1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357 |
- #include "ggml-backend-impl.h"
- #include "ggml-alloc.h"
- #include "ggml-impl.h"
- #include <assert.h>
- #include <limits.h>
- #include <stdarg.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- // backend buffer type
- ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- return buft->iface.alloc_buffer(buft, size);
- }
- size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
- return buft->iface.get_alignment(buft);
- }
- size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
- // get_alloc_size is optional, defaults to ggml_nbytes
- if (buft->iface.get_alloc_size) {
- return buft->iface.get_alloc_size(buft, tensor);
- }
- return ggml_nbytes(tensor);
- }
- bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return buft->iface.supports_backend(buft, backend);
- }
- // backend buffer
- ggml_backend_buffer_t ggml_backend_buffer_init(
- ggml_backend_buffer_type_t buft,
- struct ggml_backend_buffer_i iface,
- ggml_backend_buffer_context_t context,
- size_t size) {
- ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
- GGML_ASSERT(iface.get_base != NULL);
- (*buffer) = (struct ggml_backend_buffer) {
- /* .interface = */ iface,
- /* .buft = */ buft,
- /* .context = */ context,
- /* .size = */ size,
- };
- return buffer;
- }
- void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
- if (buffer == NULL) {
- return;
- }
- if (buffer->iface.free_buffer != NULL) {
- buffer->iface.free_buffer(buffer);
- }
- free(buffer);
- }
- size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
- return buffer->size;
- }
- void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
- void * base = buffer->iface.get_base(buffer);
- GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
- return base;
- }
- void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
- // init_tensor is optional
- if (buffer->iface.init_tensor) {
- buffer->iface.init_tensor(buffer, tensor);
- }
- }
- size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
- return ggml_backend_buft_get_alignment(ggml_backend_buffer_type(buffer));
- }
- size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
- return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor);
- }
- ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) {
- return buffer->buft;
- }
- // backend
- const char * ggml_backend_name(ggml_backend_t backend) {
- if (backend == NULL) {
- return "NULL";
- }
- return backend->iface.get_name(backend);
- }
- void ggml_backend_free(ggml_backend_t backend) {
- if (backend == NULL) {
- return;
- }
- backend->iface.free(backend);
- }
- ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
- return backend->iface.get_default_buffer_type(backend);
- }
- ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
- return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
- }
- size_t ggml_backend_get_alignment(ggml_backend_t backend) {
- return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
- }
- void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
- backend->iface.set_tensor_async(backend, tensor, data, offset, size);
- }
- void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
- backend->iface.get_tensor_async(backend, tensor, data, offset, size);
- }
- void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
- tensor->buffer->iface.set_tensor(tensor->buffer, tensor, data, offset, size);
- }
- void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
- tensor->buffer->iface.get_tensor(tensor->buffer, tensor, data, offset, size);
- }
- void ggml_backend_synchronize(ggml_backend_t backend) {
- if (backend->iface.synchronize == NULL) {
- return;
- }
- backend->iface.synchronize(backend);
- }
- ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- return backend->iface.graph_plan_create(backend, cgraph);
- }
- void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- backend->iface.graph_plan_free(backend, plan);
- }
- void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- backend->iface.graph_plan_compute(backend, plan);
- // TODO: optional sync
- ggml_backend_synchronize(backend);
- }
- void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- backend->iface.graph_compute(backend, cgraph);
- // TODO: optional sync
- ggml_backend_synchronize(backend);
- }
- bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- return backend->iface.supports_op(backend, op);
- }
- // backend copy
- static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
- if (a->type != b->type) {
- return false;
- }
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- if (a->ne[i] != b->ne[i]) {
- return false;
- }
- if (a->nb[i] != b->nb[i]) {
- return false;
- }
- }
- return true;
- }
- void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
- //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
- //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
- GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
- // fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
- if (src == dst) {
- return;
- }
- // TODO: allow backends to support copy to/from same backend
- if (dst->buffer->iface.cpy_tensor_from != NULL) {
- dst->buffer->iface.cpy_tensor_from(dst->buffer, src, dst);
- } else if (src->buffer->iface.cpy_tensor_to != NULL) {
- src->buffer->iface.cpy_tensor_to(src->buffer, src, dst);
- } else {
- // shouldn't be hit when copying from/to CPU
- #ifndef NDEBUG
- fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to "
- "are implemented for %s and %s, falling back to get/set\n", src->name, dst->name);
- #endif
- size_t nbytes = ggml_nbytes(src);
- void * data = malloc(nbytes);
- ggml_backend_tensor_get(src, data, 0, nbytes);
- ggml_backend_tensor_set(dst, data, 0, nbytes);
- free(data);
- }
- }
- // backend registry
- #define GGML_MAX_BACKENDS_REG 16
- struct ggml_backend_reg {
- char name[128];
- ggml_backend_init_fn init_fn;
- ggml_backend_buffer_type_t default_buffer_type;
- void * user_data;
- };
- static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
- static size_t ggml_backend_registry_count = 0;
- static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
- static void ggml_backend_registry_init(void) {
- static bool initialized = false;
- if (initialized) {
- return;
- }
- initialized = true;
- ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
- // add forward decls here to avoid including the backend headers
- #ifdef GGML_USE_CUBLAS
- extern void ggml_backend_cuda_reg_devices(void);
- ggml_backend_cuda_reg_devices();
- #endif
- #ifdef GGML_USE_METAL
- extern ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
- extern ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
- ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
- #endif
- }
- void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
- GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
- int id = ggml_backend_registry_count;
- ggml_backend_registry[id] = (struct ggml_backend_reg) {
- /* .name = */ {0},
- /* .fn = */ init_fn,
- /* .default_buffer_type = */ default_buffer_type,
- /* .user_data = */ user_data,
- };
- snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
- #ifndef NDEBUG
- fprintf(stderr, "%s: registered backend %s\n", __func__, name);
- #endif
- ggml_backend_registry_count++;
- }
- size_t ggml_backend_reg_get_count(void) {
- ggml_backend_registry_init();
- return ggml_backend_registry_count;
- }
- size_t ggml_backend_reg_find_by_name(const char * name) {
- ggml_backend_registry_init();
- for (size_t i = 0; i < ggml_backend_registry_count; i++) {
- // TODO: case insensitive in a portable way
- if (strcmp(ggml_backend_registry[i].name, name) == 0) {
- return i;
- }
- }
- return SIZE_MAX;
- }
- // init from backend:params string
- ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
- ggml_backend_registry_init();
- const char * params = strchr(backend_str, ':');
- char backend_name[128];
- if (params == NULL) {
- strcpy(backend_name, backend_str);
- params = "";
- } else {
- strncpy(backend_name, backend_str, params - backend_str);
- backend_name[params - backend_str] = '\0';
- params++;
- }
- size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
- if (backend_i == SIZE_MAX) {
- fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
- return NULL;
- }
- return ggml_backend_reg_init_backend(backend_i, params);
- }
- const char * ggml_backend_reg_get_name(size_t i) {
- ggml_backend_registry_init();
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_registry[i].name;
- }
- ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
- ggml_backend_registry_init();
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
- }
- ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
- ggml_backend_registry_init();
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_registry[i].default_buffer_type;
- }
- ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
- ggml_backend_registry_init();
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
- }
- // backend CPU
- static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
- return (void *)buffer->context;
- }
- static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- free(buffer->context);
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- memcpy((char *)tensor->data + offset, data, size);
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- memcpy(data, (const char *)tensor->data + offset, size);
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
- ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
- ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
- GGML_UNUSED(buffer);
- }
- static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
- /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cpu_buffer_get_base,
- /* .init_tensor = */ NULL, // no initialization required
- /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
- /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
- /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
- };
- // for buffers from ptr, free is not called
- static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
- /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
- /* .get_base = */ ggml_backend_cpu_buffer_get_base,
- /* .init_tensor = */ NULL, // no initialization required
- /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
- /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
- /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
- };
- static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
- static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
- void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
- GGML_ASSERT(data != NULL && "failed to allocate buffer");
- return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
- }
- static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return TENSOR_ALIGNMENT;
- GGML_UNUSED(buft);
- }
- static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_cpu(backend);
- GGML_UNUSED(buft);
- }
- ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
- static struct ggml_backend_buffer_type ggml_backend_buffer_type_cpu = {
- /* .iface = */ {
- /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
- /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
- /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
- },
- /* .context = */ NULL,
- };
- return &ggml_backend_buffer_type_cpu;
- }
- struct ggml_backend_cpu_context {
- int n_threads;
- void * work_data;
- size_t work_size;
- };
- static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
- return "CPU";
- GGML_UNUSED(backend);
- }
- static void ggml_backend_cpu_free(ggml_backend_t backend) {
- struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
- free(cpu_ctx->work_data);
- free(cpu_ctx);
- free(backend);
- }
- static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
- return ggml_backend_cpu_buffer_type();
- GGML_UNUSED(backend);
- }
- struct ggml_backend_plan_cpu {
- struct ggml_cplan cplan;
- struct ggml_cgraph cgraph;
- };
- static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
- struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
- cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
- cpu_plan->cgraph = *cgraph;
- if (cpu_plan->cplan.work_size > 0) {
- cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
- }
- return cpu_plan;
- }
- static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
- free(cpu_plan->cplan.work_data);
- free(cpu_plan);
- GGML_UNUSED(backend);
- }
- static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
- ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
- GGML_UNUSED(backend);
- }
- static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
- struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
- if (cpu_ctx->work_size < cplan.work_size) {
- // TODO: may be faster to free and use malloc to avoid the copy
- cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
- cpu_ctx->work_size = cplan.work_size;
- }
- cplan.work_data = cpu_ctx->work_data;
- ggml_graph_compute(cgraph, &cplan);
- }
- static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- return true;
- GGML_UNUSED(backend);
- GGML_UNUSED(op);
- }
- static struct ggml_backend_i cpu_backend_i = {
- /* .get_name = */ ggml_backend_cpu_name,
- /* .free = */ ggml_backend_cpu_free,
- /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
- /* .set_tensor_async = */ NULL,
- /* .get_tensor_async = */ NULL,
- /* .cpy_tensor_from_async = */ NULL,
- /* .cpy_tensor_to_async = */ NULL,
- /* .synchronize = */ NULL,
- /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
- /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
- /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
- /* .graph_compute = */ ggml_backend_cpu_graph_compute,
- /* .supports_op = */ ggml_backend_cpu_supports_op,
- };
- ggml_backend_t ggml_backend_cpu_init(void) {
- struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
- ctx->n_threads = GGML_DEFAULT_N_THREADS;
- ctx->work_data = NULL;
- ctx->work_size = 0;
- ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
- *cpu_backend = (struct ggml_backend) {
- /* .interface = */ cpu_backend_i,
- /* .context = */ ctx
- };
- return cpu_backend;
- }
- bool ggml_backend_is_cpu(ggml_backend_t backend) {
- return backend->iface.get_name == ggml_backend_cpu_name;
- }
- void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
- GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
- struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
- ctx->n_threads = n_threads;
- }
- ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
- return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
- }
- static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
- return ggml_backend_cpu_init();
- GGML_UNUSED(params);
- GGML_UNUSED(user_data);
- }
- // scheduler
- #define GGML_MAX_BACKENDS 4
- #define GGML_MAX_SPLITS 256
- #define GGML_MAX_SPLIT_INPUTS 16
- struct ggml_backend_sched_split {
- ggml_tallocr_t tallocr;
- int i_start;
- int i_end;
- struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
- int n_inputs;
- struct ggml_cgraph graph;
- };
- struct ggml_backend_sched {
- int n_backends;
- ggml_backend_t backends[GGML_MAX_BACKENDS];
- ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
- ggml_gallocr_t galloc;
- struct ggml_hash_set hash_set;
- ggml_tallocr_t * node_talloc; // [hash_set.size]
- struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
- struct ggml_cgraph * graph;
- struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
- int n_splits;
- struct ggml_context * ctx;
- // align context_buffer to GGML_MEM_ALIGN
- #ifdef _MSC_VER
- __declspec(align(GGML_MEM_ALIGN))
- #else
- __attribute__((aligned(GGML_MEM_ALIGN)))
- #endif
- char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
- };
- #define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
- #define node_allocr(node) sched->node_talloc[hash_id(node)]
- static bool ggml_is_view_op(enum ggml_op op) {
- return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
- }
- // returns the priority of the backend, lower is better
- static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
- for (int i = 0; i < sched->n_backends; i++) {
- if (sched->backends[i] == backend) {
- return i;
- }
- }
- return INT_MAX;
- }
- static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
- for (int i = 0; i < sched->n_backends; i++) {
- if (sched->tallocs[i] == allocr) {
- return i;
- }
- }
- return INT_MAX;
- }
- static ggml_backend_t get_buffer_backend(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
- if (buffer == NULL) {
- return NULL;
- }
- // find highest prio backend that supports the buffer type
- for (int i = 0; i < sched->n_backends; i++) {
- if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
- return sched->backends[i];
- }
- }
- GGML_ASSERT(false && "tensor buffer type not supported by any backend");
- }
- static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
- if (allocr == NULL) {
- return NULL;
- }
- // find highest prio backend that supports the buffer type
- for (int i = 0; i < sched->n_backends; i++) {
- if (sched->tallocs[i] == allocr) {
- return sched->backends[i];
- }
- }
- GGML_UNREACHABLE();
- }
- #if 0
- static char causes[GGML_DEFAULT_GRAPH_SIZE*8 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
- #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
- #define GET_CAUSE(node) causes[hash_id(node)]
- #else
- #define SET_CAUSE(node, ...)
- #define GET_CAUSE(node) ""
- #endif
- // returns the backend that should be used for the node based on the current locations
- static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
- // if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
- // ie. kv cache updates
- // note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
- // dst
- ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer);
- if (cur_backend != NULL) {
- SET_CAUSE(node, "1.dst");
- return cur_backend;
- }
- // view_src
- if (node->view_src != NULL && get_buffer_backend(sched, node->view_src->buffer) != NULL) {
- SET_CAUSE(node, "1.vsrc");
- return get_buffer_backend(sched, node->view_src->buffer);
- }
- // src
- int cur_prio = INT_MAX;
- size_t cur_size = 0;
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- const struct ggml_tensor * src = node->src[i];
- if (src == NULL) {
- break;
- }
- ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer);
- if (src_backend != NULL) {
- int src_prio = sched_backend_prio(sched, src_backend);
- size_t src_size = ggml_nbytes(src);
- if (src_prio < cur_prio && src_size >= cur_size) {
- cur_prio = src_prio;
- cur_size = src_size;
- cur_backend = src_backend;
- SET_CAUSE(node, "1.src%d", i);
- }
- }
- }
- return cur_backend;
- }
- static char * fmt_size(size_t size) {
- static char buffer[128];
- if (size >= 1024*1024) {
- sprintf(buffer, "%zuM", size/1024/1024);
- } else {
- sprintf(buffer, "%zuK", size/1024);
- }
- return buffer;
- }
- static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
- int cur_split = 0;
- for (int i = 0; i < graph->n_nodes; i++) {
- if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
- ggml_backend_t split_backend = get_allocr_backend(sched, sched->splits[cur_split].tallocr);
- fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
- sched->splits[cur_split].n_inputs);
- for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
- fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
- fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
- }
- fprintf(stderr, "\n");
- cur_split++;
- }
- struct ggml_tensor * node = graph->nodes[i];
- if (ggml_is_view_op(node->op)) {
- continue;
- }
- ggml_tallocr_t node_allocr = node_allocr(node);
- ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME:
- fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name,
- fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node));
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- break;
- }
- ggml_tallocr_t src_allocr = node_allocr(src);
- ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL;
- fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name,
- fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
- }
- fprintf(stderr, "\n");
- }
- }
- // creates a copy of the tensor with the same memory layout
- static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
- struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- dup->nb[i] = tensor->nb[i];
- }
- return dup;
- }
- // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
- // TODO: merge passes
- static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
- // reset state
- size_t hash_size = sched->hash_set.size;
- memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
- memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
- memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
- sched->n_splits = 0;
- struct ggml_init_params params = {
- /* .mem_size = */ sizeof(sched->context_buffer),
- /* .mem_buffer = */ sched->context_buffer,
- /* .no_alloc = */ true
- };
- if (sched->ctx != NULL) {
- ggml_free(sched->ctx);
- }
- sched->ctx = ggml_init(params);
- // pass 1: assign backends to ops with allocated inputs
- for (int i = 0; i < graph->n_leafs; i++) {
- struct ggml_tensor * leaf = graph->leafs[i];
- if (node_allocr(leaf) != NULL) {
- // do not overwrite user assignments
- continue;
- }
- ggml_backend_t leaf_backend = get_buffer_backend(sched, leaf->buffer);
- if (leaf_backend == NULL && leaf->view_src != NULL) {
- leaf_backend = get_buffer_backend(sched, leaf->view_src->buffer);
- }
- if (leaf_backend != NULL) {
- node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
- }
- }
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- if (node_allocr(node) != NULL) {
- // do not overwrite user assignments
- continue;
- }
- ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
- if (node_backend != NULL) {
- node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
- }
- }
- //printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
- // pass 2: assign backends to ops from current assignments
- // TODO:
- // - reuse sched_backend_from_cur
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- ggml_tallocr_t node_allocr = node_allocr(node);
- if (node_allocr == NULL) {
- int cur_prio = INT_MAX;
- size_t cur_size = 0;
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- break;
- }
- ggml_tallocr_t src_allocr = node_allocr(src);
- if (src_allocr != NULL) {
- int src_prio = sched_allocr_prio(sched, src_allocr);
- size_t src_size = ggml_nbytes(src);
- if (src_prio < cur_prio && src_size >= cur_size) {
- cur_prio = src_prio;
- cur_size = src_size;
- node_allocr = src_allocr;
- SET_CAUSE(node, "2.src%d", j);
- }
- }
- }
- if (node_allocr != NULL) {
- node_allocr(node) = node_allocr;
- }
- }
- }
- //printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
- // pass 3: assign backends to remaining src from dst (should only be leafs)
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- ggml_tallocr_t node_allocr = node_allocr(node);
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- break;
- }
- ggml_tallocr_t src_allocr = node_allocr(src);
- if (src_allocr == NULL) {
- node_allocr(src) = node_allocr;
- }
- }
- }
- //printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
- // pass 4: split graph, find tensors that need to be copied
- // TODO:
- // - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
- // find first backend
- int cur_split = 0;
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- if (node->view_src == NULL) {
- sched->splits[0].tallocr = node_allocr(node);
- break;
- }
- }
- sched->splits[0].i_start = 0;
- sched->splits[0].n_inputs = 0;
- memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
- ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
- size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- if (ggml_is_view_op(node->op)) {
- continue;
- }
- ggml_tallocr_t node_allocr = node_allocr(node);
- if (node_allocr != cur_allocr) {
- sched->splits[cur_split].i_end = i;
- cur_split++;
- GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
- sched->splits[cur_split].tallocr = node_allocr;
- sched->splits[cur_split].i_start = i;
- sched->splits[cur_split].n_inputs = 0;
- memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
- cur_allocr = node_allocr;
- cur_backend_id = sched_allocr_prio(sched, cur_allocr);
- }
- // find inputs that are not on the same backend
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- break;
- }
- ggml_tallocr_t src_allocr = node_allocr(src);
- if (src_allocr != node_allocr) {
- int n_inputs = sched->splits[cur_split].n_inputs++;
- GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
- sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
- // create copies
- size_t id = hash_id(src);
- if (sched->node_copies[id][cur_backend_id] == NULL) {
- struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
- sched->node_copies[id][cur_backend_id] = tensor_copy;
- node_allocr(tensor_copy) = cur_allocr;
- ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
- ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
- }
- node->src[j] = sched->node_copies[id][cur_backend_id];
- }
- }
- }
- sched->splits[cur_split].i_end = graph->n_nodes;
- sched->n_splits = cur_split + 1;
- //fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
- #if 1
- // sanity check: all sources should have the same backend as the node
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- ggml_tallocr_t node_allocr = node_allocr(node);
- if (node_allocr == NULL) {
- fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
- }
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- break;
- }
- ggml_tallocr_t src_allocr = node_allocr(src);
- if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
- fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
- node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
- j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL");
- }
- }
- }
- #endif
- // create copies of the graph for each split
- // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
- struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
- for (int i = 0; i < sched->n_splits; i++) {
- struct ggml_backend_sched_split * split = &sched->splits[i];
- split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
- // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
- for (int j = 0; j < split->n_inputs; j++) {
- struct ggml_tensor * input = split->inputs[j];
- struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
- input_cpy->src[0] = input;
- graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
- }
- for (int j = split->i_start; j < split->i_end; j++) {
- graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
- }
- }
- sched->graph = graph_copy;
- }
- static void sched_alloc_splits(ggml_backend_sched_t sched) {
- ggml_gallocr_alloc_graph_n(
- sched->galloc,
- sched->graph,
- sched->hash_set,
- sched->node_talloc);
- }
- static void sched_compute_splits(ggml_backend_sched_t sched) {
- uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
- uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
- struct ggml_backend_sched_split * splits = sched->splits;
- for (int i = 0; i < sched->n_splits; i++) {
- struct ggml_backend_sched_split * split = &splits[i];
- ggml_backend_t split_backend = get_allocr_backend(sched, split->tallocr);
- int split_backend_id = sched_backend_prio(sched, split_backend);
- // copy the input tensors to the split backend
- uint64_t copy_start_us = ggml_time_us();
- for (int j = 0; j < split->n_inputs; j++) {
- struct ggml_tensor * input = split->inputs[j];
- struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)];
- if (input->buffer == NULL) {
- if (input->view_src == NULL) {
- fprintf(stderr, "input %s has no buffer and no view_src\n", input->name);
- exit(1);
- }
- // FIXME: may need to use the sched buffer instead
- ggml_backend_view_init(input->view_src->buffer, input);
- }
- if (input_cpy->buffer == NULL) {
- fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
- exit(1);
- }
- //GGML_ASSERT(input->buffer->backend != input_cpy->buffer->backend);
- //GGML_ASSERT(input_cpy->buffer->backend == split_backend);
- ggml_backend_tensor_copy(input, input_cpy);
- }
- // ggml_backend_synchronize(split_backend);
- int64_t copy_end_us = ggml_time_us();
- copy_us[split_backend_id] += copy_end_us - copy_start_us;
- #if 0
- char split_filename[GGML_MAX_NAME];
- snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
- ggml_graph_dump_dot(split->graph, NULL, split_filename);
- #endif
- uint64_t compute_start_us = ggml_time_us();
- ggml_backend_graph_compute(split_backend, &split->graph);
- // ggml_backend_synchronize(split_backend);
- uint64_t compute_end_us = ggml_time_us();
- compute_us[split_backend_id] += compute_end_us - compute_start_us;
- }
- #if 0
- // per-backend timings
- fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
- for (int i = 0; i < sched->n_backends; i++) {
- if (copy_us[i] > 0 || compute_us[i] > 0) {
- fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
- }
- }
- #endif
- }
- static void sched_reset(ggml_backend_sched_t sched) {
- for (int i = 0; i < sched->n_backends; i++) {
- ggml_tallocr_reset(sched->tallocs[i]);
- }
- }
- ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
- GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
- struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
- memset(sched, 0, sizeof(struct ggml_backend_sched));
- sched->n_backends = n_backends;
- for (int i = 0; i < n_backends; i++) {
- sched->backends[i] = backends[i];
- }
- sched->galloc = ggml_gallocr_new();
- // init measure allocs for each backend
- for (int i = 0; i < n_backends; i++) {
- sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
- }
- return sched;
- }
- void ggml_backend_sched_free(ggml_backend_sched_t sched) {
- if (sched == NULL) {
- return;
- }
- for (int i = 0; i < sched->n_backends; i++) {
- ggml_tallocr_free(sched->tallocs[i]);
- }
- ggml_gallocr_free(sched->galloc);
- free(sched->hash_set.keys);
- free(sched->node_talloc);
- free(sched->node_copies);
- free(sched);
- }
- void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
- // initialize hash tables
- size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
- sched->hash_set.size = hash_size;
- sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
- sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
- sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
- sched_split_graph(sched, measure_graph);
- sched_alloc_splits(sched);
- // allocate buffers and reset allocators
- for (int i = 0; i < sched->n_backends; i++) {
- size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
- ggml_tallocr_free(sched->tallocs[i]);
- sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
- }
- sched_reset(sched);
- }
- void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
- GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
- sched_split_graph(sched, graph);
- sched_alloc_splits(sched);
- sched_compute_splits(sched);
- sched_reset(sched);
- }
- ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
- int backend_index = sched_backend_prio(sched, backend);
- return sched->tallocs[backend_index];
- }
- ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
- int backend_index = sched_backend_prio(sched, backend);
- return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
- }
- void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
- int backend_index = sched_backend_prio(sched, backend);
- GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
- node_allocr(node) = sched->tallocs[backend_index];
- }
- // utils
- void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor->buffer == NULL);
- GGML_ASSERT(tensor->data == NULL);
- GGML_ASSERT(tensor->view_src != NULL);
- GGML_ASSERT(tensor->view_src->buffer != NULL);
- GGML_ASSERT(tensor->view_src->data != NULL);
- tensor->buffer = buffer;
- tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
- tensor->backend = tensor->view_src->backend;
- ggml_backend_buffer_init_tensor(buffer, tensor);
- }
- void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
- GGML_ASSERT(tensor->buffer == NULL);
- GGML_ASSERT(tensor->data == NULL);
- GGML_ASSERT(tensor->view_src == NULL);
- GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
- GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
- (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
- tensor->buffer = buffer;
- tensor->data = addr;
- ggml_backend_buffer_init_tensor(buffer, tensor);
- }
- static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
- struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
- GGML_ASSERT(src != NULL);
- GGML_ASSERT(src->data && "graph must be allocated");
- size_t id = ggml_hash_insert(hash_set, src);
- if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
- return node_copies[ggml_hash_find(hash_set, src)];
- }
- struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
- if (src->view_src != NULL) {
- dst->view_src = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
- dst->view_offs = src->view_offs;
- }
- dst->op = src->op;
- memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
- ggml_set_name(dst, src->name);
- // copy src
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- struct ggml_tensor * s = src->src[i];
- if (s == NULL) {
- break;
- }
- dst->src[i] = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
- }
- node_copies[id] = dst;
- return dst;
- }
- static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
- size_t id = ggml_hash_find(hash_set, src);
- if (node_init[id]) {
- return;
- }
- node_init[id] = true;
- struct ggml_tensor * dst = node_copies[id];
- if (dst->view_src != NULL) {
- ggml_backend_view_init(dst->view_src->buffer, dst);
- }
- else {
- ggml_backend_tensor_copy(src, dst);
- }
- // init src
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- struct ggml_tensor * s = src->src[i];
- if (s == NULL) {
- break;
- }
- graph_init_tensor(hash_set, node_copies, node_init, s);
- }
- }
- struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
- struct ggml_hash_set hash_set = {
- /* .size = */ graph->visited_hash_table.size,
- /* .keys = */ calloc(sizeof(hash_set.keys[0]) * graph->visited_hash_table.size, 1)
- };
- struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]) * hash_set.size, 1);
- bool * node_init = calloc(sizeof(node_init[0]) * hash_set.size, 1);
- struct ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
- /* .mem_buffer = */ NULL,
- /* .no_alloc = */ true
- };
- struct ggml_context * ctx_allocated = ggml_init(params);
- struct ggml_context * ctx_unallocated = ggml_init(params);
- // dup nodes
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
- }
- // allocate nodes
- ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
- //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
- // copy data and init views
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- graph_init_tensor(hash_set, node_copies, node_init, node);
- }
- // build graph copy
- struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
- graph_copy->nodes[i] = node_copy;
- }
- graph_copy->n_nodes = graph->n_nodes;
- free(hash_set.keys);
- free(node_copies);
- free(node_init);
- return (struct ggml_backend_graph_copy) {
- /* .buffer = */ buffer,
- /* .ctx_allocated = */ ctx_allocated,
- /* .ctx_unallocated = */ ctx_unallocated,
- /* .graph = */ graph_copy,
- };
- }
- void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
- ggml_backend_buffer_free(copy.buffer);
- ggml_free(copy.ctx_allocated);
- ggml_free(copy.ctx_unallocated);
- }
- void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
- struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
- struct ggml_cgraph * g1 = graph;
- struct ggml_cgraph * g2 = copy.graph;
- assert(g1->n_nodes == g2->n_nodes);
- for (int i = 0; i < g1->n_nodes; i++) {
- //printf("eval %d/%d\n", i, g1->n_nodes);
- struct ggml_tensor * t1 = g1->nodes[i];
- struct ggml_tensor * t2 = g2->nodes[i];
- assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
- struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
- struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
- ggml_backend_graph_compute(backend1, &g1v);
- ggml_backend_graph_compute(backend2, &g2v);
- if (ggml_is_view_op(t1->op)) {
- continue;
- }
- // compare results, calculate rms etc
- if (!callback(i, t1, t2, user_data)) {
- break;
- }
- }
- ggml_backend_graph_copy_free(copy);
- }
|