|
@@ -1,6 +1,8 @@
|
|
|
#include <math.h>
|
|
|
#include "ggml.h"
|
|
|
#include "fairseq2.h"
|
|
|
+#include <unordered_map>
|
|
|
+#include <algorithm>
|
|
|
|
|
|
|
|
|
/// allocate the fairseq2 model and hyperparameters
|
|
@@ -383,3 +385,481 @@ extern "C" ggml_tensor* StandardTransformerDecoder_forward(
|
|
|
|
|
|
return seqs;
|
|
|
}
|
|
|
+
|
|
|
+using IncrementalStateBag = std::unordered_map<ggml_tensor*, ggml_tensor*>*;
|
|
|
+
|
|
|
+
|
|
|
+int _determine_max_seq_len(const SequenceGeneratorJob& job) {
|
|
|
+ auto opts = job.opts;
|
|
|
+ int max_seq_len = -1;
|
|
|
+ if (job.source_seq_len <= 0 || opts.soft_max_seq_len_a <= 0) {
|
|
|
+ max_seq_len = opts.hard_max_seq_len;
|
|
|
+ } else {
|
|
|
+ max_seq_len = std::min(opts.hard_max_seq_len, int(opts.soft_max_seq_len_a * job.source_seq_len + opts.soft_max_seq_len_b));
|
|
|
+ }
|
|
|
+
|
|
|
+ if (opts.min_seq_len > max_seq_len) {
|
|
|
+ printf(
|
|
|
+ "The effective maximum sequence length must be greater than or equal to `min_seq_len` (%d), but is %d instead. Adjust your soft and hard maximum sequence length limits.\n",
|
|
|
+ opts.min_seq_len,
|
|
|
+ max_seq_len
|
|
|
+ );
|
|
|
+ GGML_ASSERT(opts.min_seq_len <= max_seq_len);
|
|
|
+ }
|
|
|
+
|
|
|
+ int prefix_seq_len = job.prefix_seq->ne[0];
|
|
|
+ if (prefix_seq_len >= max_seq_len) {
|
|
|
+ printf(
|
|
|
+ "The effective maximum sequence length must be greater than `prefix_seq_len` (%d), but is %d instead.\n",
|
|
|
+ prefix_seq_len,
|
|
|
+ max_seq_len
|
|
|
+ );
|
|
|
+ GGML_ASSERT(prefix_seq_len < max_seq_len);
|
|
|
+ }
|
|
|
+
|
|
|
+ return max_seq_len;
|
|
|
+}
|
|
|
+
|
|
|
+void _fan_out_encoder_output(
|
|
|
+ ggml_context* ctx,
|
|
|
+ ggml_tensor** encoder_output_out,
|
|
|
+ ggml_tensor** encoder_padding_mask_out,
|
|
|
+ int beam_size
|
|
|
+) {
|
|
|
+ // (S_enc, M)
|
|
|
+ ggml_tensor* encoder_output = *encoder_output_out;
|
|
|
+ ggml_tensor* encoder_padding_mask = *encoder_padding_mask_out;
|
|
|
+
|
|
|
+ // (B, S_enc, M)
|
|
|
+ ggml_tensor* shape = ggml_new_tensor_3d(ctx, GGML_TYPE_I8, encoder_output->ne[0], encoder_output->ne[1], beam_size);
|
|
|
+
|
|
|
+ // (S_enc, M) -> (B, S_enc, M)
|
|
|
+ *encoder_output_out = ggml_repeat(ctx, encoder_output, shape);
|
|
|
+ if (encoder_padding_mask != nullptr) {
|
|
|
+ *encoder_padding_mask_out = ggml_repeat(ctx, encoder_padding_mask, shape);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+ggml_tensor* ggml_log_softmax(ggml_context* ctx, ggml_tensor* logits) {
|
|
|
+ // TODO: this isn't the smartest way of doing this
|
|
|
+ return ggml_log(ctx, ggml_soft_max(ctx, logits));
|
|
|
+}
|
|
|
+
|
|
|
+void _bootstrap_seqs_and_scores(
|
|
|
+ fairseq2_model& model,
|
|
|
+ const SequenceGeneratorJob& job,
|
|
|
+ ggml_tensor* seqs,
|
|
|
+ ggml_tensor* scores,
|
|
|
+ ggml_tensor* encoder_output,
|
|
|
+ ggml_tensor* encoder_padding_mask,
|
|
|
+ IncrementalStateBag state_bag
|
|
|
+) {
|
|
|
+ int prefix_seq_len = job.prefix_seq->ne[0];
|
|
|
+ int max_seq_len = scores->ne[0];
|
|
|
+ int beam_size = scores->ne[1];
|
|
|
+ GGML_ASSERT(prefix_seq_len > 0);
|
|
|
+ if (prefix_seq_len == 1)
|
|
|
+ return;
|
|
|
+
|
|
|
+ ggml_context* ctx = model.ctx;
|
|
|
+
|
|
|
+ // seqs[:, : prefix_seq_len] = job.prefix_seq;
|
|
|
+ ggml_cpy(ctx, job.prefix_seq, ggml_view_2d(ctx, seqs, 0, prefix_seq_len, 0, 0));
|
|
|
+
|
|
|
+ // We have to bootstrap the model with the already fanned-out encoder
|
|
|
+ // output to correctly initialize its incremental state. This causes some
|
|
|
+ // redundancy as we have to expand `decoder_input` to match the shape of
|
|
|
+ // `encoder_output`.
|
|
|
+ // (S_pfx) -> (N x B, S_pfx - 1)
|
|
|
+ // prefix_seq[:-1].expand(encoder_output.size(0), -1)
|
|
|
+ ggml_tensor* decoder_input = ggml_repeat(ctx, ggml_view_1d(ctx, job.prefix_seq, prefix_seq_len - 1, 0), encoder_output);
|
|
|
+
|
|
|
+ // Bootstrap the model state with prefix sequence.
|
|
|
+ ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
|
|
|
+ model,
|
|
|
+ ".decoder",
|
|
|
+ seqs,
|
|
|
+ /*padding_mask*/ nullptr,
|
|
|
+ encoder_output,
|
|
|
+ encoder_padding_mask
|
|
|
+ // TODO: state_bag
|
|
|
+ );
|
|
|
+ // TODO state_bag.increment_step(prefix_seq_len - 1)
|
|
|
+
|
|
|
+ // logits, lprobs: (N, S_pfx - 1, V)
|
|
|
+ ggml_tensor* logits = Linear_forward(model, ".decoder.final_proj", decoder_output);
|
|
|
+ ggml_tensor* lprobs = ggml_log_softmax(ctx, ggml_view_3d(ctx, logits, logits->ne[0], logits->ne[1], 1, 0, 0, 0));
|
|
|
+ int vocab_size = logits->ne[0];
|
|
|
+
|
|
|
+ ggml_cgraph gf = ggml_build_forward(lprobs);
|
|
|
+ ggml_graph_compute_with_ctx(ctx, &gf, 1);
|
|
|
+
|
|
|
+ // Fetch scores of next steps from "lprobs"
|
|
|
+ float p_score = 0;
|
|
|
+ for (int i = 0; i < prefix_seq_len; ++i) {
|
|
|
+ int p = ggml_get_i32_1d(job.prefix_seq, i);
|
|
|
+ p_score += ggml_get_f32_1d(lprobs, i * vocab_size + p);
|
|
|
+ for (int b = 0; b < beam_size; ++b) {
|
|
|
+ // scores: (N, S)
|
|
|
+ // Note: First step (e.g. BOS)'s score is always 0.
|
|
|
+ ggml_set_f32_1d(scores, b * max_seq_len + i + 1, p_score);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/// Represents a hypothesis produced by a sequence generator.
|
|
|
+struct Hypothesis {
|
|
|
+ /// The generated sequence.
|
|
|
+ ggml_tensor* seq;
|
|
|
+
|
|
|
+ /// The score of the hypothesis.
|
|
|
+ float score;
|
|
|
+
|
|
|
+ /// The score of each individual sequence step.
|
|
|
+ ggml_tensor* step_scores;
|
|
|
+};
|
|
|
+
|
|
|
+
|
|
|
+/// Represents a standard beam search algoritm.
|
|
|
+int StandardBeamSearch_step(
|
|
|
+ ggml_context* ctx,
|
|
|
+ int step_nr,
|
|
|
+ bool is_start_step,
|
|
|
+ ggml_tensor* lprobs, // (N, S, V)
|
|
|
+ ggml_tensor* scores, // (N, S)
|
|
|
+ ggml_tensor* candidate_indices
|
|
|
+) {
|
|
|
+ int vocab_size = lprobs->ne[0];
|
|
|
+ int sent_len = lprobs->ne[1];
|
|
|
+ int beam_size = lprobs->ne[2];
|
|
|
+ GGML_ASSERT(scores->ne[0] == sent_len);
|
|
|
+ GGML_ASSERT(scores->ne[1] == beam_size);
|
|
|
+
|
|
|
+ // should this be done by the caller ?
|
|
|
+ ggml_tensor* last_scores = ggml_view_2d(ctx, scores, beam_size, 1, 0, step_nr);
|
|
|
+ if (is_start_step) {
|
|
|
+ // At the initial step, all hypotheses are equally likely, so we use
|
|
|
+ // only the first beam.
|
|
|
+ lprobs = ggml_view_3d(ctx, lprobs, vocab_size, sent_len, 1, 0, 0, 0);
|
|
|
+ lprobs = ggml_cont(ctx, lprobs);
|
|
|
+ // The first step always indicates the beginning of the sequence and
|
|
|
+ // has no score.
|
|
|
+ if (step_nr > 0) {
|
|
|
+ lprobs = ggml_add(ctx, lprobs, last_scores);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // Make probabilities contain cumulative scores for each hypothesis.
|
|
|
+ lprobs = ggml_add(ctx, lprobs, last_scores);
|
|
|
+ }
|
|
|
+
|
|
|
+ ggml_cgraph gf = ggml_build_forward(lprobs);
|
|
|
+ ggml_graph_compute_with_ctx(ctx, &gf, 1);
|
|
|
+
|
|
|
+ // Take the best 2 x `beam_size` predictions. We'll choose the first
|
|
|
+ // `beam_size` of these which don't predict EOS to continue with.
|
|
|
+ // (N, 2 x B)
|
|
|
+ // `vocab_size` - 1 to never select PAD.
|
|
|
+ int topk = std::min(2 * beam_size, vocab_size - 1);
|
|
|
+
|
|
|
+ auto comp = [scores](std::int32_t a, std::int32_t b) {
|
|
|
+ return ggml_get_f32_1d(scores, a) < ggml_get_f32_1d(scores, b);
|
|
|
+ };
|
|
|
+ auto cand = (std::int32_t*)candidate_indices->data;
|
|
|
+ std::partial_sort(cand, cand + topk, cand + (beam_size * vocab_size), comp);
|
|
|
+
|
|
|
+ return topk;
|
|
|
+}
|
|
|
+
|
|
|
+bool _finalize_hypothesis(
|
|
|
+ const SequenceGeneratorJob& job,
|
|
|
+ ggml_context* ctx,
|
|
|
+ int step_nr,
|
|
|
+ std::int32_t candidate,
|
|
|
+ ggml_tensor* seqs, // (beam_size, seq_len)
|
|
|
+ ggml_tensor* scores, // (beam_size, seq_len)
|
|
|
+ std::vector<Hypothesis>& hypotheses
|
|
|
+) {
|
|
|
+ int vocab_size = scores->ne[0];
|
|
|
+ std::int32_t beam = candidate / vocab_size;
|
|
|
+ std::int32_t token = candidate % vocab_size;
|
|
|
+ float tok_score = ggml_get_f32_1d(scores, candidate);
|
|
|
+
|
|
|
+ // Detect beams that reached the minimum length and that end with an EOS.
|
|
|
+ bool eos = token == job.eos_idx;
|
|
|
+ eos &= tok_score != -INFINITY;
|
|
|
+ // TODO ignored_beam_mask ?
|
|
|
+ // eos &= ggml_get_i32_1d(ignored_beam_mask, beam);
|
|
|
+ // ggml_set_i32_1d(eos_mask, beam, eos);
|
|
|
+
|
|
|
+ if (!eos) return false;
|
|
|
+
|
|
|
+ // If the candidate beam is "finished", let's copy the score and sequence
|
|
|
+ ggml_tensor* tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, step_nr + 2);
|
|
|
+ ggml_tensor* step_scores = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, step_nr + 2);
|
|
|
+
|
|
|
+ auto tok = (std::int32_t*)tokens->data;
|
|
|
+ auto sc = (float*)step_scores->data;
|
|
|
+ ggml_set_f32_1d(scores, scores->ne[0] * beam + step_nr + 1, tok_score);
|
|
|
+ for (int i = 0; i < step_nr + 1; ++i) {
|
|
|
+ tok[i] = ggml_get_i32_1d(seqs, seqs->ne[0] * beam + i);
|
|
|
+ }
|
|
|
+ tok[step_nr + 1] = token;
|
|
|
+
|
|
|
+ float last_score = tok_score;
|
|
|
+ for (int i = step_nr; i >= 0; --i) {
|
|
|
+ // Convert from cumulative to per-step scores.
|
|
|
+ float sc0 = ggml_get_f32_1d(scores, scores->ne[0] * beam + i + 0);
|
|
|
+ sc[i] = last_score - sc0;
|
|
|
+ last_score = sc0;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Skip first EOS since it is always 0 and skews normalization.
|
|
|
+ if (job.opts.normalize_scores)
|
|
|
+ tok_score /= std::pow((step_nr + 1), job.opts.len_penalty);
|
|
|
+
|
|
|
+ hypotheses.emplace_back(Hypothesis{tokens, tok_score, step_scores});
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+/// Generates a translation for a single sequence
|
|
|
+extern "C" float generate_sequence(
|
|
|
+ fairseq2_model& model,
|
|
|
+ const SequenceGeneratorJob& job,
|
|
|
+ ggml_tensor* encoder_output,
|
|
|
+ ggml_tensor* encoder_padding_mask,
|
|
|
+ ggml_tensor** output_seq
|
|
|
+) {
|
|
|
+ int input_seq_len = encoder_output->ne[1];
|
|
|
+ int vocab_size = encoder_output->ne[0];
|
|
|
+ int beam_size = job.opts.beam_size;
|
|
|
+ int max_seq_len = _determine_max_seq_len(job);
|
|
|
+ ggml_context* ctx = model.ctx;
|
|
|
+
|
|
|
+ // (S_enc, M) -> (B, S_enc, M)
|
|
|
+ _fan_out_encoder_output(ctx, &encoder_output, &encoder_padding_mask, beam_size);
|
|
|
+
|
|
|
+ std::vector<Hypothesis> active_searches(beam_size);
|
|
|
+ std::vector<Hypothesis> finished_searches(beam_size);
|
|
|
+
|
|
|
+ // Initialize buffers. (B, S)
|
|
|
+ ggml_tensor* seqs = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, max_seq_len, beam_size);
|
|
|
+ ggml_set_i32(seqs, 0);
|
|
|
+ ggml_tensor* scores = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, max_seq_len, beam_size);
|
|
|
+ ggml_set_f32(scores, 0.0);
|
|
|
+
|
|
|
+ IncrementalStateBag state_bag = {};
|
|
|
+ _bootstrap_seqs_and_scores(
|
|
|
+ model, job, seqs, scores, encoder_output, encoder_padding_mask, state_bag
|
|
|
+ );
|
|
|
+ int prefix_seq_len = job.prefix_seq->ne[0];
|
|
|
+ int start_step = prefix_seq_len - 1;
|
|
|
+
|
|
|
+ // Holds the indices of beams (a beam can occur more than once) that we
|
|
|
+ // should continue with in the next step.
|
|
|
+ ggml_tensor* beam_indices = nullptr;
|
|
|
+
|
|
|
+ // Indices of next token
|
|
|
+ ggml_tensor* candidate_indices = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, vocab_size * beam_size);
|
|
|
+ for (int i = 0; i < vocab_size * beam_size; ++i) ggml_set_i32_1d(candidate_indices, i, i);
|
|
|
+
|
|
|
+ // Holds the indices of searches that we should continue with in the next
|
|
|
+ // step. If not `None`, it means we finalized one or more searches in the
|
|
|
+ // last step.
|
|
|
+ ggml_tensor* search_indices = nullptr;
|
|
|
+
|
|
|
+ for (int step_nr = start_step; step_nr < max_seq_len - 1; ++step_nr) {
|
|
|
+ // if (beam_indices != nullptr) {
|
|
|
+ // // If not `None`, it means in the last step we finalized one or
|
|
|
+ // // more searches. We should ensure that we adjust `beam_indices`
|
|
|
+ // // before reordering `decoder`'s incremental state.
|
|
|
+ // if (search_indices != nullptr) {
|
|
|
+ // num_searches = search_indices->ne[0];
|
|
|
+
|
|
|
+ // // (N)
|
|
|
+ // delta = search_indices - torch.arange(num_searches, device=device)
|
|
|
+
|
|
|
+ // // (N) -> (N, 1)
|
|
|
+ // delta.unsqueeze_(-1)
|
|
|
+
|
|
|
+ // // Adjust indices to take into account removed searches.
|
|
|
+ // beam_indices.view(num_searches, beam_size).add_(delta * beam_size)
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // state_bag.reorder(beam_indices)
|
|
|
+ // }
|
|
|
+
|
|
|
+ ggml_tensor* decoder_output = StandardTransformerDecoder_forward(
|
|
|
+ model,
|
|
|
+ ".decoder",
|
|
|
+ // seqs[:, step_nr : step_nr + 1]
|
|
|
+ ggml_view_2d(ctx, seqs, 1, beam_size, step_nr * seqs->nb[0], 0),
|
|
|
+ nullptr, // We never generate PAD.
|
|
|
+ encoder_output,
|
|
|
+ encoder_padding_mask
|
|
|
+ // state_bag=state_bag,
|
|
|
+ );
|
|
|
+
|
|
|
+ // state_bag.increment_step()
|
|
|
+
|
|
|
+ ggml_tensor* logits = Linear_forward(model, ".decoder.final_proj", decoder_output);
|
|
|
+ ggml_tensor* lprobs = ggml_log_softmax(ctx, logits);
|
|
|
+
|
|
|
+ // // Do not allow EOS before reaching the minimum sequence length.
|
|
|
+ // if step_nr < self.opts.min_seq_len:
|
|
|
+ // lprobs[:, :, self.eos_idx] = -torch.inf
|
|
|
+
|
|
|
+ // // If we have reached the maximum length, force the last step to be
|
|
|
+ // // EOS.
|
|
|
+ // if step_nr == max_seq_len - 2:
|
|
|
+ // lprobs[:, :, : self.eos_idx] = -torch.inf
|
|
|
+ // lprobs[:, :, self.eos_idx + 1 :] = -torch.inf
|
|
|
+
|
|
|
+ // // Never allow PAD.
|
|
|
+ // lprobs[:, :, self.pad_idx] = -torch.inf
|
|
|
+
|
|
|
+ // // Apply UNK penalty.
|
|
|
+ // if self.unk_idx is not None:
|
|
|
+ // lprobs[:, :, self.unk_idx] -= self.opts.unk_penalty
|
|
|
+
|
|
|
+ // Determine candidates for the next step.
|
|
|
+ // (N, 2 x B)
|
|
|
+ int topk = StandardBeamSearch_step(
|
|
|
+ ctx,
|
|
|
+ step_nr,
|
|
|
+ step_nr == start_step,
|
|
|
+ lprobs,
|
|
|
+ // TODO only pass scores for new tokens
|
|
|
+ ggml_view_2d(ctx, scores, step_nr + 1, beam_size, 0, 0),
|
|
|
+ candidate_indices
|
|
|
+ );
|
|
|
+
|
|
|
+ int ongoing_beams = 0;
|
|
|
+ for (std::int32_t c = 0; c < topk; ++c) {
|
|
|
+ bool finished = _finalize_hypothesis(job, ctx, step_nr, c, seqs, scores, finished_searches);
|
|
|
+ if (!finished) ongoing_beams += 1;
|
|
|
+
|
|
|
+ if (ongoing_beams >= beam_size) break;
|
|
|
+ }
|
|
|
+ if (finished_searches.size() == beam_size) break;
|
|
|
+
|
|
|
+ // TODO: recreate scores and seqs with the best beams
|
|
|
+
|
|
|
+ // Remove finished searches (ones for which `beam_size` finalized
|
|
|
+ // beams have been generated) from the batch.
|
|
|
+ ggml_tensor* search_indices = nullptr;
|
|
|
+ // if (newly_finished_searches) {
|
|
|
+ // new_num_searches = num_searches - len(newly_finished_searches)
|
|
|
+
|
|
|
+ // // Construct `search_indices` which holds indices of searches
|
|
|
+ // // to keep for the next step.
|
|
|
+ // search_mask = torch.full((num_searches,), True, device=device)
|
|
|
+
|
|
|
+ // search_mask[newly_finished_searches] = False
|
|
|
+
|
|
|
+ // search_indices = torch.arange(num_searches, device=device)
|
|
|
+
|
|
|
+ // search_indices = search_indices.masked_select(search_mask)
|
|
|
+
|
|
|
+ // // Filter out removed batches from state variables.
|
|
|
+ // // (N, B) -> (N - F, B)
|
|
|
+ // ignored_beam_mask = ignored_beam_mask[search_indices]
|
|
|
+
|
|
|
+ // // (N, 2 x B) -> (N - F, 2 x B)
|
|
|
+ // cand_scores = cand_scores [search_indices]
|
|
|
+ // cand_indices = cand_indices [search_indices]
|
|
|
+ // cand_beam_indices = cand_beam_indices[search_indices]
|
|
|
+
|
|
|
+ // // (N) -> (N - F)
|
|
|
+ // search_offsets.resize_(new_num_searches, 1)
|
|
|
+
|
|
|
+ // // (N - F, 2 x B) + (N - F) -> (N - F, 2 x B)
|
|
|
+ // global_cand_beam_indices = cand_beam_indices + search_offsets
|
|
|
+
|
|
|
+ // // (N, 2 x B) -> (N - F, 2 x B)
|
|
|
+ // eos_mask = eos_mask[search_indices]
|
|
|
+
|
|
|
+ // // (N x B, S) -> (N, B, S)
|
|
|
+ // seqs = seqs .view(num_searches, -1)
|
|
|
+ // scores = scores.view(num_searches, -1)
|
|
|
+
|
|
|
+ // // (N, B, S + 1) -> ((N - F) x B, S)
|
|
|
+ // seqs = seqs [search_indices].view(new_num_searches * beam_size, -1)
|
|
|
+ // scores = scores[search_indices].view(new_num_searches * beam_size, -1)
|
|
|
+
|
|
|
+ // // (N x B, S_enc, M) -> (N, B, S_enc, M)
|
|
|
+ // encoder_output = encoder_output.unflatten(0, (num_searches, -1))
|
|
|
+
|
|
|
+ // // (N, B, S_enc, M) -> ((N - F) x B, S_enc, M)
|
|
|
+ // encoder_output = encoder_output[search_indices].flatten(0, 1)
|
|
|
+
|
|
|
+ // if encoder_padding_mask is not None:
|
|
|
+ // // (N x B, S_enc, M) -> (N, B, S_enc, M)
|
|
|
+ // padding_mask = encoder_padding_mask.unflatten(0, (num_searches, -1))
|
|
|
+
|
|
|
+ // // (N, B, S_enc, M) -> ((N - F) x B, S_enc, M)
|
|
|
+ // encoder_padding_mask = padding_mask[search_indices].flatten(0, 1)
|
|
|
+
|
|
|
+ // num_searches = new_num_searches
|
|
|
+ // }
|
|
|
+
|
|
|
+ // eos_mask[:, :beam_size][ignored_beam_mask] = True
|
|
|
+
|
|
|
+ // // Set `beam_weights` so that values greater than or equal to 2 x
|
|
|
+ // // `beam_size` indicate finished beams (i.e. end with EOS) and values
|
|
|
+ // // less than 2 x `beam_size` indicate active beams.
|
|
|
+ // // (N, 2 x B)
|
|
|
+ // beam_weights = cand_offsets + (eos_mask * (2 * beam_size))
|
|
|
+
|
|
|
+ // // Get the top `beam_size` active beams, which are the beams with the
|
|
|
+ // // smallest weights in `active_beam_weights`.
|
|
|
+ // // (N, B)
|
|
|
+ // active_beam_weights, active_beams = torch.topk(
|
|
|
+ // beam_weights, k=beam_size, dim=1, largest=False
|
|
|
+ // )
|
|
|
+
|
|
|
+ // // Update to ignore finalized beams in the next step.
|
|
|
+ // // (N, B)
|
|
|
+ // ignored_beam_mask = active_beam_weights >= 2 * beam_size
|
|
|
+
|
|
|
+ // // We should always have at least one active beam in each search.
|
|
|
+ // assert (~ignored_beam_mask).any(dim=1).all()
|
|
|
+
|
|
|
+ // // Denotes which beams are continued for each new hypothesis (a beam
|
|
|
+ // // can be selected more than once).
|
|
|
+ // // (N, B)
|
|
|
+ // beam_indices = torch.gather(
|
|
|
+ // global_cand_beam_indices, dim=1, index=active_beams
|
|
|
+ // )
|
|
|
+
|
|
|
+ // // (N, B) -> (N x B)
|
|
|
+ // beam_indices = beam_indices.view(-1)
|
|
|
+
|
|
|
+ // // Reorder beams in the `seq` and `score` buffers. The same beam can
|
|
|
+ // // be selected more than once.
|
|
|
+ // if (step_nr > start_step) {
|
|
|
+ // // seqs [:, : step_nr + 1] = torch.index_select(
|
|
|
+ // // seqs [:, : step_nr + 1], dim=0, index=beam_indices
|
|
|
+ // // )
|
|
|
+ // // scores[:, : step_nr + 1] = torch.index_select(
|
|
|
+ // // scores[:, : step_nr + 1], dim=0, index=beam_indices
|
|
|
+ // // )
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // (N x B, S) -> (N, B, S)
|
|
|
+ // // seqs_view = seqs .view(num_searches, beam_size, -1)
|
|
|
+ // // scores_view = scores.view(num_searches, beam_size, -1)
|
|
|
+
|
|
|
+ // // seqs_view [:, :, step_nr + 1] = torch.gather(cand_indices, dim=1, index=active_beams)
|
|
|
+ // // scores_view[:, :, step_nr + 1] = torch.gather(cand_scores, dim=1, index=active_beams)
|
|
|
+
|
|
|
+ }
|
|
|
+ // Ensure that hypotheses are sorted by their scores before returning.
|
|
|
+ // for batch in finished_searches:
|
|
|
+ // batch.sort(key=lambda b: b.score, reverse=True) # type: ignore[arg-type, return-value]
|
|
|
+
|
|
|
+ // return SequenceGeneratorOutput(
|
|
|
+ // results=finished_searches, device=device, pad_idx=self.pad_idx
|
|
|
+ // )
|
|
|
+
|
|
|
+ return 0.0f;
|
|
|
+}
|