123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385 |
- #include <math.h>
- #include "ggml.h"
- #include "fairseq2.h"
- /// allocate the fairseq2 model and hyperparameters
- extern "C" fairseq2_model* fairseq2_model_alloc() {
- // pre-allocate some memory to write hyperparameters and tensors pointers
- auto* model = new fairseq2_model;
- model->hparams = new std::uint8_t[8 * 1024];
- model->arch = new std::uint64_t[16 * 1024]; // max tensors allowed
- model->tensors_ctx = nullptr;
- return model;
- };
- extern "C" void fairseq2_model_free(fairseq2_model* model) {
- if (model->tensors_ctx) ggml_free(model->tensors_ctx);
- delete (std::uint64_t*)(model->arch);
- delete (std::uint8_t*)model->hparams;
- delete model;
- };
- extern "C" void fairseq2_model_set_inference_ctx(fairseq2_model* model, ggml_context* ctx) {
- model->ctx = ctx;
- }
- extern "C" std::string* std_string_alloc(char* c_str) {
- return new std::string(c_str);
- }
- extern "C" void std_string_free(std::string* str) {
- delete str;
- }
- bool has_layer(fairseq2_model& model, const std::string& name) {
- return model.tensors.find(name) != model.tensors.end();
- }
- extern "C" ggml_tensor* Linear_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* input // (d_in)
- ) {
- // Note: for now we assumed un-batched input
- ggml_tensor* weight = model.tensors[prefix + ".weight"]; // (d_in, d_out)
- GGML_ASSERT(weight != nullptr);
- ggml_tensor* bias = model.tensors[prefix + ".bias"]; // (d_out)
- GGML_ASSERT(bias != nullptr);
- return ggml_add(
- model.ctx,
- ggml_mul_mat(model.ctx, weight, input), // (d_out)
- bias
- );
- }
- extern "C" ggml_tensor* LayerNorm_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* input) {
- ggml_tensor* weight = model.tensors[prefix + ".weight"];
- GGML_ASSERT(weight != nullptr);
- ggml_tensor* bias = model.tensors[prefix + ".bias"];
- GGML_ASSERT(bias != nullptr);
- auto ctx = model.ctx;
- // TODO: should `eps` be part of unity hparams ?
- input = ggml_norm(ctx, input, /*eps*/1e-5);
- return ggml_add(
- ctx,
- ggml_mul(ctx, ggml_repeat(ctx, weight, input), input),
- ggml_repeat(ctx, bias, input)
- );
- }
- extern "C" ggml_tensor* StandardFeedForwardNetwork_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs
- ) {
- seqs = Linear_forward(model, prefix + ".inner_proj", seqs);
- // inner_activation = ReLu // TODO: allow other activation
- seqs = ggml_relu(model.ctx, seqs);
- if (has_layer(model, prefix + ".inner_layer_norm")) {
- seqs = LayerNorm_forward(model, prefix + ".inner_layer_norm", seqs);
- }
- seqs = Linear_forward(model, prefix + ".output_proj", seqs);
- return seqs;
- }
- ggml_tensor* reshape_num_head(ggml_context* ctx, ggml_tensor* x, int num_heads) {
- int slen = x->ne[1];
- int model_dim = x->ne[0];
- // (S, dim) -> (S, H, H_dim)
- x = ggml_reshape_3d(ctx, x, model_dim / num_heads, num_heads, slen);
- // (S, H, H_dim) -> (H, S, H_dim)
- x = ggml_permute(ctx, x, 0, 2, 1, 3);
- return x;
- }
- # define UNITY_FLASH_ATTN
- extern "C" ggml_tensor* MultiheadAttention_forward(
- fairseq2_model& model,
- const std::string &prefix,
- ggml_tensor* queries, // (slen, d_in)
- ggml_tensor* keys, // (klen, d_in)
- ggml_tensor* values, // (klen, d_out)
- ggml_tensor* mask // (klen, slen)
- ) {
- int slen = queries->ne[1];
- int slenk = keys->ne[1];
- int num_heads = 16;
- int head_dim = queries->ne[0] / num_heads;
- ggml_context* ctx = model.ctx;
- ggml_tensor* q = Linear_forward(model, prefix + ".q_proj", queries);
- q = reshape_num_head(ctx, q, num_heads); // (H, S, H_dim)
- ggml_set_name(q, "q");
- ggml_tensor* k = Linear_forward(model, prefix + ".k_proj", keys);
- k = reshape_num_head(ctx, k, num_heads); // (H, Sk, H_dim)
- ggml_set_name(k, "k");
- ggml_tensor* v = Linear_forward(model, prefix + ".v_proj", values);
- v = ggml_reshape_3d(ctx, v, head_dim, num_heads, slenk); // (Sk, H, H_dim)
- v = ggml_permute(ctx, v, 1, 2, 0, 3); // (H, H_dim, Sk)
- v = ggml_cont(ctx, v);
- ggml_set_name(v, "v");
- #ifdef UNITY_FLASH_ATTN
- // For flash_attn, we assume either no masks, or triangular masks.
- ggml_tensor* attn = ggml_flash_attn(ctx, q, k, v, /*masked*/mask != nullptr); // (H, S, H_dim)
- ggml_set_name(attn, "attn");
- attn = ggml_permute(ctx, attn, 0, 2, 1, 3); // (S, H, H_dim)
- attn = ggml_cont(ctx, attn);
- attn = ggml_reshape_2d(ctx, attn, num_heads * head_dim, slen); // (S, H * H_dim)
- #else
- // (H, Sk, H_dim) x (H, S, H_dim) -> (H, S, Sk)
- ggml_tensor* qk = ggml_mul_mat(ctx, k, q);
- ggml_set_name(qk, "qk");
- ggml_tensor* qk_scale = ggml_new_tensor_1d(ctx, qk->type, 1);
- ggml_set_f32(qk_scale, 1.0f/sqrtf(float(head_dim)));
- qk = ggml_scale(ctx, qk, qk_scale);
- ggml_set_name(qk, "qk_scaled");
- if (mask) qk = ggml_add(ctx, qk, mask);
- // TODO: upgrade qk to float32 if needed
- ggml_tensor* attn_weights = ggml_soft_max(ctx, qk); // (H, Sk, S)
- ggml_set_name(attn_weights, "attn_weights");
- // (H, S, Sk) x (H, H_dim, Sk) -> (H, H_dim, S)
- ggml_tensor* attn = ggml_mul_mat(ctx, attn_weights, v);
- ggml_set_name(attn, "attn");
- attn = ggml_reshape_2d(ctx, attn, slen, num_heads * head_dim); // (H * H_dim, S)
- attn = ggml_transpose(ctx, attn); // (S, H * H_dim)
- // // I'm not sure why this one is needed ...
- attn = ggml_cont(ctx, attn);
- #endif // UNITY_FLASH_ATTN
- // out -> (S, d_out)
- ggml_tensor* out = Linear_forward(model, prefix + ".output_proj", attn);
- ggml_set_name(out, "out");
- return out;
- }
- extern "C" ggml_tensor* StandardTransformerEncoderLayer_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- // TODO: read norm_order from model
- auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
- // _forward_self_attn(seqs, padding_mask)
- auto residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // TODO: add padding_mask to MultiheadAttention_forward
- GGML_ASSERT(padding_mask == nullptr);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".self_attn",
- seqs,
- seqs,
- seqs,
- /*attention masks=*/nullptr
- );
- if (has_layer(model, prefix + ".self_attn_norm"))
- seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // _forward_ffn(seqs)
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
- // TODO: if self.residual_scale is not None:
- // residual = self.residual_scale * residual
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* StandardTransformerEncoder_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask
- ) {
- int layer_idx = 0;
- std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
- while (has_layer(model, layer_name)) {
- seqs = StandardTransformerEncoderLayer_forward(
- model, layer_name, seqs, padding_mask
- );
- ggml_set_name(seqs, ("x_enc_" + std::to_string(layer_idx)).c_str());
- layer_idx += 1;
- layer_name = prefix + ".layers." + std::to_string(layer_idx);
- }
- if (has_layer(model, prefix + ".layer_norm"))
- seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
- return seqs;
- }
- extern "C" ggml_tensor* StandardTransformerDecoderLayer_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* self_attn_mask,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask
- ) {
- ggml_context* ctx = model.ctx;
- // TODO: read norm_order from model
- auto norm_order = TRANSFORMER_NORM_ORDER_PRE;
- // _forward_self_attn(seqs, padding_mask)
- auto residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".self_attn",
- seqs,
- seqs,
- seqs,
- /*attention masks=*/self_attn_mask
- );
- if (has_layer(model, prefix + ".self_attn_norm"))
- seqs = LayerNorm_forward(model, prefix + ".self_attn_norm", seqs);
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".self_attn_layer_norm", seqs);
- // _forward_encoder_decoder_attn
- if (! has_layer(model, prefix + ".encoder_decoder_attn")) {
- // `encoder_output` must be `None` for decoder-only attention.
- GGML_ASSERT(encoder_output == nullptr);
- return seqs;
- }
- // `encoder_output` must not be `None` for encoder-decoder attention.
- GGML_ASSERT(encoder_output != nullptr);
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
- seqs = MultiheadAttention_forward(
- model,
- prefix + ".encoder_decoder_attn",
- seqs,
- encoder_output,
- encoder_output,
- /*attention masks=*/encoder_padding_mask
- );
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".encoder_decoder_attn_layer_norm", seqs);
- // _forward_ffn(seqs)
- residual = seqs;
- if (norm_order != TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- seqs = StandardFeedForwardNetwork_forward(model, prefix + ".ffn", seqs);
- // TODO:
- // if self.residual_scale is not None:
- // residual = self.residual_scale * residual
- seqs = ggml_add(ctx, seqs, residual);
- if (norm_order == TRANSFORMER_NORM_ORDER_POST)
- seqs = LayerNorm_forward(model, prefix + ".ffn_layer_norm", seqs);
- return seqs;
- }
- ggml_tensor* causal_mask_cache = nullptr;
- extern "C" ggml_tensor* causal_attention_mask(ggml_context* ctx, ggml_tensor* seqs) {
- auto seq_len = seqs->ne[0];
- auto mask = causal_mask_cache;
- // TODO: this cache only works as long as we don't change the size/device too often
- // TODO: allow other ggml_type
- if (mask == nullptr || mask->backend != seqs->backend || mask->ne[0] < seq_len) {
- printf("new causal_mask (%ld, %ld) created\n", seq_len, seq_len);
- mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, seq_len, seq_len);
- char* data = (char*)mask->data;
- // tensor([[0., -inf, -inf, -inf],
- // [0., 0., -inf, -inf],
- // [0., 0., 0., -inf],
- // [0., 0., 0., 0.]])
- for (int i = 0; i < seq_len; ++i) {
- char* row = data + i * mask->nb[1];
- for (int j = 0; j <= i; ++j) {*(float*)(row + j * mask->nb[0]) = 0;}
- for (int j = i + 1; j < seq_len; ++j) {*(float*)(row + j * mask->nb[0]) = -INFINITY;}
- }
- causal_mask_cache = mask;
- }
- return ggml_view_2d(ctx, mask, seq_len, seq_len, mask->nb[1], 0);
- }
- extern "C" ggml_tensor* StandardTransformerDecoder_forward(
- fairseq2_model& model,
- const std::string& prefix,
- ggml_tensor* seqs,
- ggml_tensor* padding_mask,
- ggml_tensor* encoder_output,
- ggml_tensor* encoder_padding_mask
- ) {
- int layer_idx = 0;
- std::string layer_name = prefix + ".layers." + std::to_string(layer_idx);
- ggml_tensor* self_attn_mask = causal_attention_mask(model.ctx, seqs);
- while (has_layer(model, layer_name)) {
- seqs = StandardTransformerDecoderLayer_forward(
- model, layer_name, seqs, self_attn_mask, encoder_output, encoder_padding_mask
- );
- ggml_set_name(seqs, ("x_dec_" + std::to_string(layer_idx)).c_str());
- layer_idx += 1;
- layer_name = prefix + ".layers." + std::to_string(layer_idx);
- }
- if (has_layer(model, prefix + ".layer_norm"))
- seqs = LayerNorm_forward(model, prefix + ".layer_norm", seqs);
- return seqs;
- }
|