123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809 |
- #define _USE_MATH_DEFINES // for M_PI
- #include "common.h"
- // third-party utilities
- // use your favorite implementations
- #define DR_WAV_IMPLEMENTATION
- #include "dr_wav.h"
- #include <cmath>
- #include <cstring>
- #include <fstream>
- #include <regex>
- #include <locale>
- #include <codecvt>
- #include <sstream>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- // Function to check if the next argument exists
- std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
- if (i + 1 < argc && argv[i + 1][0] != '-') {
- return argv[++i];
- } else {
- fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
- gpt_print_usage(argc, argv, params);
- exit(0);
- }
- }
- bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
- for (int i = 1; i < argc; i++) {
- std::string arg = argv[i];
- if (arg == "-s" || arg == "--seed") {
- params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-t" || arg == "--threads") {
- params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
- params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-p" || arg == "--prompt") {
- params.prompt = get_next_arg(i, argc, argv, arg, params);
- } else if (arg == "-n" || arg == "--n_predict") {
- params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "--top_k") {
- params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "--top_p") {
- params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "--temp") {
- params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "--repeat-last-n") {
- params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "--repeat-penalty") {
- params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-b" || arg == "--batch_size") {
- params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-m" || arg == "--model") {
- params.model = get_next_arg(i, argc, argv, arg, params);
- } else if (arg == "-i" || arg == "--interactive") {
- params.interactive = true;
- } else if (arg == "-ip" || arg == "--interactive-port") {
- params.interactive = true;
- params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-h" || arg == "--help") {
- gpt_print_usage(argc, argv, params);
- exit(0);
- } else if (arg == "-f" || arg == "--file") {
- get_next_arg(i, argc, argv, arg, params);
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- break;
- }
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
- if (params.prompt.back() == '\n') {
- params.prompt.pop_back();
- }
- } else if (arg == "-tt" || arg == "--token_test") {
- params.token_test = get_next_arg(i, argc, argv, arg, params);
- }
- else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- gpt_print_usage(argc, argv, params);
- exit(0);
- }
- }
- return true;
- }
- void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
- fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
- fprintf(stderr, " prompt to start generation with (default: random)\n");
- fprintf(stderr, " -f FNAME, --file FNAME\n");
- fprintf(stderr, " load prompt from a file\n");
- fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
- fprintf(stderr, " test tokenization\n");
- fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
- fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
- fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
- fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
- fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
- fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
- fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
- fprintf(stderr, " -m FNAME, --model FNAME\n");
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
- fprintf(stderr, "\n");
- }
- std::string gpt_random_prompt(std::mt19937 & rng) {
- const int r = rng() % 10;
- switch (r) {
- case 0: return "So";
- case 1: return "Once upon a time";
- case 2: return "When";
- case 3: return "The";
- case 4: return "After";
- case 5: return "If";
- case 6: return "import";
- case 7: return "He";
- case 8: return "She";
- case 9: return "They";
- default: return "To";
- }
- return "The";
- }
- std::string trim(const std::string & s) {
- std::regex e("^\\s+|\\s+$");
- return std::regex_replace(s, e, "");
- }
- std::string replace(const std::string & s, const std::string & from, const std::string & to) {
- std::string result = s;
- size_t pos = 0;
- while ((pos = result.find(from, pos)) != std::string::npos) {
- result.replace(pos, from.length(), to);
- pos += to.length();
- }
- return result;
- }
- void gpt_vocab::add_special_token(const std::string & token) {
- special_tokens.push_back(token);
- }
- std::map<std::string, int32_t> json_parse(const std::string & fname) {
- std::map<std::string, int32_t> result;
- // read file into string
- std::string json;
- {
- std::ifstream ifs(fname);
- if (!ifs) {
- fprintf(stderr, "Failed to open %s\n", fname.c_str());
- exit(1);
- }
- json = std::string((std::istreambuf_iterator<char>(ifs)),
- (std::istreambuf_iterator<char>()));
- }
- if (json[0] != '{') {
- return result;
- }
- // parse json
- {
- bool has_key = false;
- bool in_token = false;
- std::string str_key = "";
- std::string str_val = "";
- int n = json.size();
- for (int i = 1; i < n; ++i) {
- if (!in_token) {
- if (json[i] == ' ') continue;
- if (json[i] == '"') {
- in_token = true;
- continue;
- }
- } else {
- if (json[i] == '\\' && i+1 < n) {
- if (has_key == false) {
- str_key += json[i];
- } else {
- str_val += json[i];
- }
- ++i;
- } else if (json[i] == '"') {
- if (has_key == false) {
- has_key = true;
- ++i;
- while (json[i] == ' ') ++i;
- ++i; // :
- while (json[i] == ' ') ++i;
- if (json[i] != '\"') {
- while (json[i] != ',' && json[i] != '}') {
- str_val += json[i++];
- }
- has_key = false;
- } else {
- in_token = true;
- continue;
- }
- } else {
- has_key = false;
- }
- str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
- str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
- str_key = ::replace(str_key, "\\\"", "\""); // \\\" -> "
- try {
- result[str_key] = std::stoi(str_val);
- } catch (...) {
- //fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
- }
- str_key = "";
- str_val = "";
- in_token = false;
- continue;
- }
- if (has_key == false) {
- str_key += json[i];
- } else {
- str_val += json[i];
- }
- }
- }
- }
- return result;
- }
- std::string convert_to_utf8(const std::wstring & input) {
- std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
- return converter.to_bytes(input);
- }
- std::wstring convert_to_wstring(const std::string & input) {
- std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
- return converter.from_bytes(input);
- }
- void gpt_split_words(std::string str, std::vector<std::string>& words) {
- const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
- const std::regex re(pattern);
- std::smatch m;
- while (std::regex_search(str, m, re)) {
- for (auto x : m) {
- words.push_back(x);
- }
- str = m.suffix();
- }
- }
- std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
- std::vector<std::string> words;
- // first split the text into words
- {
- std::string str = text;
- // Generate the subpattern from the special_tokens vector if it's not empty
- if (!vocab.special_tokens.empty()) {
- const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
- std::string special_tokens_subpattern;
- for (const auto & token : vocab.special_tokens) {
- if (!special_tokens_subpattern.empty()) {
- special_tokens_subpattern += "|";
- }
- special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
- }
- std::regex re(special_tokens_subpattern);
- std::smatch m;
- // Split the text by special tokens.
- while (std::regex_search(str, m, re)) {
- // Split the substrings in-between special tokens into words.
- gpt_split_words(m.prefix(), words);
- // Add matched special tokens as words.
- for (auto x : m) {
- words.push_back(x);
- }
- str = m.suffix();
- }
- // Remaining text without special tokens will be handled below.
- }
- gpt_split_words(str, words);
- }
- // find the longest token that forms each word in words:
- std::vector<gpt_vocab::id> tokens;
- for (const auto & word : words) {
- for (int i = 0; i < (int) word.size(); ){
- for (int j = word.size() - 1; j >= i; j--){
- auto cand = word.substr(i, j-i+1);
- auto it = vocab.token_to_id.find(cand);
- if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab
- tokens.push_back(it->second);
- i = j + 1;
- break;
- }
- else if (j == i){ // word.substr(i, 1) has no matching
- fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
- i++;
- }
- }
- }
- }
- return tokens;
- }
- std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
- std::vector<gpt_vocab::id> output;
- std::stringstream ss(input);
- std::string token;
- while (std::getline(ss, token, delimiter)) {
- output.push_back(std::stoi(token));
- }
- return output;
- }
- std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
- if (fpath_test.empty()){
- fprintf(stderr, "%s : No test file found.\n", __func__);
- return std::map<std::string, std::vector<gpt_vocab::id>>();
- }
- std::map<std::string, std::vector<gpt_vocab::id>> tests;
- auto fin = std::ifstream(fpath_test, std::ios_base::in);
- const char * delimeter = " => ";
- const char del_tok = ',';
- std::string line;
- while (std::getline(fin, line)) {
- size_t delimiterPos = line.find(delimeter);
- if (delimiterPos != std::string::npos) {
- std::string text = line.substr(0, delimiterPos);
- std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));
- tests[text] = parse_tokens_from_string(s_tokens, del_tok);
- }
- }
- return tests;
- }
- void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){
- std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);
- size_t n_fails = 0;
- for (const auto & test : tests) {
- std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);
- if (tokens != test.second){
- n_fails++;
- // print out failure cases
- fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());
- fprintf(stderr, "%s : tokens in hf: ", __func__);
- for (const auto & t : test.second) {
- fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
- }
- fprintf(stderr, "\n");
- fprintf(stderr, "%s : tokens in ggml: ", __func__);
- for (const auto & t : tokens) {
- fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
- }
- fprintf(stderr, "\n");
- }
- }
- fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());
- }
- bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
- printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
- vocab.token_to_id = ::json_parse(fname);
- for (const auto & kv : vocab.token_to_id) {
- vocab.id_to_token[kv.second] = kv.first;
- }
- printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
- // print the vocabulary
- //for (auto kv : vocab.token_to_id) {
- // printf("'%s' -> %d\n", kv.first.data(), kv.second);
- //}
- return true;
- }
- gpt_vocab::id gpt_sample_top_k_top_p(
- const gpt_vocab & vocab,
- const float * logits,
- int top_k,
- double top_p,
- double temp,
- std::mt19937 & rng) {
- int n_logits = vocab.id_to_token.size();
- std::vector<std::pair<double, gpt_vocab::id>> logits_id;
- logits_id.reserve(n_logits);
- {
- const double scale = 1.0/temp;
- for (int i = 0; i < n_logits; ++i) {
- logits_id.push_back(std::make_pair(logits[i]*scale, i));
- }
- }
- // find the top K tokens
- std::partial_sort(
- logits_id.begin(),
- logits_id.begin() + top_k, logits_id.end(),
- [](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
- return a.first > b.first;
- });
- logits_id.resize(top_k);
- double maxl = -INFINITY;
- for (const auto & kv : logits_id) {
- maxl = std::max(maxl, kv.first);
- }
- // compute probs for the top K tokens
- std::vector<double> probs;
- probs.reserve(logits_id.size());
- double sum = 0.0;
- for (const auto & kv : logits_id) {
- double p = exp(kv.first - maxl);
- probs.push_back(p);
- sum += p;
- }
- // normalize the probs
- for (auto & p : probs) {
- p /= sum;
- }
- if (top_p < 1.0f) {
- double cumsum = 0.0f;
- for (int i = 0; i < top_k; i++) {
- cumsum += probs[i];
- if (cumsum >= top_p) {
- top_k = i + 1;
- probs.resize(top_k);
- logits_id.resize(top_k);
- break;
- }
- }
- cumsum = 1.0/cumsum;
- for (int i = 0; i < (int) probs.size(); i++) {
- probs[i] *= cumsum;
- }
- }
- //printf("\n");
- //for (int i = 0; i < (int) probs.size(); i++) {
- // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
- //}
- //exit(0);
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- int idx = dist(rng);
- return logits_id[idx].second;
- }
- gpt_vocab::id gpt_sample_top_k_top_p_repeat(
- const gpt_vocab & vocab,
- const float * logits,
- const int32_t * last_n_tokens_data,
- size_t last_n_tokens_data_size,
- int top_k,
- double top_p,
- double temp,
- int repeat_last_n,
- float repeat_penalty,
- std::mt19937 & rng) {
- int n_logits = vocab.id_to_token.size();
- const auto * plogits = logits;
- const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
- if (temp <= 0) {
- // select the token with the highest logit directly
- float max_logit = plogits[0];
- gpt_vocab::id max_id = 0;
- for (int i = 1; i < n_logits; ++i) {
- if (plogits[i] > max_logit) {
- max_logit = plogits[i];
- max_id = i;
- }
- }
- return max_id;
- }
- std::vector<std::pair<double, gpt_vocab::id>> logits_id;
- logits_id.reserve(n_logits);
- {
- const float scale = 1.0f/temp;
- for (int i = 0; i < n_logits; ++i) {
- // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
- // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
- if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
- // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
- if (plogits[i] < 0.0f) {
- logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
- }
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale, i));
- }
- }
- }
- // find the top K tokens
- std::partial_sort(
- logits_id.begin(),
- logits_id.begin() + top_k, logits_id.end(),
- [](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
- return a.first > b.first;
- });
- logits_id.resize(top_k);
- double maxl = -INFINITY;
- for (const auto & kv : logits_id) {
- maxl = std::max(maxl, kv.first);
- }
- // compute probs for the top K tokens
- std::vector<double> probs;
- probs.reserve(logits_id.size());
- double sum = 0.0;
- for (const auto & kv : logits_id) {
- double p = exp(kv.first - maxl);
- probs.push_back(p);
- sum += p;
- }
- // normalize the probs
- for (auto & p : probs) {
- p /= sum;
- }
- if (top_p < 1.0f) {
- double cumsum = 0.0f;
- for (int i = 0; i < top_k; i++) {
- cumsum += probs[i];
- if (cumsum >= top_p) {
- top_k = i + 1;
- probs.resize(top_k);
- logits_id.resize(top_k);
- break;
- }
- }
- cumsum = 1.0/cumsum;
- for (int i = 0; i < (int) probs.size(); i++) {
- probs[i] *= cumsum;
- }
- }
- // printf("\n");
- // for (int i = 0; i < (int) probs.size(); i++) {
- // for (int i = 0; i < 10; i++) {
- // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
- // }
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- int idx = dist(rng);
- return logits_id[idx].second;
- }
- bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
- drwav wav;
- std::vector<uint8_t> wav_data; // used for pipe input from stdin
- if (fname == "-") {
- {
- uint8_t buf[1024];
- while (true)
- {
- const size_t n = fread(buf, 1, sizeof(buf), stdin);
- if (n == 0) {
- break;
- }
- wav_data.insert(wav_data.end(), buf, buf + n);
- }
- }
- if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
- fprintf(stderr, "error: failed to open WAV file from stdin\n");
- return false;
- }
- fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
- }
- else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
- fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
- return false;
- }
- if (wav.channels != 1 && wav.channels != 2) {
- fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
- return false;
- }
- if (stereo && wav.channels != 2) {
- fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
- return false;
- }
- if (wav.sampleRate != COMMON_SAMPLE_RATE) {
- fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE/1000);
- return false;
- }
- if (wav.bitsPerSample != 16) {
- fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
- return false;
- }
- const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
- std::vector<int16_t> pcm16;
- pcm16.resize(n*wav.channels);
- drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
- drwav_uninit(&wav);
- // convert to mono, float
- pcmf32.resize(n);
- if (wav.channels == 1) {
- for (uint64_t i = 0; i < n; i++) {
- pcmf32[i] = float(pcm16[i])/32768.0f;
- }
- } else {
- for (uint64_t i = 0; i < n; i++) {
- pcmf32[i] = float(pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
- }
- }
- if (stereo) {
- // convert to stereo, float
- pcmf32s.resize(2);
- pcmf32s[0].resize(n);
- pcmf32s[1].resize(n);
- for (uint64_t i = 0; i < n; i++) {
- pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
- pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
- }
- }
- return true;
- }
- void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
- const float rc = 1.0f / (2.0f * M_PI * cutoff);
- const float dt = 1.0f / sample_rate;
- const float alpha = dt / (rc + dt);
- float y = data[0];
- for (size_t i = 1; i < data.size(); i++) {
- y = alpha * (y + data[i] - data[i - 1]);
- data[i] = y;
- }
- }
- bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
- const int n_samples = pcmf32.size();
- const int n_samples_last = (sample_rate * last_ms) / 1000;
- if (n_samples_last >= n_samples) {
- // not enough samples - assume no speech
- return false;
- }
- if (freq_thold > 0.0f) {
- high_pass_filter(pcmf32, freq_thold, sample_rate);
- }
- float energy_all = 0.0f;
- float energy_last = 0.0f;
- for (int i = 0; i < n_samples; i++) {
- energy_all += fabsf(pcmf32[i]);
- if (i >= n_samples - n_samples_last) {
- energy_last += fabsf(pcmf32[i]);
- }
- }
- energy_all /= n_samples;
- energy_last /= n_samples_last;
- if (verbose) {
- fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
- }
- if (energy_last > vad_thold*energy_all) {
- return false;
- }
- return true;
- }
- float similarity(const std::string & s0, const std::string & s1) {
- const size_t len0 = s0.size() + 1;
- const size_t len1 = s1.size() + 1;
- std::vector<int> col(len1, 0);
- std::vector<int> prevCol(len1, 0);
- for (size_t i = 0; i < len1; i++) {
- prevCol[i] = i;
- }
- for (size_t i = 0; i < len0; i++) {
- col[0] = i;
- for (size_t j = 1; j < len1; j++) {
- col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (i > 0 && s0[i - 1] == s1[j - 1] ? 0 : 1));
- }
- col.swap(prevCol);
- }
- const float dist = prevCol[len1 - 1];
- return 1.0f - (dist / std::max(s0.size(), s1.size()));
- }
- bool sam_params_parse(int argc, char ** argv, sam_params & params) {
- for (int i = 1; i < argc; i++) {
- std::string arg = argv[i];
- if (arg == "-s" || arg == "--seed") {
- params.seed = std::stoi(argv[++i]);
- } else if (arg == "-t" || arg == "--threads") {
- params.n_threads = std::stoi(argv[++i]);
- } else if (arg == "-m" || arg == "--model") {
- params.model = argv[++i];
- } else if (arg == "-i" || arg == "--inp") {
- params.fname_inp = argv[++i];
- } else if (arg == "-o" || arg == "--out") {
- params.fname_out = argv[++i];
- } else if (arg == "-h" || arg == "--help") {
- sam_print_usage(argc, argv, params);
- exit(0);
- } else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- sam_print_usage(argc, argv, params);
- exit(0);
- }
- }
- return true;
- }
- void sam_print_usage(int /*argc*/, char ** argv, const sam_params & params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- fprintf(stderr, " -m FNAME, --model FNAME\n");
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
- fprintf(stderr, " -i FNAME, --inp FNAME\n");
- fprintf(stderr, " input file (default: %s)\n", params.fname_inp.c_str());
- fprintf(stderr, " -o FNAME, --out FNAME\n");
- fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str());
- fprintf(stderr, "\n");
- }
|