| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 | // Copyright (c) Meta Platforms, Inc. and affiliates.// All rights reserved.//// This source code is licensed under the license found in the// LICENSE file in the root directory of this source tree.#pragma once#include <vector>#include "model_loader.h"// TODO Merge with Ning implementationstruct unity_hparams {    int32_t model_dim;    int32_t w2v2_encoder_config__model_dim;    int32_t w2v2_encoder_config__max_seq_len;    int32_t w2v2_encoder_config__feature_dim;    int32_t w2v2_encoder_config__use_fbank;    float w2v2_encoder_config__first_pass_dropout_p;    int32_t w2v2_encoder_config__layer_norm_features;    int32_t w2v2_encoder_config__feature_extractor_bias;    int32_t w2v2_encoder_config__feature_extractor_layer_norm_convs;    int32_t w2v2_encoder_config__feature_grad_scale;    int32_t w2v2_encoder_config__num_fbank_channels;    int32_t w2v2_encoder_config__fbank_stride;    int32_t w2v2_encoder_config__sample_fbank_every_k;    int32_t w2v2_encoder_config__pos_encoder_depth;    int32_t w2v2_encoder_config__pos_conv_kernel_size;    int32_t w2v2_encoder_config__num_pos_conv_groups;    int32_t w2v2_encoder_config__use_conformer;    int32_t w2v2_encoder_config__num_encoder_layers;    int32_t w2v2_encoder_config__num_encoder_attn_heads;    int32_t w2v2_encoder_config__ffn_inner_dim;    float w2v2_encoder_config__dropout_p;    float w2v2_encoder_config__attn_dropout_p;    float w2v2_encoder_config__layer_drop_p;    int32_t w2v2_encoder_config__norm_order;    int32_t w2v2_encoder_config__depthwise_conv_kernel_size;    int32_t nllb_config__model_dim;    int32_t nllb_config__max_seq_len;    int32_t nllb_config__vocabulary_size;    int32_t nllb_config__pad_idx;    int32_t nllb_config__num_encoder_layers;    int32_t nllb_config__num_decoder_layers;    int32_t nllb_config__num_encoder_attn_heads;    int32_t nllb_config__num_decoder_attn_heads;    int32_t nllb_config__ffn_inner_dim;    float nllb_config__dropout_p;    int32_t t2u_config__model_dim;    int32_t t2u_config__unit_max_seq_len;    int32_t t2u_config__unit_vocabulary_size;    int32_t t2u_config__unit_pad_idx;    int32_t t2u_config__num_encoder_layers;    int32_t t2u_config__num_decoder_layers;    int32_t t2u_config__num_encoder_attn_heads;    int32_t t2u_config__num_decoder_attn_heads;    int32_t t2u_config__ffn_inner_dim;    float t2u_config__dropout_p;    int32_t use_text_encoder;    int32_t use_conformer_adaptor;    int32_t num_adaptor_layers;    int32_t adaptor_kernel_size;    int32_t adaptor_stride;    int32_t adaptor_layer_norm;    float adaptor_dropout_p;};// Methods// Embeddingstd::size_t compute_embed_size(int32_t vocab_size, int32_t dim){    return vocab_size * dim * ggml_type_size(GGML_TYPE_F32);};// Projectionstd::size_t compute_projection_size(int32_t in_dim, int32_t out_dim){    return (in_dim * out_dim * ggml_type_size(GGML_TYPE_F32)) // weight        + (out_dim * ggml_type_size(GGML_TYPE_F32)); // bias};// LayerNormstd::size_t compute_layer_norm_size(int32_t dim){    return 2 * dim * ggml_type_size(GGML_TYPE_F32); // weight and bias};// FFN Layerstruct ffn_layer {    struct ggml_tensor* layer_norm_w; // model_dim    struct ggml_tensor* layer_norm_b; // model_dim    struct ggml_tensor* inner_proj_w; // ffn_inner_dim x model_dim    struct ggml_tensor* inner_proj_b; // ffn_inner_dim    struct ggml_tensor* output_proj_w; // model_dim x ffn_inner_dim    struct ggml_tensor* output_proj_b; // model_dim};std::size_t compute_ffn_layer_size(int32_t dim, int32_t inner_dim){    return compute_layer_norm_size(dim)        + compute_projection_size(dim, inner_dim)        + compute_projection_size(inner_dim, dim);};void init_ffn_layer(    ffn_layer *layer,    fairseq2_model<unity_hparams> &model_ctx,    const std::string &prefix){    const auto dim = model_ctx.hparams.nllb_config__model_dim;    const auto inner_dim = model_ctx.hparams.nllb_config__ffn_inner_dim;    auto ctx = model_ctx.ctx;    auto &tensor_map = model_ctx.tensors;    layer->layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map[prefix + "_layer_norm.weight"] = layer->layer_norm_w;    layer->layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map[prefix + "_layer_norm.bias"] = layer->layer_norm_b;    layer->inner_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, inner_dim, dim);    tensor_map[prefix + ".inner_proj.weight"] = layer->inner_proj_w;    layer->inner_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, inner_dim);    tensor_map[prefix + ".inner_proj.bias"] = layer->inner_proj_b;    layer->output_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, inner_dim);    tensor_map[prefix + ".output_proj.weight"] = layer->output_proj_w;    layer->output_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map[prefix + ".output_proj.bias"] = layer->output_proj_b;}// Attention Layerstruct attention_layer {    struct ggml_tensor* layer_norm_w; // model_dim    struct ggml_tensor* layer_norm_b; // model_dim    struct ggml_tensor* q_proj_w; // model_dim x model_dim    struct ggml_tensor* q_proj_b; // model_dim    struct ggml_tensor* k_proj_w; // model_dim x model_dim    struct ggml_tensor* k_proj_b; // model_dim    struct ggml_tensor* v_proj_w; // model_dim x model_dim    struct ggml_tensor* v_proj_b; // model_dim    struct ggml_tensor* output_proj_w; // model_dim x model_dim    struct ggml_tensor* output_proj_b; // model_dim};std::size_t compute_attention_layer_size(int32_t dim){    return compute_layer_norm_size(dim)        + 4 * compute_projection_size(dim, dim); // q, k, v, and out};void init_attention_layer(    attention_layer *layer,    fairseq2_model<unity_hparams> &model_ctx,    const std::string &prefix){    const auto dim = model_ctx.hparams.nllb_config__model_dim;    auto ctx = model_ctx.ctx;    auto &tensor_map = model_ctx.tensors;    layer->layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map[prefix + "_layer_norm.weight"] = layer->layer_norm_w;    layer->layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map[prefix + "_layer_norm.bias"] = layer->layer_norm_b;    layer->q_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);    tensor_map[prefix + ".q_proj.weight"] = layer->q_proj_w;    layer->q_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map[prefix + ".q_proj.bias"] = layer->q_proj_b;    layer->k_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);    tensor_map[prefix + ".k_proj.weight"] = layer->k_proj_w;    layer->k_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map[prefix + ".k_proj.bias"] = layer->k_proj_b;    layer->v_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);    tensor_map[prefix + ".v_proj.weight"] = layer->v_proj_w;    layer->v_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map[prefix + ".v_proj.bias"] = layer->v_proj_b;    layer->output_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);    tensor_map[prefix + ".output_proj.weight"] = layer->output_proj_w;    layer->output_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map[prefix + ".output_proj.bias"] = layer->output_proj_b;}// Attention Headstruct attention_head {    struct attention_layer* self_attn; // model_dim    struct attention_layer* encoder_decoder_attn; // model_dim    struct ffn_layer* ffn;};std::size_t compute_attention_head_size(int32_t dim, int32_t inner_dim){    return 2 * compute_attention_layer_size(dim)        + compute_ffn_layer_size(dim, inner_dim);};void init_attention_head(    attention_head *head,    fairseq2_model<unity_hparams> &model_ctx,    const std::string &prefix){    init_attention_layer(head->self_attn, model_ctx, prefix + ".self_attn");    init_attention_layer(head->encoder_decoder_attn, model_ctx, prefix + ".encoder_decoder_attn");    init_ffn_layer(head->ffn, model_ctx, prefix + ".ffn");}// Text Decoderstruct text_decoder {    struct ggml_tensor* frontend_embed_w; // vocab_size x model_dim    std::vector<attention_head*> multi_head;    struct ggml_tensor* layer_norm_w;    struct ggml_tensor* layer_norm_b;};std::size_t compute_context_size(unity_hparams &hparams){    const auto vocab_size = hparams.nllb_config__vocabulary_size;    const auto dim = hparams.nllb_config__model_dim;    const auto inner_dim = hparams.nllb_config__ffn_inner_dim;    const auto n_layers = hparams.nllb_config__num_decoder_layers;    const auto overhead = (6 + 12 * n_layers) * 512; // TODO Find out what this is.    return compute_embed_size(vocab_size, dim)        + n_layers * compute_attention_head_size(dim, inner_dim)        + compute_layer_norm_size(dim)        + overhead;};void init_model_tensors(    text_decoder &model,    fairseq2_model<unity_hparams> &model_ctx,    const std::string &prefix){    const auto ctx = model_ctx.ctx;    const auto hparams = model_ctx.hparams;    auto tensor_map = model_ctx.tensors;    const auto vocab_size = hparams.nllb_config__vocabulary_size;    const auto dim = hparams.nllb_config__model_dim;    const auto n_layers = hparams.nllb_config__num_decoder_layers;    // This can be simplified by adding syntax sugar    // frontend    model.frontend_embed_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, vocab_size, dim);    tensor_map["text_decoder_frontend.embed.weight"] = model.frontend_embed_w;    // layers    model.multi_head.resize(n_layers);    for (int i = 0; i < n_layers; ++i) {        auto head = model.multi_head[i];        auto prefix = "text_decoder.layers." + std::to_string(i);        init_attention_head(head, model_ctx, prefix);    }    // layer_norm    model.layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map["text_decoder.layer_norm.weight"] = model.layer_norm_w;    model.layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);    tensor_map["text_decoder.layer_norm.bias"] = model.layer_norm_b;};// Modelclass unity_model_loader: public model_loader<unity_hparams> {protected:    void    load_hparams(std::ifstream &fin, unity_hparams &hparams);    std::size_t    compute_context_size(unity_hparams &hparams) = 0;    void    init_model_tensors(fairseq2_model<unity_hparams> &model);};
 |