fairseq2.cpp 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. #include "ggml.h"
  2. #include "fairseq2.h"
  3. /// allocate the fairseq2 model and hyperparameters
  4. extern "C" fairseq2_model* fairseq2_model_alloc() {
  5. // pre-allocate some memory to write hyperparameters and tensors pointers
  6. auto* model = new fairseq2_model;
  7. model->hparams = new std::uint8_t[8 * 1024];
  8. model->arch = new std::uint64_t[16 * 1024]; // max tensors allowed
  9. return model;
  10. };
  11. extern "C" void fairseq2_model_free(fairseq2_model* model) {
  12. delete (std::uint64_t*)(model->arch);
  13. delete (std::uint8_t*)model->hparams;
  14. delete model;
  15. };
  16. // Linear
  17. std::size_t Linear_size(int32_t input_dim, int32_t output_dim)
  18. {
  19. return (input_dim * output_dim * ggml_type_size(GGML_TYPE_F32)) // weight
  20. + (output_dim * ggml_type_size(GGML_TYPE_F32)); // bias
  21. };
  22. void Linear_init(
  23. Linear& self,
  24. fairseq2_model& model,
  25. const std::string &prefix,
  26. int input_dim,
  27. int output_dim,
  28. bool bias
  29. ) {
  30. self.weight = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, output_dim, input_dim);
  31. model.tensors[prefix + ".weight"] = self.weight;
  32. if (bias) {
  33. self.bias = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, output_dim);
  34. model.tensors[prefix + ".inner_proj.bias"] = self.bias;
  35. }
  36. }
  37. // LayerNorm
  38. std::size_t LayerNorm_size(int32_t dim)
  39. {
  40. return 2 * dim * ggml_type_size(GGML_TYPE_F32); // weight and bias
  41. };
  42. void LayerNorm_init(
  43. LayerNorm& self,
  44. fairseq2_model& model,
  45. const std::string &prefix,
  46. int dim
  47. ) {
  48. self.weight = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, dim);
  49. model.tensors[prefix + ".weight"] = self.weight;
  50. self.bias = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, dim);
  51. model.tensors[prefix + ".bias"] = self.bias;
  52. }
  53. std::size_t StandardFeedForwardNetwork_size(int32_t dim, int32_t inner_dim)
  54. {
  55. return LayerNorm_size(dim) + Linear_size(dim, inner_dim) + Linear_size(inner_dim, dim);
  56. };
  57. void StandardFeedForwardNetwork_init(
  58. StandardFeedForwardNetwork& self,
  59. fairseq2_model& model,
  60. const std::string &prefix,
  61. int model_dim,
  62. int inner_dim
  63. ) {
  64. Linear_init(self.inner_proj, model, prefix + ".inner_proj", model_dim, inner_dim, true);
  65. LayerNorm_init(self.inner_layer_norm, model, prefix + ".inner_layer_norm", inner_dim);
  66. Linear_init(self.output_proj, model, prefix + ".output_proj", inner_dim, model_dim, true);
  67. }
  68. ggml_tensor* StandardFeedForwardNetwork_forward(
  69. StandardFeedForwardNetwork* self,
  70. ggml_tensor* seqs
  71. ) {
  72. return seqs;
  73. }
  74. void MultiheadAttention_init(
  75. MultiheadAttention& self,
  76. fairseq2_model& model,
  77. const std::string &prefix,
  78. int model_dim,
  79. int num_heads
  80. ) {
  81. int bias = true;
  82. int num_key_value_heads = num_heads;
  83. int head_dim = model_dim / num_heads;
  84. Linear_init(self.q_proj, model, prefix + ".q_proj", model_dim, model_dim, bias);
  85. Linear_init(self.k_proj, model, prefix + ".k_proj", model_dim, head_dim * num_key_value_heads, bias);
  86. Linear_init(self.v_proj, model, prefix + ".v_proj", model_dim, model_dim, bias);
  87. // (H, 1, K_h)
  88. self.bias_k = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, num_heads, 1, head_dim * num_key_value_heads/ num_heads);
  89. // (H, 1, V_h)
  90. self.bias_v = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, num_heads, 1, model_dim / num_heads);
  91. }
  92. // void TransformerDecoderLayer_init(TransformerDecoderLayer& self);