test_ggml_integration.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390
  1. import ctypes
  2. import functools
  3. import logging
  4. import sys
  5. from ctypes import c_void_p
  6. from pathlib import Path
  7. from typing import Any, Iterator, Tuple
  8. import fairseq2.nn
  9. import fairseq2.nn.transformer
  10. import numpy as np
  11. import pytest
  12. import torch
  13. import ggml
  14. from ctypes_utils import Ptr
  15. from ggml import NativeObj
  16. from ggml_convert import convert_model
  17. Ctx = ggml.ggml_context_p
  18. UNITY_MODELS = Path(__file__).parent / "examples/unity/models"
  19. CTX_PARAMS = ggml.ggml_init_params(mem_size=16 * 1024 * 1024, mem_buffer=None)
  20. @pytest.fixture(name="ctx")
  21. def _ctx() -> Iterator[Ctx]:
  22. """Allocate a new context with 16 MB of memory"""
  23. try:
  24. ctx = ggml.ggml_init(params=CTX_PARAMS)
  25. yield ctx
  26. finally:
  27. ggml.ggml_free(ctx)
  28. def test_ggml_bindings_work(ctx: Ctx) -> None:
  29. # Instantiate tensors
  30. x = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 1)
  31. a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 1)
  32. b = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 1)
  33. # Use ggml operations to build a computational graph
  34. x2 = ggml.ggml_mul(ctx, x, x)
  35. f = ggml.ggml_add(ctx, ggml.ggml_mul(ctx, a, x2), b)
  36. gf = ggml.ggml_build_forward(f)
  37. # Set the input values
  38. ggml.ggml_set_f32(x, 2.0)
  39. ggml.ggml_set_f32(a, 3.0)
  40. ggml.ggml_set_f32(b, 4.0)
  41. # Compute the graph
  42. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  43. # Get the output value
  44. output = ggml.ggml_get_f32_1d(f, 0)
  45. assert output == 16.0
  46. def test_ggml_matmul(ctx: Ctx) -> None:
  47. # Instantiate tensors
  48. a = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 4, 2)
  49. x = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 4, 3)
  50. # Use ggml operations to build a computational graph
  51. y = ggml.ggml_mul_mat(ctx, a, x)
  52. assert ggml.shape(y) == (3, 2)
  53. gf = ggml.ggml_build_forward(y)
  54. # Set the input values
  55. ggml.ggml_set_f32(x, 0.0)
  56. for i in range(4 * 3):
  57. ggml.ggml_set_f32_1d(x, i, i)
  58. ggml.ggml_set_f32(a, 0.0)
  59. ggml.ggml_set_f32_1d(a, 1, 1.0)
  60. ggml.ggml_set_f32_1d(a, 7, 1.0)
  61. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  62. output = [[ggml.ggml_get_f32_1d(y, j * 2 + i) for j in range(3)] for i in range(2)]
  63. assert output == [[1, 5, 9], [3, 7, 11]]
  64. def test_shape_works(ctx: Ctx) -> None:
  65. """GGML shape order convention is the reverse from numpy"""
  66. a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 10)
  67. assert ggml.shape(a) == (10,)
  68. b = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 11, 21)
  69. assert ggml.shape(b) == (21, 11)
  70. c = ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F32, 12, 22, 32)
  71. assert ggml.shape(c) == (32, 22, 12)
  72. def test_nb_works(ctx: Ctx) -> None:
  73. a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 10)
  74. assert ggml.nb(a) == (4, 40, 40, 40)
  75. b = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F16, 11, 21)
  76. assert ggml.nb(b) == (2, 22, 462, 462)
  77. c = ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F32, 12, 22, 32)
  78. assert ggml.nb(c) == (4, 48, 1056, 33792)
  79. def test_strides_works(ctx: Ctx) -> None:
  80. a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 10)
  81. assert ggml.strides(a) == np.ones((10,), dtype=np.float32).strides
  82. b = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 11, 21)
  83. assert ggml.strides(b) == np.ones((21, 11), dtype=np.float32).strides
  84. c = ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F32, 12, 22, 32)
  85. assert ggml.strides(c) == np.ones((32, 22, 12), dtype=np.float32).strides
  86. def test_to_numpy_works_with_f32(ctx: Ctx) -> None:
  87. a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 10)
  88. na = ggml.to_numpy(a)
  89. for i in range(10):
  90. ggml.ggml_set_f32_1d(a, i, i)
  91. assert na[5] == 5
  92. assert np.allclose(na, np.array(range(10), dtype=np.float32))
  93. ggml.ggml_set_f32_1d(a, 5, -1.5)
  94. assert na[5] == -1.5
  95. # Note: GGML order of dims is reversed wrt numpy shapes
  96. b = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 11, 21)
  97. for i in range(11 * 21):
  98. ggml.ggml_set_f32_1d(b, i, i)
  99. nb = ggml.to_numpy(b)
  100. # assert nb.shape == (21, 11)
  101. assert nb[0, 5] == 5
  102. assert nb[3, 5] == 11 * 3 + 5
  103. assert np.allclose(
  104. nb, np.array(range(11 * 21), dtype=np.float32).reshape(ggml.shape(b))
  105. )
  106. ggml.ggml_set_f32_1d(b, 11 * 3 + 5, -1.5)
  107. assert nb[3, 5] == -1.5
  108. sum_rows = ggml.ggml_sum_rows(ctx, b)
  109. gf = ggml.ggml_build_forward(sum_rows)
  110. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  111. np_sum_rows = np.sum(nb, axis=-1, keepdims=True)
  112. assert np_sum_rows.shape == ggml.shape(sum_rows)
  113. for i in range(11):
  114. assert np_sum_rows[i] == ggml.ggml_get_f32_1d(sum_rows, i)
  115. c = ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F32, 12, 22, 32)
  116. for i in range(12 * 22 * 32):
  117. ggml.ggml_set_f32_1d(c, i, i)
  118. nc = ggml.to_numpy(c)
  119. assert ggml.shape(c) == (32, 22, 12)
  120. assert nc[3, 5, 11] == 22 * 12 * 3 + 12 * 5 + 11
  121. assert np.allclose(
  122. nc, np.array(range(12 * 22 * 32), dtype=np.float32).reshape(ggml.shape(c))
  123. )
  124. ggml.ggml_set_f32_1d(c, 22 * 12 * 3 + 12 * 5 + 11, -1.5)
  125. assert nc[3, 5, 11] == -1.5
  126. def test_from_numpy_works_with_f32(ctx: Ctx) -> None:
  127. a = np.random.normal(size=(10,)).astype(dtype=np.float32)
  128. ga = ggml.from_numpy(ctx, a)
  129. assert ggml.shape(ga) == (10,)
  130. assert ggml.nb(ga) == ggml.nb(ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F32, 10))
  131. assert np.allclose(a, ggml.to_numpy(ga))
  132. a = np.random.normal(size=(11, 21)).astype(dtype=np.float32)
  133. ga = ggml.from_numpy(ctx, a)
  134. assert ggml.shape(ga) == (11, 21)
  135. assert ggml.nb(ga) == ggml.nb(
  136. ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, *a.shape[::-1])
  137. )
  138. assert np.allclose(a, ggml.to_numpy(ga))
  139. a = np.random.normal(size=(12, 22, 32)).astype(dtype=np.float32)
  140. ga = ggml.from_numpy(ctx, a)
  141. assert ggml.shape(ga) == (12, 22, 32)
  142. assert ggml.nb(ga) == ggml.nb(
  143. ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F32, *a.shape[::-1])
  144. )
  145. assert np.allclose(a, ggml.to_numpy(ga))
  146. def test_to_numpy_works_with_f16(ctx: Ctx) -> None:
  147. # We explicitly fill the tensor otherwise they might have non-zero values in them.
  148. a = ggml.ggml_new_tensor_1d(ctx, ggml.GGML_TYPE_F16, 10)
  149. na = ggml.to_numpy(a)
  150. ggml.ggml_set_f32(a, 2.14)
  151. assert np.allclose(na, np.ones((10,), dtype=np.float16) * 2.14)
  152. ggml.ggml_set_f32(a, 4.28)
  153. assert np.allclose(na, np.ones((10,), dtype=np.float16) * 4.28)
  154. b = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F16, 11, 21)
  155. nb = ggml.to_numpy(b)
  156. ggml.ggml_set_f32(b, 4.18)
  157. assert np.allclose(nb, np.ones((21, 11), dtype=np.float16) * 4.18)
  158. ggml.ggml_set_f32(b, 5.12)
  159. assert np.allclose(nb, np.ones((21, 11), dtype=np.float16) * 5.12)
  160. c = ggml.ggml_new_tensor_3d(ctx, ggml.GGML_TYPE_F16, 12, 22, 32)
  161. nc = ggml.to_numpy(c)
  162. ggml.ggml_set_f32(c, 3.16)
  163. assert np.allclose(nc, np.ones((32, 22, 12), dtype=np.float16) * 3.16)
  164. ggml.ggml_set_f32(c, 5.08)
  165. assert np.allclose(nc, np.ones((32, 22, 12), dtype=np.float16) * 5.08)
  166. def test_from_numpy_works_with_f16(ctx: Ctx) -> None:
  167. a = np.random.normal(size=(10,)).astype(dtype=np.float16)
  168. ga = ggml.from_numpy(ctx, a)
  169. assert np.allclose(a, ggml.to_numpy(ga))
  170. a = np.random.normal(size=(11, 21)).astype(dtype=np.float16)
  171. ga = ggml.from_numpy(ctx, a)
  172. assert np.allclose(a, ggml.to_numpy(ga))
  173. a = np.random.normal(size=(12, 22, 32)).astype(dtype=np.float16)
  174. ga = ggml.from_numpy(ctx, a)
  175. assert np.allclose(a, ggml.to_numpy(ga))
  176. def test_to_numpy_works_with_transposed(ctx: Ctx) -> None:
  177. ga = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 10, 5)
  178. a = ggml.to_numpy(ga)
  179. a[...] = np.arange(50).reshape(5, 10).astype(dtype=np.float32)
  180. gat = ggml.ggml_transpose(ctx, ga)
  181. at = ggml.to_numpy(gat)
  182. assert np.allclose(a.T, at)
  183. def test_ggml_slice(ctx: Ctx) -> None:
  184. ga = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 10, 5)
  185. a = ggml.to_numpy(ga)
  186. a[...] = np.arange(50).reshape(5, 10).astype(dtype=np.float32)
  187. gs0 = ggml.ggml_slice(ctx, ga, 0, 3, 7)
  188. s0 = ggml.to_numpy(gs0)
  189. assert np.allclose(a[:, 3:7], s0)
  190. gs1 = ggml.ggml_slice(ctx, ga, 1, 2, 5)
  191. s1 = ggml.to_numpy(gs1)
  192. assert np.allclose(a[2:5, :], s1)
  193. @pytest.mark.xfail(reason="to_numpy not implemented")
  194. def test_ggml_transpose_and_slice(ctx: Ctx) -> None:
  195. ga = ggml.ggml_new_tensor_2d(ctx, ggml.GGML_TYPE_F32, 10, 5)
  196. a = ggml.to_numpy(ga)
  197. a[...] = np.arange(50).reshape(5, 10).astype(dtype=np.float32)
  198. gat = ggml.ggml_transpose(ctx, ga)
  199. gs0 = ggml.ggml_slice(ctx, gat, 0, 2, 5)
  200. s0 = ggml.to_numpy(gs0)
  201. assert np.allclose(a.T[:, 2:5], s0)
  202. gs1 = ggml.ggml_slice(ctx, gat, 1, 3, 7)
  203. s1 = ggml.to_numpy(gs1)
  204. assert np.allclose(a.T[3:7, :], s1)
  205. def test_numpy_mul_mat(ctx: Ctx) -> None:
  206. slen, d_in, d_out = (5, 4, 2)
  207. # torch.nn and fairseq2.nn assumes (seq_len, dim) to represent inputs,
  208. x = np.zeros((slen, d_in), dtype=np.float32) # (seq_len, dim_in)
  209. x[0, :] = [1, 1 / 3, 0, 0]
  210. weight = np.eye(d_out, d_in, dtype=np.float32)
  211. weight[1, 1] = 1
  212. # assert weight.shape == (d_out, d_in) # (dim_out, dim_in)
  213. y_exp = x @ weight.T # (seq_len, dim_out)
  214. gx = ggml.from_numpy(ctx, x) # (dim_in, seq_len)
  215. gw = ggml.from_numpy(ctx, weight) # (dim_in, dim_out)
  216. # gb = ggml.from_numpy(ctx, linear.bias.numpy()) # (dim_out)
  217. # GGML linear impl
  218. assert ggml.ggml_can_mul_mat(gw, gx)
  219. # gy = ggml.ggml_add(ctx, ggml.ggml_mul_mat(ctx, gw, gx), gb) # (dim_out, seq_len)
  220. gy = ggml.ggml_mul_mat(ctx, gw, gx) # (dim_out, seq_len)
  221. ggml.build_and_compute(ctx, gy)
  222. y = ggml.to_numpy(gy)
  223. assert np.allclose(y_exp, y)
  224. @pytest.mark.parametrize("ndim", [2, 3, 4])
  225. def test_flatten(ctx: Ctx, ndim: int) -> None:
  226. shape = [11, 7, 5, 3][:ndim] # Prime numbers to avoid surprises
  227. numel = functools.reduce(lambda a, b: a * b, shape, 1)
  228. x = torch.arange(numel, dtype=torch.float32).reshape(shape)
  229. for torch_dim in range(ndim - 1):
  230. ggml_dim = ndim - 1 - torch_dim
  231. n = x.shape[torch_dim + 1]
  232. gx = ggml.from_numpy(ctx, x)
  233. gx1 = ggml.ggml_flatten_1d(ctx, gx, ggml_dim - 1)
  234. gy = ggml.ggml_unflatten_1d(ctx, gx1, ggml_dim - 1, n)
  235. x1 = x.flatten(torch_dim, torch_dim + 1)
  236. y = x1.unflatten(torch_dim, (-1, n))
  237. assert y.shape == x.shape
  238. assert np.allclose(y.numpy(), x.numpy())
  239. assert x1.shape == ggml.shape(gx1)
  240. assert np.allclose(x1.numpy(), ggml.to_numpy(gx1))
  241. assert y.shape == ggml.shape(gy)
  242. assert np.allclose(y.numpy(), ggml.to_numpy(gy))
  243. @torch.no_grad()
  244. def test_torch_spda_vs_ggml_flash_attn(ctx: Ctx) -> None:
  245. slen, d_in, num_heads = (5, 4, 2)
  246. torch.random.manual_seed(0)
  247. q = torch.zeros((num_heads, slen, d_in))
  248. torch.nn.init.uniform_(q, -1, 1)
  249. k = torch.zeros((num_heads, slen, d_in))
  250. torch.nn.init.uniform_(k, -1, 1)
  251. v = torch.zeros((num_heads, slen, d_in))
  252. torch.nn.init.uniform_(v, -1, 1)
  253. # Note: we are using x for both keys and queries, so every position
  254. # attends mostly to itself, hence y_exp looks a bit like arange(slen)
  255. y_exp = torch.nn.functional.scaled_dot_product_attention(q, k, v, is_causal=True)
  256. y_exp = y_exp.numpy()
  257. gq = ggml.from_numpy(ctx, q.numpy())
  258. gk = ggml.from_numpy(ctx, k.numpy())
  259. # ggml flash attention expect a different order of axis for v:
  260. # (H, slen, H_dim) -> (H, H_dim, slen)
  261. gv = ggml.from_numpy(ctx, v.transpose(1, 2).contiguous().numpy())
  262. assert ggml.shape(gv) == (num_heads, d_in, slen)
  263. gy = ggml.ggml_flash_attn(ctx, gq, gk, gv, True)
  264. gf = ggml.ggml_build_forward(gy)
  265. ggml.ggml_graph_compute_with_ctx(ctx, ctypes.pointer(gf), 1)
  266. y = ggml.to_numpy(gy)
  267. assert np.allclose(y_exp, y)
  268. @pytest.mark.parametrize("shape", [(5, 8, 4), (2, 5, 8, 4)])
  269. def test_ggml_softmax_vs_torch(ctx: Ctx, shape: Tuple[int, ...]) -> None:
  270. x = torch.empty(shape)
  271. torch.nn.init.uniform_(x, -1, 1)
  272. y_exp = torch.softmax(x, dim=-1).numpy()
  273. gx = ggml.from_numpy(ctx, x.numpy())
  274. gy = ggml.ggml_soft_max(ctx, gx)
  275. ggml.build_and_compute(ctx, gy)
  276. y = ggml.to_numpy(gy)
  277. assert np.allclose(y_exp, y, rtol=1e-3)
  278. assert np.allclose(np.argmax(y_exp, axis=-1), np.argmax(y, axis=-1))
  279. def test_can_return_hypothesis_ptr(ctx: Ctx) -> None:
  280. hyp_ptr = ggml._testing_return_hypothesis_ptr(ctx)
  281. hyp0, hyp1 = hyp_ptr[0], hyp_ptr[1]
  282. assert ggml.to_numpy(hyp0.seq).tolist() == [314]
  283. assert hyp0.score == pytest.approx(3.14)
  284. assert ggml.to_numpy(hyp1.seq).tolist() == [421]
  285. assert hyp1.score == pytest.approx(4.21)
  286. @pytest.mark.parametrize("inplace", ["", "inplace"])
  287. def test_set_2d(ctx: Ctx, inplace: bool):
  288. a = torch.empty((5, 3, 2))
  289. torch.nn.init.uniform_(a, -1, 1)
  290. b = torch.empty((3, 2))
  291. torch.nn.init.uniform_(b, -1, 1)
  292. a_original = a.clone()
  293. # make a copy of `a` before we modify it
  294. ga = ggml.from_numpy(ctx, a.clone().numpy())
  295. gb = ggml.from_numpy(ctx, b.numpy())
  296. a[3, ...] = b
  297. set_2d = ggml.ggml_set_2d_inplace if inplace else ggml.ggml_set_2d
  298. ga_updated = set_2d(ctx, ga, gb, ggml.nb(ga)[1], ggml.nb(ga)[2] * 3)
  299. ggml.build_and_compute(ctx, ga_updated)
  300. a_updated = ggml.to_numpy(ga if inplace else ga_updated)
  301. assert np.allclose(a.numpy(), a_updated)
  302. if not inplace:
  303. # When not using set_2d_inplace, the original tensor is unmodified.
  304. assert np.allclose(ggml.to_numpy(ga), a_original.numpy())
  305. assert ga.contents.data != ga_updated.contents.data