123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- #include "ggml.h"
- #include <cmath>
- #include <cstdio>
- #include <cstdlib>
- #include <cassert>
- #define MAX_NARGS 2
- #if defined(__GNUC__)
- #pragma GCC diagnostic ignored "-Wdouble-promotion"
- #endif
- //
- // logging
- //
- #define GGML_DEBUG 0
- #if (GGML_DEBUG >= 1)
- #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG(...)
- #endif
- #if (GGML_DEBUG >= 5)
- #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_5(...)
- #endif
- #if (GGML_DEBUG >= 10)
- #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_10(...)
- #endif
- #define GGML_PRINT(...) printf(__VA_ARGS__)
- float frand(void) {
- return (float)rand()/(float)RAND_MAX;
- }
- int irand(int n) {
- return rand()%n;
- }
- void get_random_dims(int64_t * dims, int ndims) {
- dims[0] = dims[1] = dims[2] = dims[3] = 1;
- for (int i = 0; i < ndims; i++) {
- dims[i] = 1 + irand(4);
- }
- }
- void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) {
- dims[0] = dims[1] = dims[2] = dims[3] = 1;
- for (int i = 0; i < ndims; i++) {
- dims[i] = min + irand(max-min);
- }
- }
- struct ggml_tensor * get_random_tensor(
- struct ggml_context * ctx0,
- int ndims,
- int64_t ne[],
- float fmin,
- float fmax) {
- struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
- switch (ndims) {
- case 1:
- for (int i0 = 0; i0 < ne[0]; i0++) {
- ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
- }
- break;
- case 2:
- for (int i1 = 0; i1 < ne[1]; i1++) {
- for (int i0 = 0; i0 < ne[0]; i0++) {
- ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
- }
- }
- break;
- case 3:
- for (int i2 = 0; i2 < ne[2]; i2++) {
- for (int i1 = 0; i1 < ne[1]; i1++) {
- for (int i0 = 0; i0 < ne[0]; i0++) {
- ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
- }
- }
- }
- break;
- case 4:
- for (int i3 = 0; i3 < ne[3]; i3++) {
- for (int i2 = 0; i2 < ne[2]; i2++) {
- for (int i1 = 0; i1 < ne[1]; i1++) {
- for (int i0 = 0; i0 < ne[0]; i0++) {
- ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
- }
- }
- }
- }
- break;
- default:
- assert(false);
- };
- return result;
- }
- float get_element(const struct ggml_tensor * t, int idx) {
- return ((float *)t->data)[idx];
- }
- void set_element(struct ggml_tensor * t, int idx, float value) {
- ((float *)t->data)[idx] = value;
- }
- int main(void) {
- struct ggml_init_params params = {
- /* .mem_size = */ 1024*1024*1024,
- /* .mem_buffer = */ NULL,
- /* .no_alloc = */ false,
- };
- struct ggml_context * ctx = ggml_init(params);
- int64_t ne1[4] = {4, 128, 1, 1};
- int64_t ne2[4] = {4, 256, 1, 1};;
- int64_t ne3[4] = {128, 256, 1, 1};
- struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
- struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1);
- ggml_set_param(ctx, a);
- ggml_set_param(ctx, b);
- struct ggml_tensor * c = get_random_tensor(ctx, 2, ne3, -1, +1);
- struct ggml_tensor * ab = ggml_mul_mat(ctx, a, b);
- struct ggml_tensor * d = ggml_sub(ctx, c, ab);
- struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d));
- struct ggml_cgraph ge = ggml_build_forward(e);
- ggml_graph_reset(&ge);
- ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
- const float fe = ggml_get_f32_1d(e, 0);
- printf("%s: e = %.4f\n", __func__, fe);
- struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
- ggml_opt(ctx, opt_params, e);
- ggml_graph_reset(&ge);
- ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
- const float fe_opt = ggml_get_f32_1d(e, 0);
- printf("%s: original e = %.4f\n", __func__, fe);
- printf("%s: optimized e = %.4f\n", __func__, fe_opt);
- const bool success = (fe_opt <= fe);
- assert(success);
- ggml_free(ctx);
- return success ? 0 : -1;
- }
- // int64_t ne1[4] = {4, 128, 1, 1};
- // int64_t ne2[4] = {4, 256, 1, 1};;
- // int64_t ne3[4] = {128, 256, 1, 1};
- // main: original e = 25890.9375
- // main: optimized e = 10094.7031
- // int64_t ne1[4] = {8, 128, 1, 1};
- // int64_t ne2[4] = {8, 256, 1, 1};;
- // int64_t ne3[4] = {128, 256, 1, 1};
- // main: original e = 39429.5078
- // main: optimized e = 9275.8936
- // int64_t ne1[4] = {16, 128, 1, 1};
- // int64_t ne2[4] = {16, 256, 1, 1};;
- // int64_t ne3[4] = {128, 256, 1, 1};
- // main: original e = 68371.1328
- // main: optimized e = 7854.4502
- // int64_t ne1[4] = {32, 128, 1, 1};
- // int64_t ne2[4] = {32, 256, 1, 1};;
- // int64_t ne3[4] = {128, 256, 1, 1};
- // main: original e = 126061.1953
- // main: optimized e = 5451.0166
- // int64_t ne1[4] = {4, 1024, 1, 1};
- // int64_t ne2[4] = {4, 2048, 1, 1};;
- // int64_t ne3[4] = {1024, 2048, 1, 1};
- // main: original e = 1620817.8750
- // main: optimized e = 698387.6875
- // another run on M1
- // int64_t ne1[4] = {4, 1024, 1, 1};
- // int64_t ne2[4] = {4, 2048, 1, 1};;
- // int64_t ne3[4] = {1024, 2048, 1, 1};
- // main: original e = 1629595.6250
- // main: optimized e = 698169.1250
- // int64_t ne1[4] = {32, 1024, 1, 1};
- // int64_t ne2[4] = {32, 2048, 1, 1};;
- // int64_t ne3[4] = {1024, 2048, 1, 1};
- // main: original e = 8146770.5000
- // main: optimized e = 651119.1250
|