward
  160. GGML_ASSERT(padding_mask == nullptr);
  161. seqs = MultiheadAttention_forward(
  162. model,
  163. prefix + ".self_attn",
  164. seqs,
  165. seqs,
  166. seqs,
  167. /*attention masks=*/nullptr
  168. );
  169. if (has_layer(model, prefix + ".self_attn_norm"))
  170. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  171. seqs = ggml_add(ctx, seqs, residual);
  172. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  173. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  174. // _forward_ffn(seqs)
  175. residual = seqs;
  176. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  177. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  178. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  179. // TODO: if self.residual_scale is not None:
  180. // residual = self.residual_scale * residual
  181. seqs = ggml_add(ctx, seqs, residual);
  182. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  183. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  184. return seqs;
  185. }
  186. /// ggml_slice(X, -1, start, end) is equivalent to X[start:end]
  187. /// ggml_slice(X, 0, start, end) is equivalent to X[..., start:end]
  188. struct ggml_tensor * ggml_slice(
  189. struct ggml_context * ctx,
  190. struct ggml_tensor * a,
  191. int axis,
  192. int64_t start,
  193. int64_t end
  194. ) {
  195. int64_t ne[4];
  196. std::copy(a->ne, a->ne + 4, ne);
  197. if (axis < 0) axis = a->n_dims + axis;
  198. if (start < 0) start = ne[axis] + start;
  199. if (end < 0) end = ne[axis] + end;
  200. GGML_ASSERT(0 <= start);
  201. GGML_ASSERT(start <= end);
  202. GGML_ASSERT(end <= ne[axis]);
  203. ne[axis] = end - start;
  204. size_t offset = a->nb[axis] * start;
  205. size_t* nb = a->nb;
  206. ggml_tensor* result = ggml_view_4d(ctx, a, ne[0], ne[1], ne[2], ne[3], nb[1], nb[2], nb[3], offset);
  207. result->n_dims = a->n_dims;
  208. return result;
  209. }
  210. extern "C" ggml_tensor* PositionalEmbedding_forward(
  211. fairseq2_model& model,
  212. const std::string& prefix,
  213. ggml_tensor* embeds
  214. ) {
  215. // This only work with the simple pos encoders
  216. int seq_len = embeds->ne[1];
  217. ggml_tensor* full_pos_embeds = model.tensors[prefix];
  218. ggml_tensor* pos_embeds = ggml_slice(model.ctx, full_pos_embeds, /*axis*/1, 0, seq_len);
  219. return ggml_add(model.ctx, embeds, pos_embeds);
  220. }
  221. extern "C" ggml_tensor* TransformerEmbeddingFrontend_forward(
  222. fairseq2_model& model,
  223. const std::string& prefix,
  224. ggml_tensor* seqs
  225. // TODO: state_bag
  226. ) {
  227. ggml_context* ctx = model.ctx;
  228. ggml_tensor* embed_weights = model.tensors[prefix + ".embed.weight"];
  229. GGML_ASSERT(embed_weights != nullptr);
  230. ggml_tensor* embeds = ggml_get_rows(ctx, embed_weights, seqs);
  231. // padding mask ?
  232. // padding_mask = to_padding_mask(embeds, seq_lens)
  233. if (has_layer(model, prefix + ".pos_encoder")) {
  234. embeds = PositionalEmbedding_forward(model, prefix + ".pos_encoder", embeds);
  235. }
  236. if (has_layer(model, prefix + ".layer_norm")) {
  237. embeds = LayerNorm_forward(model, prefix + ".layer_norm", embeds);
  238. }
  239. return embeds;
  240. }
  241. extern "C" ggml_tensor* StandardTransformerEncoder_forward(
  242. fairseq2_model& model,
  243. const std::string& prefix,
  244. ggml_tensor* seqs,
  245. ggml_tensor* padding_mask
  246. ) {
  247. int layer_idx = 0;
  248. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  249. while (has_layer(model, layer_name)) {
  250. seqs = StandardTransformerEncoderLayer_forward(
  251. model, layer_name, seqs, padding_mask
  252. );
  253. ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
  254. layer_idx += 1;
  255. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  256. }
  257. if (has_layer(model, prefix + ".layer_norm"))
  258. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  259. return seqs;
  260. }
  261. extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
  262. fairseq2_model& model,
  263. const std::string& prefix,
  264. ggml_tensor* seqs,
  265. ggml_tensor* self_attn_mask,
  266. ggml_tensor* encoder_output,
  267. ggml_tensor* encoder_padding_mask
  268. ) {
  269. ggml_context* ctx = model.ctx;
  270. // TODO: read norm_order from model
  271. auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
  272. // _forward_self_attn(seqs, padding_mask)
  273. auto residual = seqs;
  274. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  275. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  276. seqs = MultiheadAttention_forward(
  277. model,
  278. prefix + ".self_attn",
  279. seqs,
  280. seqs,
  281. seqs,
  282. /*attention masks=*/self_attn_mask
  283. );
  284. if (has_layer(model, prefix + ".self_attn_norm"))
  285. seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
  286. seqs = ggml_add(ctx, seqs, residual);
  287. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  288. seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
  289. // _forward_encoder_decoder_attn
  290. if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
  291. // `encoder_output` must be `None` for decoder-only attention.
  292. GGML_ASSERT(encoder_output == nullptr);
  293. return seqs;
  294. }
  295. // `encoder_output` must not be `None` for encoder-decoder attention.
  296. GGML_ASSERT(encoder_output != nullptr);
  297. residual = seqs;
  298. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  299. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  300. seqs = MultiheadAttention_forward(
  301. model,
  302. prefix + ".encoder_decoder_attn",
  303. seqs,
  304. encoder_output,
  305. encoder_output,
  306. /*attention masks=*/encoder_padding_mask
  307. );
  308. seqs = ggml_add(ctx, seqs, residual);
  309. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  310. seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
  311. // _forward_ffn(seqs)
  312. residual = seqs;
  313. if (norm_order != TRANSFORMER_NORM_ORDER_POST)
  314. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  315. seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
  316. // TODO:
  317. // if self.residual_scale is not None:
  318. // residual = self.residual_scale * residual
  319. seqs = ggml_add(ctx, seqs, residual);
  320. if (norm_order == TRANSFORMER_NORM_ORDER_POST)
  321. seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
  322. return seqs;
  323. }
  324. extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
  325. auto seq_len = seqs->ne[1];
  326. // TODO: allow other ggml_type
  327. ggml_tensor* mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
  328. return ggml_diag_mask_inf(ctx, mask, 0);
  329. }
  330. extern "C" ggml_tensor* StandardTransformerDecoder_forward(
  331. fairseq2_model& model,
  332. const std::string& prefix,
  333. ggml_tensor* seqs,
  334. ggml_tensor* padding_mask,
  335. ggml_tensor* encoder_output,
  336. ggml_tensor* encoder_padding_mask
  337. ) {
  338. int layer_idx = 0;
  339. std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
  340. ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
  341. while (has_layer(model, layer_name)) {
  342. seqs = StandardTransformerDecoderLayer_forward(
  343. model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
  344. );
  345. ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
  346. layer_idx += 1;
  347. layer_name = prefix + ".layers." + std::to_string(layer_idx);
  348. }
  349. if (has_layer(model, prefix + ".layer_norm"))
  350. seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
  351. return seqs;
  352. }
  353. using IncrementalStateBag = std::unordered_map<ggml_tensor*, ggml_tensor*>*;
  354. int _determine_max_seq_len(const SequenceGeneratorJob& job, int source_seq_len) {
  355. auto opts = job.opts;
  356. int max_seq_len = -1;
  357. if (source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
  358. max_seq_len = opts.hard_max_seq_len;
  359. } else {
  360. max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * source_seq_len + opts.soft_max_seq_len_b));
  361. }
  362. if (opts.min_seq_len > max_seq_len) {
  363. printf(
  364. "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
  365. opts.min_seq_len,
  366. max_seq_len
  367. );
  368. GGML_ASSERT(opts.min_seq_len <= max_seq_len);
  369. }
  370. int prefix_seq_len = job.prefix_seq->ne[0];
  371. if (prefix_seq_len >= max_seq_len) {
  372. printf(
  373. "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
  374. prefix_seq_len,
  375. max_seq_len
  376. );
  377. GGML_ASSERT(prefix_seq_len < max_seq_len);
  378. }
  379. return max_seq_len;
  380. }
  381. void _fan_out_encoder_output(
  382. ggml_context* ctx,
  383. ggml_tensor** encoder_output_out,
  384. ggml_tensor** encoder_padding_mask_out,
  385. int beam_size
  386. ) {
  387. // (S_enc, M)
  388. ggml_tensor* encoder_output = *encoder_output_out;
  389. ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
  390. // (B, S_enc, M)
  391. ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
  392. // (S_enc, M) -> (B, S_enc, M)
  393. *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
  394. // (S_enc) -> (B, S_enc)
  395. ggml_tensor* shape_mask = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, encoder_padding_mask->ne[0], beam_size);
  396. if (encoder_padding_mask != nullptr) {
  397. *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape_mask);
  398. }
  399. }
  400. ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
  401. // TODO: this isn't the most precise way of doing this
  402. return ggml_log_inplace(ctx, ggml_soft_max_inplace(ctx, logits));
  403. }
  404. ggml_tensor* ggml_expand_2d(ggml_context* ctx, ggml_tensor* x, int64_t ne0, int64_t ne1) {
  405. ggml_tensor* shape = ggml_new_tensor_2d(ctx, GGML_TYPE_I8, ne0, ne1);
  406. ggml_type true_type = x->type;
  407. x->type = GGML_TYPE_F32;
  408. ggml_tensor* y = ggml_repeat(ctx, x, shape);
  409. y->type = true_type;
  410. return y;
  411. }
  412. void _bootstrap_seqs_and_scores(
  413. fairseq2_model& model,
  414. const SequenceGeneratorJob& job,
  415. ggml_tensor* full_seqs,
  416. ggml_tensor* scores,
  417. ggml_tensor* encoder_output,
  418. ggml_tensor* encoder_padding_mask,
  419. IncrementalStateBag state_bag
  420. ) {
  421. int prefix_seq_len = job.prefix_seq->ne[0];
  422. int max_seq_len = scores->ne[0];
  423. int beam_size = scores->ne[1];
  424. GGML_ASSERT(prefix_seq_len > 0);
  425. if (prefix_seq_len == 1)
  426. return;
  427. ggml_context* ctx = model.ctx;
  428. // full_seqs[:, : prefix_seq_len] = job.prefix_seq;
  429. full_seqs->type = GGML_TYPE_F32;
  430. job.prefix_seq->type = GGML_TYPE_F32;
  431. ggml_tensor* seqs = ggml_cpy(ctx, job.prefix_seq, ggml_slice(ctx, full_seqs, 0, 0, prefix_seq_len));
  432. // We have to bootstrap the model with the already fanned-out encoder
  433. // output to correctly initialize its incremental state.
  434. // (S_pfx) -> (N x B, S_pfx - 1)
  435. // prefix_seq[:-1].expand(beam_size, -1)
  436. seqs = ggml_expand_2d(ctx, ggml_slice(ctx, seqs, 0, 0, prefix_seq_len - 1), prefix_seq_len - 1, beam_size);
  437. seqs->type = GGML_TYPE_I32;
  438. // Bootstrap the model state with prefix sequence.
  439. seqs = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", seqs);
  440. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  441. model,
  442. "text_decoder",
  443. seqs,
  444. /*padding_mask*/ nullptr,
  445. encoder_output,
  446. encoder_padding_mask
  447. // TODO: state_bag
  448. );
  449. // TODO state_bag.increment_step(prefix_seq_len - 1)
  450. // logits, lprobs: (N, S_pfx - 1, V)
  451. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  452. int vocab_size = logits->ne[0];
  453. ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_slice(ctx, logits, 1, 0, 1));
  454. ggml_cgraph gf = ggml_build_forward(lprobs);
  455. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  456. full_seqs->type = GGML_TYPE_I32;
  457. job.prefix_seq->type = GGML_TYPE_I32;
  458. // Fetch scores of next steps from "lprobs"
  459. float p_score = 0;
  460. for (int i = 0; i < prefix_seq_len; ++i) {
  461. int p = ggml_get_i32_1d(job.prefix_seq, i);
  462. p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
  463. for (int b = 0; b < beam_size; ++b) {
  464. // scores: (N, S)
  465. // Note: First step (e.g. BOS)'s score is always 0.
  466. ggml_set_f32_1d(scores, b * max_seq_len + i + 1, p_score);
  467. }
  468. }
  469. }
  470. /// Represents a hypothesis produced by a sequence generator.
  471. struct Hypothesis {
  472. /// The generated sequence.
  473. ggml_tensor* seq;
  474. /// The score of the hypothesis.
  475. float score;
  476. /// The score of each individual sequence step.
  477. ggml_tensor* step_scores;
  478. };
  479. /// Represents a standard beam search algoritm.
  480. int StandardBeamSearch_step(
  481. ggml_context* ctx,
  482. int step_nr,
  483. bool is_start_step,
  484. ggml_tensor* lprobs, // (B, V)
  485. ggml_tensor* last_scores, // (B)
  486. ggml_tensor* candidate_indices
  487. ) {
  488. GGML_ASSERT(lprobs->n_dims == 2);
  489. int vocab_size = lprobs->ne[0];
  490. int beam_size = lprobs->ne[1];
  491. GGML_ASSERT(last_scores->n_dims == 2);
  492. GGML_ASSERT(last_scores->ne[0] == 1);
  493. GGML_ASSERT(last_scores->ne[1] == beam_size);
  494. GGML_ASSERT(candidate_indices->ne[0] == beam_size * vocab_size);
  495. // should this be done by the caller ?
  496. if (is_start_step) {
  497. // At the initial step, all hypotheses are equally likely, so we use
  498. // only the first beam.
  499. lprobs = ggml_slice(ctx, lprobs, 1, 0, 1);
  500. lprobs = ggml_cont(ctx, lprobs);
  501. // The first step always indicates the beginning of the sequence and
  502. // has no score.
  503. if (step_nr > 0) {
  504. lprobs = ggml_add_inplace(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  505. }
  506. } else {
  507. // Make probabilities contain cumulative scores for each hypothesis.
  508. // TODO this seems incorrect
  509. lprobs = ggml_add(ctx, lprobs, ggml_repeat(ctx, last_scores, lprobs));
  510. }
  511. ggml_cgraph gf = ggml_build_forward(lprobs);
  512. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  513. // Take the best 2 x `beam_size` predictions. We'll choose the first
  514. // `beam_size` of these which don't predict EOS to continue with.
  515. // (N, 2 x B)
  516. // `vocab_size` - 1 to never select PAD.
  517. int topk = std::min(2 * beam_size, vocab_size - 1);
  518. auto comp = [lprobs](std::int32_t a, std::int32_t b) {
  519. return ggml_get_f32_1d(lprobs, a) > ggml_get_f32_1d(lprobs, b);
  520. };
  521. auto cand = (std::int32_t*)candidate_indices->data;
  522. std::partial_sort(cand, cand + topk, cand + (beam_size * vocab_size), comp);
  523. return topk;
  524. }
  525. void ggml_detach(ggml_tensor* a) {
  526. a->op = GGML_OP_NONE;
  527. a->src[0] = nullptr;
  528. }
  529. int _finalize_hypothesis(
  530. const SequenceGeneratorJob& job,
  531. ggml_context* ctx,
  532. int step_nr,
  533. int vocab_size,
  534. std::int32_t candidate,
  535. float tok_score,
  536. ggml_tensor* seqs, // (beam_size, seq_len)
  537. ggml_tensor* scores, // (beam_size, seq_len)
  538. std::vector<Hypothesis>& hypotheses
  539. ) {
  540. std::int32_t beam = candidate / vocab_size;
  541. std::int32_t token = candidate % vocab_size;
  542. // Detect beams that reached the minimum length and that end with an EOS.
  543. bool eos = token == job.eos_idx;
  544. eos &= tok_score != -INFINITY;
  545. if (!eos) return 0;
  546. // If the candidate beam is "finished", let's copy the score and sequence
  547. ggml_tensor* tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
  548. ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
  549. auto tok = (std::int32_t*)tokens->data;
  550. for (int i = 0; i < step_nr + 1; ++i) {
  551. tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
  552. }
  553. tok[step_nr + 1] = token;
  554. // Convert from cumulative to per-step scores.
  555. auto sc = (float*)step_scores->data;
  556. float last_score = tok_score;
  557. for (int i = step_nr; i >= 0; --i) {
  558. float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i);
  559. sc[i] = last_score - sc0;
  560. last_score = sc0;
  561. }
  562. if (job.opts.normalize_scores)
  563. // Skip first EOS since it is always 0 and skews normalization.
  564. tok_score /= (float)std::pow((step_nr + 1), job.opts.len_penalty);
  565. // TODO the score computed here isn't the same than computed by fairseq2.
  566. hypotheses.emplace_back(Hypothesis{tokens, tok_score, step_scores});
  567. return 1;
  568. }
  569. /// Generates a translation for a single sequence
  570. // TODO: finish this for beam_size=1
  571. // * find out why score is different (seq is the same though)
  572. // TODO: add IncrementalStateBag support to avoid a O(N^3) generation.
  573. // TODO: support beam_size > 1:
  574. // * most layers assume un-batched input, but we want to handle several beams at once
  575. // * need to port "reorder_state_dict"
  576. // TODO: clean up
  577. // * replace manual tensor tweaking with ggml_set_*d (ggml_set_slice could be useful)
  578. extern "C" float generate_sequence(
  579. fairseq2_model& model,
  580. const SequenceGeneratorJob& job,
  581. ggml_tensor* encoder_output,
  582. ggml_tensor* encoder_padding_mask,
  583. ggml_tensor* output_seq
  584. ) {
  585. ggml_context* ctx = model.ctx;
  586. size_t eos_idx = job.eos_idx;
  587. auto pad_idx = job.pad_idx;
  588. ggml_tensor* embed = model.tensors["text_decoder_frontend.embed.weight"];
  589. size_t vocab_size = embed->ne[1];
  590. std::size_t beam_size = job.opts.beam_size;
  591. int source_seq_len = encoder_output->ne[1];
  592. int max_seq_len = _determine_max_seq_len(job, source_seq_len);
  593. // (S_enc, M) -> (B, S_enc, M)
  594. _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
  595. std::vector<Hypothesis> finished_searches;
  596. finished_searches.reserve(beam_size);
  597. // Initialize buffers. (B, S)
  598. ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
  599. ggml_set_i32(seqs, 0);
  600. ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
  601. ggml_set_f32(scores, 0.0);
  602. IncrementalStateBag state_bag = {};
  603. _bootstrap_seqs_and_scores(
  604. model, job, seqs, scores, encoder_output, encoder_padding_mask, state_bag
  605. );
  606. int prefix_seq_len = job.prefix_seq->ne[0];
  607. int start_step = prefix_seq_len - 1;
  608. // Holds the indices of beams (a beam can occur more than once) that we
  609. // should continue with in the next step.
  610. ggml_tensor* beam_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  611. ggml_tensor* next_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, beam_size);
  612. ggml_tensor* next_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, beam_size);
  613. // Array with integers up to 'vocab_size * beam_size' to represent next beams to explore
  614. ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
  615. for (std::size_t i = 0; i < vocab_size * beam_size; ++i)
  616. ((int32_t *)(candidate_indices->data))[i] = i;
  617. // TODO: memory management
  618. // there should be a per-step ggml_context for intermediary results
  619. // start of beam search:
  620. for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
  621. // if (beam_indices != nullptr) {
  622. // // If not `None`, it means in the last step we finalized one or
  623. // // more searches. We should ensure that we adjust `beam_indices`
  624. // // before reordering `decoder`'s incremental state.
  625. // if (search_indices != nullptr) {
  626. // num_searches = search_indices->ne[0];
  627. // // (N)
  628. // delta = search_indices - torch.arange(num_searches, device=device)
  629. // // (N) -> (N, 1)
  630. // delta.unsqueeze_(-1)
  631. // // Adjust indices to take into account removed searches.
  632. // beam_indices.view(num_searches, beam_size).add_(delta * beam_size)
  633. // }
  634. // // state_bag.reorder(beam_indices)
  635. // }
  636. // because of no IncrementalStateBag we pass input from the start
  637. // decoder_input = seqs[:, 0 : step_nr + 1]
  638. ggml_tensor* decoder_input = ggml_slice(ctx, seqs, 0, 0, step_nr + 1);
  639. decoder_input = TransformerEmbeddingFrontend_forward(model, "text_decoder_frontend", decoder_input);
  640. ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
  641. model,
  642. "text_decoder",
  643. decoder_input,
  644. nullptr, // We never generate PAD.
  645. encoder_output,
  646. encoder_padding_mask
  647. // state_bag=state_bag,
  648. );
  649. // state_bag.increment_step()
  650. // Because of no IncrementalStateBag decoder_output here is of shape (B, S, D)
  651. // Just look at the last token.
  652. decoder_output = ggml_slice(ctx, decoder_output, 1, step_nr, step_nr+1);
  653. ggml_tensor* logits = Linear_forward(model, "final_proj", decoder_output);
  654. ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
  655. // Compute lprobs here so we can modify it in place in the lprob tweaking phase
  656. // TODO: use ggml properly compute the tweaks
  657. ggml_cgraph gf = ggml_build_forward(lprobs);
  658. printf("beam search step %d. Graph.n_nodes: %d\n", step_nr, gf.n_nodes);
  659. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  660. ggml_detach(lprobs);
  661. // // Do not allow EOS before reaching the minimum sequence length.
  662. if (step_nr < job.opts.min_seq_len) {
  663. // lprobs[:, :, self.eos_idx] = -INFINITY;
  664. for (size_t i = 0; i < beam_size; ++i)
  665. ggml_set_f32_1d(lprobs, vocab_size * i + eos_idx, -INFINITY);
  666. }
  667. // If we have reached the maximum length, force the last step to be EOS.
  668. // TODO: should this be done in an adhoc loop ? how often does that happen anyway ?
  669. if (step_nr == max_seq_len - 2) {
  670. // lprobs[:, :, : self.eos_idx] = -torch.inf
  671. // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
  672. for (size_t b = 0; b < beam_size; ++b) {
  673. size_t t = 0;
  674. for (t = 0; t < eos_idx; ++t)
  675. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  676. for (t = eos_idx + 1; t < vocab_size; ++t)
  677. ggml_set_f32_1d(lprobs, vocab_size * b + t, -INFINITY);
  678. }
  679. }
  680. // Never allow PAD.
  681. for (size_t i = 0; i < beam_size; ++i)
  682. ggml_set_f32_1d(lprobs, vocab_size * i + pad_idx, -INFINITY);
  683. // Apply UNK penalty.
  684. if (job.unk_idx >= 0 && job.opts.unk_penalty != 0) {
  685. // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
  686. auto lprobs_raw = ggml_get_data_f32(lprobs);
  687. for (size_t i = 0; i < beam_size; ++i)
  688. lprobs_raw[vocab_size * i + job.unk_idx] -= job.opts.unk_penalty;
  689. }
  690. // Determine candidates for the next step.
  691. // (N, 2 x B)
  692. int topk = StandardBeamSearch_step(
  693. ctx,
  694. step_nr,
  695. step_nr == start_step,
  696. lprobs,
  697. ggml_slice(ctx, scores, 0, step_nr, step_nr+1),
  698. candidate_indices
  699. );
  700. std::size_t ongoing_beams = 0;
  701. int new_num_searches = 0;
  702. for (std::int32_t i = 0; i < topk; ++i) {
  703. int c = ggml_get_f32_1d(candidate_indices, i);
  704. float tok_score = ggml_get_f32_1d(lprobs, c);
  705. int finished = _finalize_hypothesis(job, ctx, step_nr, vocab_size, c, tok_score, seqs, scores, finished_searches);
  706. new_num_searches += finished;
  707. if (!finished){
  708. std::int32_t beam = c / vocab_size;
  709. std::int32_t token = c % vocab_size;
  710. ggml_set_f32_1d(beam_indices, ongoing_beams, beam);
  711. ggml_set_f32_1d(next_tokens, ongoing_beams, token);
  712. ggml_set_f32_1d(next_scores, ongoing_beams, tok_score);
  713. ongoing_beams += 1 - finished;
  714. }
  715. if (ongoing_beams >= beam_size) break;
  716. if (finished_searches.size() >= beam_size)
  717. goto end_of_beam_search;
  718. }
  719. // Reorder beams in the `seq` and `score` buffers. The same beam can
  720. // be selected more than once.
  721. ggml_tensor* new_seqs = seqs;
  722. // ggml_get_rows and ggml_set only work with floats ...
  723. new_seqs->type = GGML_TYPE_F32;
  724. ggml_tensor* new_scores = scores;
  725. if (step_nr > start_step) {
  726. // (B, S), (B) -> (B, S)
  727. new_seqs = ggml_get_rows(ctx, seqs, beam_indices);
  728. new_scores = ggml_get_rows(ctx, new_scores, beam_indices);
  729. }
  730. // new_seqs[:, step_nr + 1] = next_tokens
  731. gf = ggml_build_forward(ggml_set_1d_inplace(ctx, new_seqs, next_tokens, new_seqs->nb[0] * (step_nr + 1)));
  732. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  733. ggml_detach(new_seqs);
  734. new_seqs->type = GGML_TYPE_I32;
  735. gf = ggml_build_forward(ggml_set_1d_inplace(ctx, new_scores, next_scores, new_scores->nb[0] * (step_nr + 1)));
  736. ggml_graph_compute_with_ctx(ctx, &gf, 1);
  737. ggml_detach(new_scores);
  738. // TODO the old seqs and score buffers could be reused for next step
  739. seqs = new_seqs;
  740. scores = new_scores;
  741. }
  742. end_of_beam_search:
  743. // Ensure that hypotheses are sorted by decreasing scores before returning.
  744. std::sort(
  745. finished_searches.begin(),
  746. finished_searches.end(),
  747. [](Hypothesis a, Hypothesis b) { return a.score > b.score; }
  748. );
  749. // For now just return the best sequence
  750. // TODO: return structured output
  751. *output_seq = *(finished_searches[0].seq);
  752. return finished_searches[0].score;
  753. }