123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576 |
- #include <stdint.h>
- #include <stdio.h>
- #include <assert.h>
- #include <stdlib.h>
- #include <time.h>
- #include <math.h>
- #include <sys/time.h>
- #include <immintrin.h>
- const int N = 1 << 14;
- const int M = 768;
- //
- // naive implementation
- //
- void mul_mat_vec_f32_0(
- const float * restrict src0,
- const float * restrict src1,
- float * dst,
- int nrows,
- int ncols) {
- for (int i = 0; i < nrows; i++) {
- float sum = 0.0f;
- for (int j = 0; j < ncols; j++) {
- sum += src0[i*ncols + j]*src1[j];
- }
- dst[i] = sum;
- }
- }
- //
- // SIMD with 8 32-bit floats
- //
- float reduce_vector8_0(__m256 v) {
- __m128 v1 = _mm256_extractf128_ps(v, 0);
- __m128 v2 = _mm256_extractf128_ps(v, 1);
- __m128 v3 = _mm_add_ps(v1, v2);
- __m128 v4 = _mm_shuffle_ps(v3, v3, 0x4e);
- __m128 v5 = _mm_add_ps(v3, v4);
- __m128 v6 = _mm_shuffle_ps(v5, v5, 0x11);
- __m128 v7 = _mm_add_ps(v5, v6);
- return _mm_cvtss_f32(v7);
- }
- // vectorized implementation using AVX
- void mul_mat_vec_f32_1(
- const float * restrict src0,
- const float * restrict src1,
- float * dst,
- int nrows,
- int ncols) {
- const int ncols8 = ncols & ~7;
- for (int i = 0; i < nrows; i++) {
- __m256 sum = _mm256_setzero_ps();
- for (int j = 0; j < ncols8; j += 8) {
- __m256 a = _mm256_loadu_ps(src0 + i*ncols + j);
- __m256 b = _mm256_loadu_ps(src1 + j);
- __m256 c = _mm256_mul_ps(a, b);
- sum = _mm256_add_ps(sum, c);
- }
- dst[i] = reduce_vector8_0(sum);
- for (int j = ncols8; j < ncols; j++) {
- dst[i] += src0[i*ncols + j]*src1[j];
- }
- }
- }
- void mul_mat_vec_f32_2(
- const float * restrict src0,
- const float * restrict src1,
- float * dst,
- int nrows,
- int ncols) {
- const int ncols32 = ncols & ~31;
- for (int i = 0; i < nrows; i++) {
- __m256 sum0 = _mm256_setzero_ps();
- __m256 sum1 = _mm256_setzero_ps();
- __m256 sum2 = _mm256_setzero_ps();
- __m256 sum3 = _mm256_setzero_ps();
- const float * restrict src0_row = src0 + i*ncols;
- for (int j = 0; j < ncols32; j += 32) {
- __m256 a0 = _mm256_loadu_ps(src0_row + j + 0);
- __m256 a1 = _mm256_loadu_ps(src0_row + j + 8);
- __m256 a2 = _mm256_loadu_ps(src0_row + j + 16);
- __m256 a3 = _mm256_loadu_ps(src0_row + j + 24);
- __m256 b0 = _mm256_loadu_ps(src1 + j + 0);
- __m256 b1 = _mm256_loadu_ps(src1 + j + 8);
- __m256 b2 = _mm256_loadu_ps(src1 + j + 16);
- __m256 b3 = _mm256_loadu_ps(src1 + j + 24);
- #if defined(__FMA__)
- sum0 = _mm256_fmadd_ps(a0, b0, sum0);
- sum1 = _mm256_fmadd_ps(a1, b1, sum1);
- sum2 = _mm256_fmadd_ps(a2, b2, sum2);
- sum3 = _mm256_fmadd_ps(a3, b3, sum3);
- #else
- sum0 = _mm256_add_ps(_mm256_mul_ps(a0, b0), sum0);
- sum1 = _mm256_add_ps(_mm256_mul_ps(a1, b1), sum1);
- sum2 = _mm256_add_ps(_mm256_mul_ps(a2, b2), sum2);
- sum3 = _mm256_add_ps(_mm256_mul_ps(a3, b3), sum3);
- #endif
- }
- dst[i] = reduce_vector8_0(_mm256_add_ps(_mm256_add_ps(sum0, sum1), _mm256_add_ps(sum2, sum3)));
- for (int j = ncols32; j < ncols; j++) {
- dst[i] += src0[i*ncols + j]*src1[j];
- }
- }
- }
- //
- // SIMD with 8 16-bit floats
- //
- static inline float fp32_from_bits(uint32_t w) {
- #if defined(__OPENCL_VERSION__)
- return as_float(w);
- #elif defined(__CUDA_ARCH__)
- return __uint_as_float((unsigned int) w);
- #elif defined(__INTEL_COMPILER)
- return _castu32_f32(w);
- #elif defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
- return _CopyFloatFromInt32((__int32) w);
- #else
- union {
- uint32_t as_bits;
- float as_value;
- } fp32 = { w };
- return fp32.as_value;
- #endif
- }
- static inline uint32_t fp32_to_bits(float f) {
- #if defined(__OPENCL_VERSION__)
- return as_uint(f);
- #elif defined(__CUDA_ARCH__)
- return (uint32_t) __float_as_uint(f);
- #elif defined(__INTEL_COMPILER)
- return _castf32_u32(f);
- #elif defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
- return (uint32_t) _CopyInt32FromFloat(f);
- #else
- union {
- float as_value;
- uint32_t as_bits;
- } fp32 = { f };
- return fp32.as_bits;
- #endif
- }
- /*
- * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
- * a 32-bit floating-point number in IEEE single-precision format.
- *
- * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
- * floating-point operations and bitcasts between integer and floating-point variables.
- */
- static inline float fp16_ieee_to_fp32_value(uint16_t h) {
- /*
- * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
- * +---+-----+------------+-------------------+
- * | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
- * +---+-----+------------+-------------------+
- * Bits 31 26-30 16-25 0-15
- *
- * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
- */
- const uint32_t w = (uint32_t) h << 16;
- /*
- * Extract the sign of the input number into the high bit of the 32-bit word:
- *
- * +---+----------------------------------+
- * | S |0000000 00000000 00000000 00000000|
- * +---+----------------------------------+
- * Bits 31 0-31
- */
- const uint32_t sign = w & UINT32_C(0x80000000);
- /*
- * Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word:
- *
- * +-----+------------+---------------------+
- * |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
- * +-----+------------+---------------------+
- * Bits 27-31 17-26 0-16
- */
- const uint32_t two_w = w + w;
- /*
- * Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent
- * of a single-precision floating-point number:
- *
- * S|Exponent | Mantissa
- * +-+---+-----+------------+----------------+
- * |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
- * +-+---+-----+------------+----------------+
- * Bits | 23-31 | 0-22
- *
- * Next, there are some adjustments to the exponent:
- * - The exponent needs to be corrected by the difference in exponent bias between single-precision and half-precision
- * formats (0x7F - 0xF = 0x70)
- * - Inf and NaN values in the inputs should become Inf and NaN values after conversion to the single-precision number.
- * Therefore, if the biased exponent of the half-precision input was 0x1F (max possible value), the biased exponent
- * of the single-precision output must be 0xFF (max possible value). We do this correction in two steps:
- * - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset below) rather than by 0x70 suggested
- * by the difference in the exponent bias (see above).
- * - Then we multiply the single-precision result of exponent adjustment by 2**(-112) to reverse the effect of
- * exponent adjustment by 0xE0 less the necessary exponent adjustment by 0x70 due to difference in exponent bias.
- * The floating-point multiplication hardware would ensure than Inf and NaN would retain their value on at least
- * partially IEEE754-compliant implementations.
- *
- * Note that the above operations do not handle denormal inputs (where biased exponent == 0). However, they also do not
- * operate on denormal inputs, and do not produce denormal results.
- */
- const uint32_t exp_offset = UINT32_C(0xE0) << 23;
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
- const float exp_scale = 0x1.0p-112f;
- #else
- const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
- #endif
- const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
- /*
- * Convert denormalized half-precision inputs into single-precision results (always normalized).
- * Zero inputs are also handled here.
- *
- * In a denormalized number the biased exponent is zero, and mantissa has on-zero bits.
- * First, we shift mantissa into bits 0-9 of the 32-bit word.
- *
- * zeros | mantissa
- * +---------------------------+------------+
- * |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
- * +---------------------------+------------+
- * Bits 10-31 0-9
- *
- * Now, remember that denormalized half-precision numbers are represented as:
- * FP16 = mantissa * 2**(-24).
- * The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input
- * and with an exponent which would scale the corresponding mantissa bits to 2**(-24).
- * A normalized single-precision floating-point number is represented as:
- * FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127)
- * Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision
- * number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount.
- *
- * The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number
- * is zero, the constructed single-precision number has the value of
- * FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5
- * Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of
- * the input half-precision number.
- */
- const uint32_t magic_mask = UINT32_C(126) << 23;
- const float magic_bias = 0.5f;
- const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
- /*
- * - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the
- * input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the
- * input is either a denormal number, or zero.
- * - Combine the result of conversion of exponent and mantissa with the sign of the input number.
- */
- const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
- const uint32_t result = sign |
- (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
- return fp32_from_bits(result);
- }
- /*
- * Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in
- * IEEE half-precision format, in bit representation.
- *
- * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
- * floating-point operations and bitcasts between integer and floating-point variables.
- */
- static inline uint16_t fp16_ieee_from_fp32_value(float f) {
- #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
- const float scale_to_inf = 0x1.0p+112f;
- const float scale_to_zero = 0x1.0p-110f;
- #else
- const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
- const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
- #endif
- float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
- const uint32_t w = fp32_to_bits(f);
- const uint32_t shl1_w = w + w;
- const uint32_t sign = w & UINT32_C(0x80000000);
- uint32_t bias = shl1_w & UINT32_C(0xFF000000);
- if (bias < UINT32_C(0x71000000)) {
- bias = UINT32_C(0x71000000);
- }
- base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
- const uint32_t bits = fp32_to_bits(base);
- const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
- const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
- const uint32_t nonsign = exp_bits + mantissa_bits;
- return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
- }
- void mul_mat_vec_f16_0(
- const uint16_t * src0,
- const uint16_t * src1,
- float * dst,
- int nrows,
- int ncols) {
- const int ncols8 = ncols & ~7;
- for (int i = 0; i < nrows; i++) {
- __m256 sum = _mm256_setzero_ps();
- const uint16_t * src0_row = src0 + i * ncols;
- for (int j = 0; j < ncols8; j += 8) {
- __m256 a = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j)));
- __m256 b = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
- #if defined(__FMA__)
- sum = _mm256_fmadd_ps(a, b, sum);
- #else
- sum = _mm256_add_ps(_mm256_mul_ps(a, b), sum);
- #endif
- }
- dst[i] = reduce_vector8_0(sum);
- for (int j = ncols8; j < ncols; j++) {
- dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
- }
- }
- }
- void mul_mat_vec_f16_1(
- const uint16_t * src0,
- const uint16_t * src1,
- float * dst,
- int nrows,
- int ncols) {
- const int ncols16 = ncols & ~15;
- for (int i = 0; i < nrows; i++) {
- __m256 sum0 = _mm256_setzero_ps();
- __m256 sum1 = _mm256_setzero_ps();
- const uint16_t * src0_row = src0 + i * ncols;
- for (int j = 0; j < ncols16; j += 16) {
- __m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
- __m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
- __m256 b0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
- __m256 b1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 8)));
- #if defined(__FMA__)
- sum0 = _mm256_fmadd_ps(a0, b0, sum0);
- sum1 = _mm256_fmadd_ps(a1, b1, sum1);
- #else
- sum0 = _mm256_add_ps(_mm256_mul_ps(a0, b0), sum0);
- sum1 = _mm256_add_ps(_mm256_mul_ps(a1, b1), sum1);
- #endif
- }
- dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1);
- for (int j = ncols16; j < ncols; j++) {
- dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
- }
- }
- }
- void mul_mat_vec_f16_2(
- const uint16_t * src0,
- const uint16_t * src1,
- float * dst,
- int nrows,
- int ncols) {
- const int ncols32 = ncols & ~31;
- for (int i = 0; i < nrows; i++) {
- __m256 sum0 = _mm256_setzero_ps();
- __m256 sum1 = _mm256_setzero_ps();
- __m256 sum2 = _mm256_setzero_ps();
- __m256 sum3 = _mm256_setzero_ps();
- const uint16_t * src0_row = src0 + i * ncols;
- for (int j = 0; j < ncols32; j += 32) {
- __m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
- __m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
- __m256 a2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 16)));
- __m256 a3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 24)));
- __m256 b0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j)));
- __m256 b1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 8)));
- __m256 b2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 16)));
- __m256 b3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src1 + j + 24)));
- #if defined(__FMA__)
- sum0 = _mm256_fmadd_ps(a0, b0, sum0);
- sum1 = _mm256_fmadd_ps(a1, b1, sum1);
- sum2 = _mm256_fmadd_ps(a2, b2, sum2);
- sum3 = _mm256_fmadd_ps(a3, b3, sum3);
- #else
- sum0 = _mm256_add_ps(_mm256_mul_ps(a0, b0), sum0);
- sum1 = _mm256_add_ps(_mm256_mul_ps(a1, b1), sum1);
- sum2 = _mm256_add_ps(_mm256_mul_ps(a2, b2), sum2);
- sum3 = _mm256_add_ps(_mm256_mul_ps(a3, b3), sum3);
- #endif
- }
- dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1) + reduce_vector8_0(sum2) + reduce_vector8_0(sum3);
- for (int j = ncols32; j < ncols; j++) {
- dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
- }
- }
- }
- void mul_mat_vec_f16_3(
- const uint16_t * src0,
- const float * src1,
- float * dst,
- int nrows,
- int ncols) {
- const int ncols32 = ncols & ~31;
- for (int i = 0; i < nrows; i++) {
- __m256 sum0 = _mm256_setzero_ps();
- __m256 sum1 = _mm256_setzero_ps();
- __m256 sum2 = _mm256_setzero_ps();
- __m256 sum3 = _mm256_setzero_ps();
- const uint16_t * src0_row = src0 + i * ncols;
- for (int j = 0; j < ncols32; j += 32) {
- __m256 a0 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 0)));
- __m256 a1 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 8)));
- __m256 a2 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 16)));
- __m256 a3 = _mm256_cvtph_ps(_mm_loadu_si128((__m128i*)(src0_row + j + 24)));
- __m256 b0 = _mm256_loadu_ps(src1 + j);
- __m256 b1 = _mm256_loadu_ps(src1 + j + 8);
- __m256 b2 = _mm256_loadu_ps(src1 + j + 16);
- __m256 b3 = _mm256_loadu_ps(src1 + j + 24);
- #if defined(__FMA__)
- sum0 = _mm256_fmadd_ps(a0, b0, sum0);
- sum1 = _mm256_fmadd_ps(a1, b1, sum1);
- sum2 = _mm256_fmadd_ps(a2, b2, sum2);
- sum3 = _mm256_fmadd_ps(a3, b3, sum3);
- #else
- sum0 = _mm256_add_ps(_mm256_mul_ps(a0, b0), sum0);
- sum1 = _mm256_add_ps(_mm256_mul_ps(a1, b1), sum1);
- sum2 = _mm256_add_ps(_mm256_mul_ps(a2, b2), sum2);
- sum3 = _mm256_add_ps(_mm256_mul_ps(a3, b3), sum3);
- #endif
- }
- dst[i] = reduce_vector8_0(sum0) + reduce_vector8_0(sum1) + reduce_vector8_0(sum2) + reduce_vector8_0(sum3);
- for (int j = ncols32; j < ncols; j++) {
- dst[i] += fp16_ieee_to_fp32_value(src0_row[j]) * fp16_ieee_to_fp32_value(src1[j]);
- }
- }
- }
- uint64_t get_time_us(void) {
- struct timeval tv;
- gettimeofday(&tv, NULL);
- return tv.tv_sec * 1000000 + tv.tv_usec;
- }
- int main(int argc, const char ** argv) {
- float * src0 = malloc(sizeof(float)*N*M);
- float * src1 = malloc(sizeof(float)*M);
- float * dst = malloc(sizeof(float)*N);
- //float * src0 = (float *)(aligned_alloc(64, sizeof(float)*N*M));
- //float * src1 = (float *)(aligned_alloc(64, sizeof(float)*M));
- //float * dst = (float *)(aligned_alloc(64, sizeof(float)*N));
- for (int i = 0; i < N*M; i++) {
- src0[i] = rand() / (float)RAND_MAX;
- }
- for (int i = 0; i < M; i++) {
- src1[i] = rand() / (float)RAND_MAX;
- }
- // convert src0 and src1 to __fp16
- uint16_t * src0_fp16 = (uint16_t *)(malloc(sizeof(uint16_t)*N*M));
- uint16_t * src1_fp16 = (uint16_t *)(malloc(sizeof(uint16_t)*M));
- //uint16_t * src0_fp16 = (uint16_t *)(aligned_alloc(64, sizeof(uint16_t)*N*M));
- //uint16_t * src1_fp16 = (uint16_t *)(aligned_alloc(64, sizeof(uint16_t)*M));
- {
- const uint64_t t_start = get_time_us();
- for (int i = 0; i < N*M; i++) {
- src0_fp16[i] = fp16_ieee_from_fp32_value(src0[i]);
- //printf("%f %f\n", src0[i], fp16_ieee_to_fp32_value(src0_fp16[i]));
- //assert(!isnan(fp16_ieee_to_fp32_value(src0_fp16[i])));
- }
- for (int i = 0; i < M; i++) {
- src1_fp16[i] = fp16_ieee_from_fp32_value(src1[i]);
- }
- const uint64_t t_end = get_time_us();
- printf("convert time: %f ms\n", (t_end - t_start) / 1000.0);
- }
- for (int i = 0; i < 16; ++i) {
- printf("%f %f\n", src0[i], fp16_ieee_to_fp32_value(src0_fp16[i]));
- }
- int method = 0;
- if (argc > 1) {
- method = atoi(argv[1]);
- }
- const int nIter = 1000;
- const clock_t start = clock();
- const uint64_t start_us = get_time_us();
- double iM = 1.0/M;
- double sum = 0.0f;
- for (int i = 0; i < nIter; i++) {
- if (method == 0) {
- mul_mat_vec_f32_0(src0, src1, dst, N, M);
- }
- if (method == 1) {
- mul_mat_vec_f32_1(src0, src1, dst, N, M);
- }
- if (method == 2) {
- mul_mat_vec_f32_2(src0, src1, dst, N, M);
- }
- if (method == 3) {
- mul_mat_vec_f16_0(src0_fp16, src1_fp16, dst, N, M);
- }
- if (method == 4) {
- mul_mat_vec_f16_1(src0_fp16, src1_fp16, dst, N, M);
- }
- if (method == 5) {
- mul_mat_vec_f16_2(src0_fp16, src1_fp16, dst, N, M);
- }
- if (method == 6) {
- mul_mat_vec_f16_3(src0_fp16, src1, dst, N, M);
- }
- }
- for (int i = 0; i < N; i++) {
- sum += dst[i]*iM;
- }
- {
- const clock_t end = clock();
- const uint64_t end_us = get_time_us();
- printf("%s: elapsed ticks: %ld\n", __func__, end - start);
- printf("%s: elapsed us: %ld\n", __func__, end_us - start_us);
- }
- printf("%f\n", sum);
- free(src0);
- free(src1);
- free(dst);
- free(src0_fp16);
- free(src1_fp16);
- return 0;
- }
|