| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 | 
							- // Copyright (c) Meta Platforms, Inc. and affiliates.
 
- // All rights reserved.
 
- //
 
- // This source code is licensed under the license found in the
 
- // LICENSE file in the root directory of this source tree.
 
- #pragma once
 
- #include <vector>
 
- #include "model_loader.h"
 
- // TODO Merge with Ning implementation
 
- struct unity_hparams {
 
-     int32_t model_dim;
 
-     int32_t w2v2_encoder_config__model_dim;
 
-     int32_t w2v2_encoder_config__max_seq_len;
 
-     int32_t w2v2_encoder_config__feature_dim;
 
-     int32_t w2v2_encoder_config__use_fbank;
 
-     float w2v2_encoder_config__first_pass_dropout_p;
 
-     int32_t w2v2_encoder_config__layer_norm_features;
 
-     int32_t w2v2_encoder_config__feature_extractor_bias;
 
-     int32_t w2v2_encoder_config__feature_extractor_layer_norm_convs;
 
-     int32_t w2v2_encoder_config__feature_grad_scale;
 
-     int32_t w2v2_encoder_config__num_fbank_channels;
 
-     int32_t w2v2_encoder_config__fbank_stride;
 
-     int32_t w2v2_encoder_config__sample_fbank_every_k;
 
-     int32_t w2v2_encoder_config__pos_encoder_depth;
 
-     int32_t w2v2_encoder_config__pos_conv_kernel_size;
 
-     int32_t w2v2_encoder_config__num_pos_conv_groups;
 
-     int32_t w2v2_encoder_config__use_conformer;
 
-     int32_t w2v2_encoder_config__num_encoder_layers;
 
-     int32_t w2v2_encoder_config__num_encoder_attn_heads;
 
-     int32_t w2v2_encoder_config__ffn_inner_dim;
 
-     float w2v2_encoder_config__dropout_p;
 
-     float w2v2_encoder_config__attn_dropout_p;
 
-     float w2v2_encoder_config__layer_drop_p;
 
-     int32_t w2v2_encoder_config__norm_order;
 
-     int32_t w2v2_encoder_config__depthwise_conv_kernel_size;
 
-     int32_t nllb_config__model_dim;
 
-     int32_t nllb_config__max_seq_len;
 
-     int32_t nllb_config__vocabulary_size;
 
-     int32_t nllb_config__pad_idx;
 
-     int32_t nllb_config__num_encoder_layers;
 
-     int32_t nllb_config__num_decoder_layers;
 
-     int32_t nllb_config__num_encoder_attn_heads;
 
-     int32_t nllb_config__num_decoder_attn_heads;
 
-     int32_t nllb_config__ffn_inner_dim;
 
-     float nllb_config__dropout_p;
 
-     int32_t t2u_config__model_dim;
 
-     int32_t t2u_config__unit_max_seq_len;
 
-     int32_t t2u_config__unit_vocabulary_size;
 
-     int32_t t2u_config__unit_pad_idx;
 
-     int32_t t2u_config__num_encoder_layers;
 
-     int32_t t2u_config__num_decoder_layers;
 
-     int32_t t2u_config__num_encoder_attn_heads;
 
-     int32_t t2u_config__num_decoder_attn_heads;
 
-     int32_t t2u_config__ffn_inner_dim;
 
-     float t2u_config__dropout_p;
 
-     int32_t use_text_encoder;
 
-     int32_t use_conformer_adaptor;
 
-     int32_t num_adaptor_layers;
 
-     int32_t adaptor_kernel_size;
 
-     int32_t adaptor_stride;
 
-     int32_t adaptor_layer_norm;
 
-     float adaptor_dropout_p;
 
- };
 
- // Methods
 
- // Embedding
 
- std::size_t compute_embed_size(int32_t vocab_size, int32_t dim)
 
- {
 
-     return vocab_size * dim * ggml_type_size(GGML_TYPE_F32);
 
- };
 
- // Projection
 
- std::size_t compute_projection_size(int32_t in_dim, int32_t out_dim)
 
- {
 
-     return (in_dim * out_dim * ggml_type_size(GGML_TYPE_F32)) // weight
 
-         + (out_dim * ggml_type_size(GGML_TYPE_F32)); // bias
 
- };
 
- // LayerNorm
 
- std::size_t compute_layer_norm_size(int32_t dim)
 
- {
 
-     return 2 * dim * ggml_type_size(GGML_TYPE_F32); // weight and bias
 
- };
 
- // FFN Layer
 
- struct ffn_layer {
 
-     struct ggml_tensor* layer_norm_w; // model_dim
 
-     struct ggml_tensor* layer_norm_b; // model_dim
 
-     struct ggml_tensor* inner_proj_w; // ffn_inner_dim x model_dim
 
-     struct ggml_tensor* inner_proj_b; // ffn_inner_dim
 
-     struct ggml_tensor* output_proj_w; // model_dim x ffn_inner_dim
 
-     struct ggml_tensor* output_proj_b; // model_dim
 
- };
 
- std::size_t compute_ffn_layer_size(int32_t dim, int32_t inner_dim)
 
- {
 
-     return compute_layer_norm_size(dim)
 
-         + compute_projection_size(dim, inner_dim)
 
-         + compute_projection_size(inner_dim, dim);
 
- };
 
- void init_ffn_layer(
 
-     ffn_layer *layer,
 
-     fairseq2_model<unity_hparams> &model_ctx,
 
-     const std::string &prefix)
 
- {
 
-     const auto dim = model_ctx.hparams.nllb_config__model_dim;
 
-     const auto inner_dim = model_ctx.hparams.nllb_config__ffn_inner_dim;
 
-     auto ctx = model_ctx.ctx;
 
-     auto &tensor_map = model_ctx.tensors;
 
-     layer->layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map[prefix + "_layer_norm.weight"] = layer->layer_norm_w;
 
-     layer->layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map[prefix + "_layer_norm.bias"] = layer->layer_norm_b;
 
-     layer->inner_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, inner_dim, dim);
 
-     tensor_map[prefix + ".inner_proj.weight"] = layer->inner_proj_w;
 
-     layer->inner_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, inner_dim);
 
-     tensor_map[prefix + ".inner_proj.bias"] = layer->inner_proj_b;
 
-     layer->output_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, inner_dim);
 
-     tensor_map[prefix + ".output_proj.weight"] = layer->output_proj_w;
 
-     layer->output_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map[prefix + ".output_proj.bias"] = layer->output_proj_b;
 
- }
 
- // Attention Layer
 
- struct attention_layer {
 
-     struct ggml_tensor* layer_norm_w; // model_dim
 
-     struct ggml_tensor* layer_norm_b; // model_dim
 
-     struct ggml_tensor* q_proj_w; // model_dim x model_dim
 
-     struct ggml_tensor* q_proj_b; // model_dim
 
-     struct ggml_tensor* k_proj_w; // model_dim x model_dim
 
-     struct ggml_tensor* k_proj_b; // model_dim
 
-     struct ggml_tensor* v_proj_w; // model_dim x model_dim
 
-     struct ggml_tensor* v_proj_b; // model_dim
 
-     struct ggml_tensor* output_proj_w; // model_dim x model_dim
 
-     struct ggml_tensor* output_proj_b; // model_dim
 
- };
 
- std::size_t compute_attention_layer_size(int32_t dim)
 
- {
 
-     return compute_layer_norm_size(dim)
 
-         + 4 * compute_projection_size(dim, dim); // q, k, v, and out
 
- };
 
- void init_attention_layer(
 
-     attention_layer *layer,
 
-     fairseq2_model<unity_hparams> &model_ctx,
 
-     const std::string &prefix)
 
- {
 
-     const auto dim = model_ctx.hparams.nllb_config__model_dim;
 
-     auto ctx = model_ctx.ctx;
 
-     auto &tensor_map = model_ctx.tensors;
 
-     layer->layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map[prefix + "_layer_norm.weight"] = layer->layer_norm_w;
 
-     layer->layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map[prefix + "_layer_norm.bias"] = layer->layer_norm_b;
 
-     layer->q_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
 
-     tensor_map[prefix + ".q_proj.weight"] = layer->q_proj_w;
 
-     layer->q_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map[prefix + ".q_proj.bias"] = layer->q_proj_b;
 
-     layer->k_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
 
-     tensor_map[prefix + ".k_proj.weight"] = layer->k_proj_w;
 
-     layer->k_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map[prefix + ".k_proj.bias"] = layer->k_proj_b;
 
-     layer->v_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
 
-     tensor_map[prefix + ".v_proj.weight"] = layer->v_proj_w;
 
-     layer->v_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map[prefix + ".v_proj.bias"] = layer->v_proj_b;
 
-     layer->output_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, dim, dim);
 
-     tensor_map[prefix + ".output_proj.weight"] = layer->output_proj_w;
 
-     layer->output_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map[prefix + ".output_proj.bias"] = layer->output_proj_b;
 
- }
 
- // Attention Head
 
- struct attention_head {
 
-     struct attention_layer* self_attn; // model_dim
 
-     struct attention_layer* encoder_decoder_attn; // model_dim
 
-     struct ffn_layer* ffn;
 
- };
 
- std::size_t compute_attention_head_size(int32_t dim, int32_t inner_dim)
 
- {
 
-     return 2 * compute_attention_layer_size(dim)
 
-         + compute_ffn_layer_size(dim, inner_dim);
 
- };
 
- void init_attention_head(
 
-     attention_head *head,
 
-     fairseq2_model<unity_hparams> &model_ctx,
 
-     const std::string &prefix)
 
- {
 
-     init_attention_layer(head->self_attn, model_ctx, prefix + ".self_attn");
 
-     init_attention_layer(head->encoder_decoder_attn, model_ctx, prefix + ".encoder_decoder_attn");
 
-     init_ffn_layer(head->ffn, model_ctx, prefix + ".ffn");
 
- }
 
- // Text Decoder
 
- struct text_decoder {
 
-     struct ggml_tensor* frontend_embed_w; // vocab_size x model_dim
 
-     std::vector<attention_head*> multi_head;
 
-     struct ggml_tensor* layer_norm_w;
 
-     struct ggml_tensor* layer_norm_b;
 
- };
 
- std::size_t compute_context_size(unity_hparams &hparams)
 
- {
 
-     const auto vocab_size = hparams.nllb_config__vocabulary_size;
 
-     const auto dim = hparams.nllb_config__model_dim;
 
-     const auto inner_dim = hparams.nllb_config__ffn_inner_dim;
 
-     const auto n_layers = hparams.nllb_config__num_decoder_layers;
 
-     const auto overhead = (6 + 12 * n_layers) * 512; // TODO Find out what this is.
 
-     return compute_embed_size(vocab_size, dim)
 
-         + n_layers * compute_attention_head_size(dim, inner_dim)
 
-         + compute_layer_norm_size(dim)
 
-         + overhead;
 
- };
 
- void init_model_tensors(
 
-     text_decoder &model,
 
-     fairseq2_model<unity_hparams> &model_ctx,
 
-     const std::string &prefix)
 
- {
 
-     const auto ctx = model_ctx.ctx;
 
-     const auto hparams = model_ctx.hparams;
 
-     auto tensor_map = model_ctx.tensors;
 
-     const auto vocab_size = hparams.nllb_config__vocabulary_size;
 
-     const auto dim = hparams.nllb_config__model_dim;
 
-     const auto n_layers = hparams.nllb_config__num_decoder_layers;
 
-     // This can be simplified by adding syntax sugar
 
-     // frontend
 
-     model.frontend_embed_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, vocab_size, dim);
 
-     tensor_map["text_decoder_frontend.embed.weight"] = model.frontend_embed_w;
 
-     // layers
 
-     model.multi_head.resize(n_layers);
 
-     for (int i = 0; i < n_layers; ++i) {
 
-         auto head = model.multi_head[i];
 
-         auto prefix = "text_decoder.layers." + std::to_string(i);
 
-         init_attention_head(head, model_ctx, prefix);
 
-     }
 
-     // layer_norm
 
-     model.layer_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map["text_decoder.layer_norm.weight"] = model.layer_norm_w;
 
-     model.layer_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, dim);
 
-     tensor_map["text_decoder.layer_norm.bias"] = model.layer_norm_b;
 
- };
 
- // Model
 
- class unity_model_loader: public model_loader<unity_hparams> {
 
- protected:
 
-     void
 
-     load_hparams(std::ifstream &fin, unity_hparams &hparams);
 
-     std::size_t
 
-     compute_context_size(unity_hparams &hparams) = 0;
 
-     void
 
-     init_model_tensors(fairseq2_model<unity_hparams> &model);
 
- };
 
 
  |